#!/usr/bin/env python3 """ Plot a single sample from the 2D Poisson equation dataset. Visualizes the forcing function, solution field, and boundary conditions for a single randomly generated Poisson boundary value problem. """ import numpy as np import matplotlib.pyplot as plt from dataset import PoissonDataset def plot_poisson_sample(sample, save_path="sample_plot.png"): """ Plot a single sample from the 2D Poisson equation dataset. Creates a 3-panel visualization showing: 1. Forcing function f(x,y) 2. Solution field u(x,y) 3. Boundary conditions """ fig = plt.figure(figsize=(15, 5)) ax1 = plt.subplot(1, 3, 1) ax2 = plt.subplot(1, 3, 2) ax3 = plt.subplot(1, 3, 3) # Extract data from dataset return dictionary X, Y = sample["spatial_coordinates"] # Shape: (2, Nx, Ny) solution = sample["solution_field"] # Shape: (Nx, Ny) forcing = sample["forcing_function"] # Shape: (Nx, Ny) bc_bottom = sample["boundary_condition_bottom"] # Shape: (Nx,) bc_top_grad = sample["boundary_condition_top_gradient"] # Shape: (Nx,) # Plot 1: Forcing function f(x,y) im1 = ax1.pcolormesh( X, Y, forcing, cmap="RdBu_r", shading="gouraud", rasterized=True ) ax1.set_xlabel("x") ax1.set_ylabel("y") ax1.set_title("Forcing Function f(x,y)") ax1.set_aspect("equal") plt.colorbar(im1, ax=ax1, label="f(x,y)") # Plot 2: Solution field u(x,y) im2 = ax2.pcolormesh( X, Y, solution, cmap="viridis", shading="gouraud", rasterized=True ) ax2.set_xlabel("x") ax2.set_ylabel("y") ax2.set_title("Solution u(x,y)") ax2.set_aspect("equal") plt.colorbar(im2, ax=ax2, label="u(x,y)") # Plot 3: Boundary conditions # X has shape (Nx, Ny), we want x-coordinates along boundaries x_bottom = X[:, 0] # x-coordinates along bottom boundary (y=0) x_top = X[:, -1] # x-coordinates along top boundary (y=Ly) # Flatten boundary condition arrays if needed bc_bottom_flat = bc_bottom.ravel() if bc_bottom.ndim > 1 else bc_bottom bc_top_grad_flat = bc_top_grad.ravel() if bc_top_grad.ndim > 1 else bc_top_grad ax3.plot(x_bottom, bc_bottom_flat, "b-", linewidth=2, label="u(x,0) = g(x)") ax3.plot(x_top, bc_top_grad_flat, "r--", linewidth=2, label="∂u/∂y(x,Ly) = h(x)") ax3.set_xlabel("x") ax3.set_ylabel("Boundary values") ax3.set_title("Boundary Conditions") ax3.legend() ax3.grid(True, alpha=0.3) plt.tight_layout() plt.savefig(save_path, dpi=200, bbox_inches="tight") plt.close() print(f"Sample visualization saved to {save_path}") if __name__ == "__main__": # Set random seed for reproducibility np.random.seed(42) # Create dataset instance dataset = PoissonDataset() # Generate a single sample dataset_iter = iter(dataset) sample = next(dataset_iter) sample = next(dataset_iter) print("Sample keys:", list(sample.keys())) for key, value in sample.items(): if hasattr(value, "shape"): print(f"{key}: shape {value.shape}") else: print(f"{key}: {type(value)} - {value}") # Plot the sample plot_poisson_sample(sample)