File size: 9,529 Bytes
f4a62da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
#!/usr/bin/env python

# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Custom rotation utilities to replace scipy.spatial.transform.Rotation."""

import numpy as np


class Rotation:
    """

    Custom rotation class that provides a subset of scipy.spatial.transform.Rotation functionality.



    Supports conversions between rotation vectors, rotation matrices, and quaternions.

    """

    def __init__(self, quat: np.ndarray) -> None:
        """Initialize rotation from quaternion [x, y, z, w]."""
        self._quat = np.asarray(quat, dtype=float)
        # Normalize quaternion
        norm = np.linalg.norm(self._quat)
        if norm > 0:
            self._quat = self._quat / norm

    @classmethod
    def from_rotvec(cls, rotvec: np.ndarray) -> "Rotation":
        """

        Create rotation from rotation vector using Rodrigues' formula.



        Args:

            rotvec: Rotation vector [x, y, z] where magnitude is angle in radians



        Returns:

            Rotation instance

        """
        rotvec = np.asarray(rotvec, dtype=float)
        angle = np.linalg.norm(rotvec)

        if angle < 1e-8:
            # For very small angles, use identity quaternion
            quat = np.array([0.0, 0.0, 0.0, 1.0])
        else:
            axis = rotvec / angle
            half_angle = angle / 2.0
            sin_half = np.sin(half_angle)
            cos_half = np.cos(half_angle)

            # Quaternion [x, y, z, w]
            quat = np.array([axis[0] * sin_half, axis[1] * sin_half, axis[2] * sin_half, cos_half])

        return cls(quat)

    @classmethod
    def from_matrix(cls, matrix: np.ndarray) -> "Rotation":
        """

        Create rotation from 3x3 rotation matrix.



        Args:

            matrix: 3x3 rotation matrix



        Returns:

            Rotation instance

        """
        matrix = np.asarray(matrix, dtype=float)

        # Shepherd's method for converting rotation matrix to quaternion
        trace = np.trace(matrix)

        if trace > 0:
            s = np.sqrt(trace + 1.0) * 2  # s = 4 * qw
            qw = 0.25 * s
            qx = (matrix[2, 1] - matrix[1, 2]) / s
            qy = (matrix[0, 2] - matrix[2, 0]) / s
            qz = (matrix[1, 0] - matrix[0, 1]) / s
        elif matrix[0, 0] > matrix[1, 1] and matrix[0, 0] > matrix[2, 2]:
            s = np.sqrt(1.0 + matrix[0, 0] - matrix[1, 1] - matrix[2, 2]) * 2  # s = 4 * qx
            qw = (matrix[2, 1] - matrix[1, 2]) / s
            qx = 0.25 * s
            qy = (matrix[0, 1] + matrix[1, 0]) / s
            qz = (matrix[0, 2] + matrix[2, 0]) / s
        elif matrix[1, 1] > matrix[2, 2]:
            s = np.sqrt(1.0 + matrix[1, 1] - matrix[0, 0] - matrix[2, 2]) * 2  # s = 4 * qy
            qw = (matrix[0, 2] - matrix[2, 0]) / s
            qx = (matrix[0, 1] + matrix[1, 0]) / s
            qy = 0.25 * s
            qz = (matrix[1, 2] + matrix[2, 1]) / s
        else:
            s = np.sqrt(1.0 + matrix[2, 2] - matrix[0, 0] - matrix[1, 1]) * 2  # s = 4 * qz
            qw = (matrix[1, 0] - matrix[0, 1]) / s
            qx = (matrix[0, 2] + matrix[2, 0]) / s
            qy = (matrix[1, 2] + matrix[2, 1]) / s
            qz = 0.25 * s

        quat = np.array([qx, qy, qz, qw])
        return cls(quat)

    @classmethod
    def from_quat(cls, quat: np.ndarray) -> "Rotation":
        """

        Create rotation from quaternion.



        Args:

            quat: Quaternion [x, y, z, w] or [w, x, y, z] (specify convention in docstring)

                  This implementation expects [x, y, z, w] format



        Returns:

            Rotation instance

        """
        return cls(quat)

    def as_matrix(self) -> np.ndarray:
        """

        Convert rotation to 3x3 rotation matrix.



        Returns:

            3x3 rotation matrix

        """
        qx, qy, qz, qw = self._quat

        # Compute rotation matrix from quaternion
        return np.array(
            [
                [1 - 2 * (qy * qy + qz * qz), 2 * (qx * qy - qz * qw), 2 * (qx * qz + qy * qw)],
                [2 * (qx * qy + qz * qw), 1 - 2 * (qx * qx + qz * qz), 2 * (qy * qz - qx * qw)],
                [2 * (qx * qz - qy * qw), 2 * (qy * qz + qx * qw), 1 - 2 * (qx * qx + qy * qy)],
            ],
            dtype=float,
        )

    def as_rotvec(self) -> np.ndarray:
        """

        Convert rotation to rotation vector.



