#!/usr/bin/env python3 """ Plot a single sample from the Schrödinger equation dataset. Visualizes quantum wave packet evolution including: - Real and imaginary parts - Probability density |ψ|² - Potential well - Energy conservation """ import numpy as np import matplotlib.pyplot as plt from dataset import SchrodingerDataset def plot_schrodinger_sample(sample, save_path="sample_plot.png"): """Plot a single sample from the Schrödinger dataset""" fig = plt.figure(figsize=(16, 12)) # Create subplot layout gs = fig.add_gridspec(3, 2, height_ratios=[1, 1, 0.8], hspace=0.3, wspace=0.3) # Extract data x = sample["spatial_coordinates"] t = sample["time_coordinates"] psi_r = sample["psi_r_trajectory"] psi_i = sample["psi_i_trajectory"] prob = sample["probability_density"] V = sample["potential"] energy = sample["total_energy"] # Colors for consistency color_real = "#1f77b4" color_imag = "#ff7f0e" color_prob = "#2ca02c" color_potential = "#d62728" # Plot 1: Initial and final wavefunction components ax1 = fig.add_subplot(gs[0, 0]) ax1.plot(x, psi_r[0], color=color_real, linewidth=2, label="ψᵣ(x,t=0)") ax1.plot(x, psi_i[0], color=color_imag, linewidth=2, label="ψᵢ(x,t=0)") ax1.plot( x, psi_r[-1], "--", color=color_real, alpha=0.7, linewidth=2, label=f"ψᵣ(x,t={t[-1]:.1f})", ) ax1.plot( x, psi_i[-1], "--", color=color_imag, alpha=0.7, linewidth=2, label=f"ψᵢ(x,t={t[-1]:.1f})", ) ax1.set_xlabel("Position x") ax1.set_ylabel("ψ(x)") ax1.set_title("Wavefunction Components") ax1.grid(True, alpha=0.3) ax1.legend() # Plot 2: Probability density evolution ax2 = fig.add_subplot(gs[0, 1]) ax2.plot(x, prob[0], color=color_prob, linewidth=2, label="|ψ(x,t=0)|²") ax2.plot( x, prob[-1], "--", color=color_prob, alpha=0.7, linewidth=2, label=f"|ψ(x,t={t[-1]:.1f})|²", ) # Add potential well (scaled for visibility) V_scaled = V / np.max(V) * np.max(prob[0]) * 0.3 ax2.fill_between( x, V_scaled, alpha=0.2, color=color_potential, label="V(x) (scaled)" ) ax2.set_xlabel("Position x") ax2.set_ylabel("Probability Density") ax2.set_title("Quantum Probability |ψ|²") ax2.grid(True, alpha=0.3) ax2.legend() # Plot 3: Real part space-time evolution ax3 = fig.add_subplot(gs[1, 0]) vmax = np.max(np.abs(psi_r)) im1 = ax3.pcolormesh( x, t, psi_r, cmap="RdBu", vmin=-vmax, vmax=vmax, shading="gouraud" ) ax3.set_xlabel("Position x") ax3.set_ylabel("Time t") ax3.set_title("Real Part Evolution ψᵣ(x,t)") plt.colorbar(im1, ax=ax3, label="ψᵣ") # Plot 4: Imaginary part space-time evolution ax4 = fig.add_subplot(gs[1, 1]) vmax = np.max(np.abs(psi_i)) im2 = ax4.pcolormesh( x, t, psi_i, cmap="RdBu", vmin=-vmax, vmax=vmax, shading="gouraud" ) ax4.set_xlabel("Position x") ax4.set_ylabel("Time t") ax4.set_title("Imaginary Part Evolution ψᵢ(x,t)") plt.colorbar(im2, ax=ax4, label="ψᵢ") # Plot 5: Bottom spanning plots - Probability density heatmap and energy ax5 = fig.add_subplot(gs[2, 0]) im3 = ax5.pcolormesh(x, t, prob, cmap="viridis", shading="gouraud") ax5.set_xlabel("Position x") ax5.set_ylabel("Time t") ax5.set_title("Probability Density Evolution |ψ(x,t)|²") plt.colorbar(im3, ax=ax5, label="|ψ|²") # Plot 6: Energy conservation ax6 = fig.add_subplot(gs[2, 1]) ax6.plot(t, energy, "o-", color="darkgreen", linewidth=2, markersize=4) ax6.set_xlabel("Time t") ax6.set_ylabel("Total Energy") ax6.set_title("Energy Conservation") ax6.grid(True, alpha=0.3) # Add energy statistics E_mean = np.mean(energy) E_std = np.std(energy) ax6.axhline( E_mean, color="red", linestyle="--", alpha=0.7, label=f"Mean: {E_mean:.3f}" ) ax6.text( 0.02, 0.95, f"σ/⟨E⟩ = {E_std/E_mean:.2e}", transform=ax6.transAxes, bbox=dict(boxstyle="round", facecolor="white", alpha=0.8), verticalalignment="top", ) ax6.legend() # Add main title with physical parameters hbar = sample["hbar"] mass = sample["mass"] omega = sample["omega"] fig.suptitle( f"Quantum Harmonic Oscillator (ℏ={hbar}, m={mass}, ω={omega})", fontsize=16, fontweight="bold", ) plt.savefig(save_path, dpi=200, bbox_inches="tight") plt.close() print(f"Schrödinger sample visualization saved to {save_path}") if __name__ == "__main__": # Set random seed for reproducibility np.random.seed(42) # Create dataset with reasonable parameters for visualization dataset = SchrodingerDataset(Lx=20.0, Nx=256, stop_sim_time=2.0, timestep=1e-3) # Generate a single sample dataset_iter = iter(dataset) sample = next(dataset_iter) sample = next(dataset_iter) print("Sample keys:", list(sample.keys())) for key, value in sample.items(): if hasattr(value, "shape"): print(f"{key}: shape {value.shape}") else: print(f"{key}: {type(value)} - {value}") # Plot the sample plot_schrodinger_sample(sample)