#!/usr/bin/env python # Copyright 2025 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Custom rotation utilities to replace scipy.spatial.transform.Rotation.""" import numpy as np class Rotation: """ Custom rotation class that provides a subset of scipy.spatial.transform.Rotation functionality. Supports conversions between rotation vectors, rotation matrices, and quaternions. """ def __init__(self, quat: np.ndarray) -> None: """Initialize rotation from quaternion [x, y, z, w].""" self._quat = np.asarray(quat, dtype=float) # Normalize quaternion norm = np.linalg.norm(self._quat) if norm > 0: self._quat = self._quat / norm @classmethod def from_rotvec(cls, rotvec: np.ndarray) -> "Rotation": """ Create rotation from rotation vector using Rodrigues' formula. Args: rotvec: Rotation vector [x, y, z] where magnitude is angle in radians Returns: Rotation instance """ rotvec = np.asarray(rotvec, dtype=float) angle = np.linalg.norm(rotvec) if angle < 1e-8: # For very small angles, use identity quaternion quat = np.array([0.0, 0.0, 0.0, 1.0]) else: axis = rotvec / angle half_angle = angle / 2.0 sin_half = np.sin(half_angle) cos_half = np.cos(half_angle) # Quaternion [x, y, z, w] quat = np.array([axis[0] * sin_half, axis[1] * sin_half, axis[2] * sin_half, cos_half]) return cls(quat) @classmethod def from_matrix(cls, matrix: np.ndarray) -> "Rotation": """ Create rotation from 3x3 rotation matrix. Args: matrix: 3x3 rotation matrix Returns: Rotation instance """ matrix = np.asarray(matrix, dtype=float) # Shepherd's method for converting rotation matrix to quaternion trace = np.trace(matrix) if trace > 0: s = np.sqrt(trace + 1.0) * 2 # s = 4 * qw qw = 0.25 * s qx = (matrix[2, 1] - matrix[1, 2]) / s qy = (matrix[0, 2] - matrix[2, 0]) / s qz = (matrix[1, 0] - matrix[0, 1]) / s elif matrix[0, 0] > matrix[1, 1] and matrix[0, 0] > matrix[2, 2]: s = np.sqrt(1.0 + matrix[0, 0] - matrix[1, 1] - matrix[2, 2]) * 2 # s = 4 * qx qw = (matrix[2, 1] - matrix[1, 2]) / s qx = 0.25 * s qy = (matrix[0, 1] + matrix[1, 0]) / s qz = (matrix[0, 2] + matrix[2, 0]) / s elif matrix[1, 1] > matrix[2, 2]: s = np.sqrt(1.0 + matrix[1, 1] - matrix[0, 0] - matrix[2, 2]) * 2 # s = 4 * qy qw = (matrix[0, 2] - matrix[2, 0]) / s qx = (matrix[0, 1] + matrix[1, 0]) / s qy = 0.25 * s qz = (matrix[1, 2] + matrix[2, 1]) / s else: s = np.sqrt(1.0 + matrix[2, 2] - matrix[0, 0] - matrix[1, 1]) * 2 # s = 4 * qz qw = (matrix[1, 0] - matrix[0, 1]) / s qx = (matrix[0, 2] + matrix[2, 0]) / s qy = (matrix[1, 2] + matrix[2, 1]) / s qz = 0.25 * s quat = np.array([qx, qy, qz, qw]) return cls(quat) @classmethod def from_quat(cls, quat: np.ndarray) -> "Rotation": """ Create rotation from quaternion. Args: quat: Quaternion [x, y, z, w] or [w, x, y, z] (specify convention in docstring) This implementation expects [x, y, z, w] format Returns: Rotation instance """ return cls(quat) def as_matrix(self) -> np.ndarray: """ Convert rotation to 3x3 rotation matrix. Returns: 3x3 rotation matrix """ qx, qy, qz, qw = self._quat # Compute rotation matrix from quaternion return np.array( [ [1 - 2 * (qy * qy + qz * qz), 2 * (qx * qy - qz * qw), 2 * (qx * qz + qy * qw)], [2 * (qx * qy + qz * qw), 1 - 2 * (qx * qx + qz * qz), 2 * (qy * qz - qx * qw)], [2 * (qx * qz - qy * qw), 2 * (qy * qz + qx * qw), 1 - 2 * (qx * qx + qy * qy)], ], dtype=float, ) def as_rotvec(self) -> np.ndarray: """ Convert rotation to rotation