        Returns:

            Rotation vector [x, y, z] where magnitude is angle in radians

        """
        qx, qy, qz, qw = self._quat

        # Ensure qw is positive for unique representation
        if qw < 0:
            qx, qy, qz, qw = -qx, -qy, -qz, -qw

        # Compute angle and axis
        angle = 2.0 * np.arccos(np.clip(abs(qw), 0.0, 1.0))
        sin_half_angle = np.sqrt(1.0 - qw * qw)

        if sin_half_angle < 1e-8:
            # For very small angles, use linearization: rotvec ≈ 2 * [qx, qy, qz]
            return 2.0 * np.array([qx, qy, qz])

        # Extract axis and scale by angle
        axis = np.array([qx, qy, qz]) / sin_half_angle
        return angle * axis

    def as_quat(self) -> np.ndarray:
        """

        Get quaternion representation.



        Returns:

            Quaternion [x, y, z, w]

        """
        return self._quat.copy()

    def apply(self, vectors: np.ndarray, inverse: bool = False) -> np.ndarray:
        """

        Apply this rotation to a set of vectors.



        This is equivalent to applying the rotation matrix to the vectors:

        self.as_matrix() @ vectors (or self.as_matrix().T @ vectors if inverse=True).



        Args:

            vectors: Array of shape (3,) or (N, 3) representing vectors in 3D space

            inverse: If True, apply the inverse of the rotation. Default is False.



        Returns:

            Rotated vectors with shape:

            - (3,) if input was single vector with shape (3,)

            - (N, 3) in all other cases

        """
        vectors = np.asarray(vectors, dtype=float)
        original_shape = vectors.shape

        # Handle single vector case - ensure it's 2D for matrix multiplication
        if vectors.ndim == 1:
            if len(vectors) != 3:
                raise ValueError("Single vector must have length 3")
            vectors = vectors.reshape(1, 3)
            single_vector = True
        elif vectors.ndim == 2:
            if vectors.shape[1] != 3:
                raise ValueError("Vectors must have shape (N, 3)")
            single_vector = False
        else:
            raise ValueError("Vectors must be 1D or 2D array")

        # Get rotation matrix
        rotation_matrix = self.as_matrix()

        # Apply inverse if requested (transpose for orthogonal rotation matrices)
        if inverse:
            rotation_matrix = rotation_matrix.T

        # Apply rotation: (N, 3) @ (3, 3).T -> (N, 3)
        rotated_vectors = vectors @ rotation_matrix.T

        # Return original shape for single vector case
        if single_vector and original_shape == (3,):
            return rotated_vectors.flatten()

        return rotated_vectors

    def inv(self) -> "Rotation":
        """

        Invert this rotation.



        Composition of a rotation with its inverse results in an identity transformation.



        Returns:

            Rotation instance containing the inverse of this rotation

        """
        qx, qy, qz, qw = self._quat

        # For a unit quaternion, the inverse is the conjugate: [-x, -y, -z, w]
        inverse_quat = np.array([-qx, -qy, -qz, qw])

        return Rotation(inverse_quat)

    def __mul__(self, other: "Rotation") -> "Rotation":
        """

        Compose this rotation with another rotation using the * operator.



        The composition `r2 * r1` means "apply r1 first, then r2".

        This is equivalent to applying rotation matrices: r2.as_matrix() @ r1.as_matrix()



        Args:

            other: Another Rotation instance to compose with



        Returns:

            Rotation instance representing the composition of rotations

        """
        if not isinstance(other, Rotation):
            return NotImplemented

        # Get quaternions [x, y, z, w]
        x1, y1, z1, w1 = other._quat  # Apply first
        x2, y2, z2, w2 = self._quat  # Apply second

        # Quaternion multiplication: q2 * q1 (apply q1 first, then q2)
        composed_quat = np.array(
            [
                w2 * x1 + x2 * w1 + y2 * z1 - z2 * y1,  # x component
                w2 * y1 - x2 * z1 + y2 * w1 + z2 * x1,  # y component
                w2 * z1 + x2 * y1 - y2 * x1 + z2 * w1,  # z component
                w2 * w1 - x2 * x1 - y2 * y1 - z2 * z1,  # w component
            ]
        )

        return Rotation(composed_quat)