#!/usr/bin/env python3 """ Generate an animation GIF of a single Schrödinger equation sample time evolution. Animates quantum wave packet dynamics including: - Real and imaginary parts of wavefunction - Probability density |ψ|² - Wave packet motion in harmonic potential """ import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation from dataset import SchrodingerDataset def create_schrodinger_animation(sample, save_path="sample_animation.gif", fps=15): """Create an animation GIF from a Schrödinger sample""" # Extract data x = sample['spatial_coordinates'] t = sample['time_coordinates'] psi_r = sample['psi_r_trajectory'] psi_i = sample['psi_i_trajectory'] prob = sample['probability_density'] V = sample['potential'] energy = sample['total_energy'] # Set up the figure with subplots fig, (ax1, ax2, ax3) = plt.subplots(3, 1, figsize=(12, 10)) fig.suptitle(f'Quantum Harmonic Oscillator Evolution\n' + f'ℏ={sample["hbar"]}, m={sample["mass"]}, ω={sample["omega"]}', fontsize=14, fontweight='bold') # Colors for consistency color_real = '#1f77b4' color_imag = '#ff7f0e' color_prob = '#2ca02c' color_potential = '#d62728' # Subplot 1: Wavefunction components ax1.set_xlim(x[0], x[-1]) psi_max = max(np.max(np.abs(psi_r)), np.max(np.abs(psi_i))) * 1.1 ax1.set_ylim(-psi_max, psi_max) ax1.set_ylabel('ψ(x,t)') ax1.set_title('Wavefunction Components') ax1.grid(True, alpha=0.3) # Plot potential well (scaled for background) V_scaled = V / np.max(V) * psi_max * 0.2 ax1.fill_between(x, -psi_max, V_scaled - psi_max, alpha=0.1, color=color_potential) ax1.plot(x, V_scaled - psi_max, '--', alpha=0.5, color=color_potential, linewidth=1, label='V(x)') real_line, = ax1.plot([], [], color=color_real, linewidth=2, label='ψᵣ(x,t)') imag_line, = ax1.plot([], [], color=color_imag, linewidth=2, label='ψᵢ(x,t)') ax1.legend(loc='upper right') # Subplot 2: Probability density ax2.set_xlim(x[0], x[-1]) prob_max = np.max(prob) * 1.1 ax2.set_ylim(0, prob_max) ax2.set_ylabel('|ψ(x,t)|²') ax2.set_title('Probability Density') ax2.grid(True, alpha=0.3) # Plot potential well (scaled for background) V_scaled_prob = V / np.max(V) * prob_max * 0.3 ax2.fill_between(x, V_scaled_prob, alpha=0.2, color=color_potential) prob_line, = ax2.plot([], [], color=color_prob, linewidth=2, label='|ψ|²') ax2.legend(loc='upper right') # Subplot 3: Energy over time ax3.set_xlim(t[0], t[-1]) E_mean = np.mean(energy) E_range = np.max(energy) - np.min(energy) if E_range > 0: ax3.set_ylim(np.min(energy) - 0.1*E_range, np.max(energy) + 0.1*E_range) else: ax3.set_ylim(E_mean - 0.1*abs(E_mean), E_mean + 0.1*abs(E_mean)) ax3.set_xlabel('Time t') ax3.set_ylabel('Total Energy') ax3.set_title('Energy Conservation') ax3.grid(True, alpha=0.3) # Plot full energy trace as background ax3.plot(t, energy, 'k-', alpha=0.3, linewidth=1) ax3.axhline(E_mean, color='red', linestyle='--', alpha=0.7, linewidth=1) # Current energy point energy_point, = ax3.plot([], [], 'o', color='darkgreen', markersize=8) energy_line, = ax3.plot([], [], color='darkgreen', linewidth=2) # Time text time_text = fig.text(0.02, 0.02, '', fontsize=12, fontweight='bold', bbox=dict(boxstyle="round,pad=0.3", facecolor='yellow', alpha=0.7)) # Store fill object prob_fill = None def animate(frame): """Animation function""" nonlocal prob_fill # Update wavefunction components real_line.set_data(x, psi_r[frame]) imag_line.set_data(x, psi_i[frame]) # Update