vector. Returns: Rotation vector [x, y, z] where magnitude is angle in radians """ qx, qy, qz, qw = self._quat # Ensure qw is positive for unique representation if qw < 0: qx, qy, qz, qw = -qx, -qy, -qz, -qw # Compute angle and axis angle = 2.0 * np.arccos(np.clip(abs(qw), 0.0, 1.0)) sin_half_angle = np.sqrt(1.0 - qw * qw) if sin_half_angle < 1e-8: # For very small angles, use linearization: rotvec ≈ 2 * [qx, qy, qz] return 2.0 * np.array([qx, qy, qz]) # Extract axis and scale by angle axis = np.array([qx, qy, qz]) / sin_half_angle return angle * axis def as_quat(self) -> np.ndarray: """ Get quaternion representation. Returns: Quaternion [x, y, z, w] """ return self._quat.copy() def apply(self, vectors: np.ndarray, inverse: bool = False) -> np.ndarray: """ Apply this rotation to a set of vectors. This is equivalent to applying the rotation matrix to the vectors: self.as_matrix() @ vectors (or self.as_matrix().T @ vectors if inverse=True). Args: vectors: Array of shape (3,) or (N, 3) representing vectors in 3D space inverse: If True, apply the inverse of the rotation. Default is False. Returns: Rotated vectors with shape: - (3,) if input was single vector with shape (3,) - (N, 3) in all other cases """ vectors = np.asarray(vectors, dtype=float) original_shape = vectors.shape # Handle single vector case - ensure it's 2D for matrix multiplication if vectors.ndim == 1: if len(vectors) != 3: raise ValueError("Single vector must have length 3") vectors = vectors.reshape(1, 3) single_vector = True elif vectors.ndim == 2: if vectors.shape[1] != 3: raise ValueError("Vectors must have shape (N, 3)") single_vector = False else: raise ValueError("Vectors must be 1D or 2D array") # Get rotation matrix rotation_matrix = self.as_matrix() # Apply inverse if requested (transpose for orthogonal rotation matrices) if inverse: rotation_matrix = rotation_matrix.T # Apply rotation: (N, 3) @ (3, 3).T -> (N, 3) rotated_vectors = vectors @ rotation_matrix.T # Return original shape for single vector case if single_vector and original_shape == (3,): return rotated_vectors.flatten() return rotated_vectors def inv(self) -> "Rotation": """ Invert this rotation. Composition of a rotation with its inverse results in an identity transformation. Returns: Rotation instance containing the inverse of this rotation """ qx, qy, qz, qw = self._quat # For a unit quaternion, the inverse is the conjugate: [-x, -y, -z, w] inverse_quat = np.array([-qx, -qy, -qz, qw]) return Rotation(inverse_quat) def __mul__(self, other: "Rotation") -> "Rotation": """ Compose this rotation with another rotation using the * operator. The composition `r2 * r1` means "apply r1 first, then r2". This is equivalent to applying rotation matrices: r2.as_matrix() @ r1.as_matrix() Args: other: Another Rotation instance to compose with Returns: Rotation instance representing the composition of rotations """ if not isinstance(other, Rotation): return NotImplemented # Get quaternions [x, y, z, w] x1, y1, z1, w1 = other._quat # Apply first x2, y2, z2, w2 = self._quat # Apply second # Quaternion multiplication: q2 * q1 (apply q1 first, then q2) composed_quat = np.array( [ w2 * x1 + x2 * w1 + y2 * z1 - z2 * y1, # x component w2 * y1 - x2 * z1 + y2 * w1 + z2 * x1, # y component w2 * z1 + x2 * y1 - y2 * x1 + z2 * w1, # z component w2 * w1 - x2 * x1 - y2 * y1 - z2 * z1, # w component ] ) return Rotation(composed_quat)