probability density prob_line.set_data(x, prob[frame]) # Remove old fill and create new one if prob_fill is not None: prob_fill.remove() prob_fill = ax2.fill_between(x, prob[frame], alpha=0.3, color=color_prob) # Update energy plot current_t = t[:frame+1] current_e = energy[:frame+1] energy_line.set_data(current_t, current_e) energy_point.set_data([t[frame]], [energy[frame]]) # Update time display time_text.set_text(f'Time: {t[frame]:.3f} / {t[-1]:.3f}') return real_line, imag_line, prob_line, energy_line, energy_point, time_text # Create animation with more frames for smoother motion print(f"Creating animation with {len(t)} frames...") anim = animation.FuncAnimation( fig, animate, frames=len(t), interval=1000/fps, blit=False, repeat=True # blit=False due to fill_between ) # Save as GIF print(f"Saving animation to {save_path}...") anim.save(save_path, writer='pillow', fps=fps) plt.close() print(f"Animation saved to {save_path}") def create_simple_animation(sample, save_path="simple_animation.gif", fps=15): """Create a simpler single-panel animation focusing on probability density""" # Extract data x = sample['spatial_coordinates'] t = sample['time_coordinates'] prob = sample['probability_density'] V = sample['potential'] # Set up single plot fig, ax = plt.subplots(figsize=(10, 6)) ax.set_xlim(x[0], x[-1]) prob_max = np.max(prob) * 1.1 ax.set_ylim(0, prob_max) ax.set_xlabel('Position x') ax.set_ylabel('Probability Density |ψ|²') ax.set_title(f'Quantum Wave Packet in Harmonic Oscillator\n' + f'ℏ={sample["hbar"]}, m={sample["mass"]}, ω={sample["omega"]}') ax.grid(True, alpha=0.3) # Plot potential well (scaled) V_scaled = V / np.max(V) * prob_max * 0.3 ax.fill_between(x, V_scaled, alpha=0.2, color='red', label='V(x) (scaled)') ax.plot(x, V_scaled, 'r--', alpha=0.7, linewidth=1) # Initialize probability line prob_line, = ax.plot([], [], 'b-', linewidth=3, label='|ψ(x,t)|²') # Time text time_text = ax.text(0.02, 0.95, '', transform=ax.transAxes, fontsize=12, bbox=dict(boxstyle="round", facecolor='white', alpha=0.8)) ax.legend() # Store fill object prob_fill = None def animate(frame): """Simple animation function""" nonlocal prob_fill # Update probability line prob_line.set_data(x, prob[frame]) # Remove previous fill if it exists if prob_fill is not None: prob_fill.remove() # Create new fill prob_fill = ax.fill_between(x, prob[frame], alpha=0.4, color='blue') # Update time text time_text.set_text(f'Time: {t[frame]:.3f}') return prob_line, time_text # Create animation anim = animation.FuncAnimation( fig, animate, frames=len(t), interval=1000/fps, blit=False, repeat=True ) # Save as GIF anim.save(save_path, writer='pillow', fps=fps) plt.close() print(f"Simple animation saved to {save_path}") if __name__ == "__main__": # Set random seed for reproducibility np.random.seed(42) # Create dataset dataset = SchrodingerDataset( Lx=20.0, Nx=128, # Lower resolution for faster animation generation stop_sim_time=3.0, timestep=2e-3 # Slightly larger timestep for fewer frames ) # Generate a single sample sample = next(iter(dataset)) print("Creating animations...") print(f"Time steps: {len(sample['time_coordinates'])}") print(f"Spatial points: {len(sample['spatial_coordinates'])}") # Create both animations create_simple_animation(sample, "simple_animation.gif", fps=12) create_schrodinger_animation(sample, "sample_animation.gif", fps=10)