name: math-comp_test num_files: 65 language: COQ few_shot_data_path_for_retrieval: null few_shot_metadata_filename_for_retrieval: null dfs_data_path_for_retrieval: null dfs_metadata_filename_for_retrieval: local.meta.json theorem_cnt: 536 datasets: - project: /math-comp/ files: - path: mathcomp/algebra/ssralg.v theorems: - telescope_prodf_eq - opp_fun_is_additive - scalerK - iter_mulr_1 - prodf_seq_eq0 - invr0 - exprSr - mulC_unitP - invrZ - mulVKr - scalerDr - in_alg_is_rmorphism - fst_is_multiplicative - prodrXl - natrX - rmorph_sum - addUC - opp_fun_is_scalable - rmorphMNn - exprDn_comm - eqr_opp - expfB_cond - rmorphN1 - exprM - fpredMr - pair_scaleA - scalerN - path: mathcomp/algebra/matrix.v theorems: - adj1 - mxrowEblock - cormen_lup_detL - mul_col_mx - map2_row' - eq_mx - thinmxOver - mxtrace_mxdiag - invmxK - map_xrow - row_dsubmx - mulmxr_is_linear - block_mxA - col_ind - tr_submxcol - scalar_mx_is_semi_additive - row'Ku - trmx_ursub - mul_mx_diag - lift0_mx_is_perm - row_perm_key - map_castmx - mxblockB - submxcolD - path: mathcomp/algebra/ssrnum.v theorems: - deg2_poly_gt0 - ltr_pdivrMr - lt0r - sqr_norm_eq1 - lerXn2r - minr_pMl - le_total - Nreal_leF - real_lteif_distl - ler_nM2r - mulr_sign_lt0 - ler_ndivlMr - ring_display - ler_wiXn2l - lern1 - sqrtr_sqr - ltrP - le_def' - mulr_ile1 - aNge0 - real_exprn_odd_le0 - gtrDr - pnatr_eq0 - ler_pMn2l - bigmax_real - sqrtr_eq0 - real_ltr_normlW - ltr_nMn2l - mulr_ilt1 - psumr_neq0P - deg2_poly_root2 - exprn_odd_ge0 - real_ltr_distl - real_lteifNE - ler_rootCl - real_neqr_lt - normr_ge0 - le_def' - ler01 - real_ltrNnormlW - ge0_def - normrN1 - sgrN1 - natr_indexg_gt0 - sgr_odd - agt0 - ieexprIn - path: mathcomp/ssreflect/ssrnat.v theorems: - mul2n - odd_gt2 - leqif_geq - subn2 - leq_pmulr - homo_leq_in - gtn_min - contra_ltnT - half_gt0 - sqrnD - mulE - subnA - doubleMr - uphalfK - predn_sub - iterD - mul_expE - mulnSr - leqif_add - path: mathcomp/ssreflect/bigop.v theorems: - big_tnth - eq_big_idem - dvdn_biggcdP - big_ord1_cond_eq - addmA - big_all_cond - big_uniq - opm1 - eq_bigl - eq_bigmax - big_rcons - bigA_distr_bigA - big_sumType - eq_big - big_tuple - path: mathcomp/fingroup/morphism.v theorems: - morphim_normal - kerE - morphimEdom - sgvalmK - isog_symr - morphpre_sub - isogEcard - path: mathcomp/algebra/polydiv.v theorems: - dvdp_XsubCl - gcd1p - rdvdpp - rdvd0p - divpp - coprimepP - dvdp_mull - polyXsubCP - leq_trunc_divp - rmodp_eq0P - rmodpX - dvdpp - dvdpN0 - gcdp_modr - coprimepZr - dvdp_gdco - rmodp_sum - coprimep_expr - rdvdp_eqP - eqp_scale - coprimepp - gcdp_addl_mul - dvdp_exp - gcdp_map - edivpP - rmodp_id - edivp_eq - path: mathcomp/field/galois.v theorems: - fixedField_galois - comp_kHom - normal_field_splitting - gal_adjoin_eq - regular_splittingAxiom - kAutfE - galNormM - splitting_normalField - comp_AEndA - kAut_to_gal - kHomExtend_additive_subproof - gal_fixedField - path: mathcomp/character/vcharacter.v theorems: - mem_zchar - vchar_norm2 - cfnorm_dchi - zchar_subset - cfun1_vchar - path: mathcomp/solvable/cyclic.v theorems: - injm_Zp_unitm - orderXdiv - path: mathcomp/algebra/ring_quotient.v theorems: - mulqA - equiv_is_equiv - path: mathcomp/fingroup/quotient.v theorems: - cosetpre1 - index_morphim_ker - morphpre_quotm - quotient_normal - path: mathcomp/solvable/maximal.v theorems: - subcent1_extraspecial_maximal - min_card_extraspecial - isog_special - path: mathcomp/algebra/mxalgebra.v theorems: - addsmxA - mxrank_compl - mulmx_ker - col_ebase_unit - rank_leq_col - LUP_card_GL - row_leq_rank - mulmx_base - pinvmxE - mxrank_sum_cap - map_ltmx - capmxS - genmx_muls - mxrank_eq0 - col_base_full - path: mathcomp/solvable/extremal.v theorems: - extremal_generators_facts - def2 - path: mathcomp/fingroup/action.v theorems: - actKVin - astab1R - afixP - actperm_Aut - acts_qact_dom_norm - astabs_ract - astab1JG - afixYin - gacent1E - acts_actby - mem_orbit - path: mathcomp/algebra/poly.v theorems: - prim_order_exists - size_XaddC - size_scale - poly_alg_initial - map_monic - coef_comp_poly - size_addl - poly_ind - size_odd_poly_eq - derivN - take_poly_is_linear - map_Poly_id0 - polyCB - rootC - add_poly_key - polyseq1 - char_prim_root - comp_polyCr - monicMr - size_comp_poly_leq - derivX - horner_evalE - map_polyXsubC - coef1 - scale_polyDl - size_XnaddC - path: mathcomp/ssreflect/order.v theorems: - comp_is_top_morphism - lexi_cons - rcomplPjoin - meetBI - joinCA - comparable_bigr - meetUr - enum1 - incomparable_leF - ltEsig - meetEseq - joinKUC - complEdiff - le_refl - joins_sup - lteif_orb - le_refl - le_enum_rank_in - contraTlt - meetCA - nonincn_inP - le_nmono_in - joinC - lt_path_min - idfun_is_meet_morphism - meetC - comparable_contra_ltn_lt - minEle - comparable_gt_max - lt_le_asym - ltEprodlexi - le_def - opredI - joinIB - leBl - joinACA - botEseq - bigmin_mkcondr - leUidl - comparable_gt_min - idfun_is_nondecreasing - decn_inP - ltW_homo - max_idPr - botEsig - le_nmono - meetAC - ge_max - anti - leBx - neqhead_lexiE - contraNle - meetA - comparable_maxCA - path: mathcomp/character/mxabelem.v theorems: - mx_repr_action_faithful - astabs_rowg_repr - path: mathcomp/character/mxrepresentation.v theorems: - mx_abs_irr_cent_scalar - map_reprJ - bigcapmx_module - map_gring_row - component_mx_module - repr_mxM - rcenter_normal - mx_second_rsim - kquo_repr_coset - in_factmod_addsK - mx_Jacobson_density - card_irr - genmx_Socle - gring_opJ - val_factmodJ - val_submod_eq0 - irr_modeV - gen_is_multiplicative - mxmodule1 - mxsimple_isoP - mxmodule_eigenvector - mxsemisimpleS - Wedderburn_ideal - hom_cyclic_mx - socle_rsimP - path: mathcomp/solvable/abelian.v theorems: - rank_cycle - primes_exponent - exponent_Zgroup - Ohm1 - exponent2_abelem - p_rank_abelem - TIp1ElemP - path: mathcomp/field/finfield.v theorems: - finRing_nontrivial - path: mathcomp/ssreflect/prime.v theorems: - Euclid_dvd_prod - trunc_log_ltn - up_log2_double - trunc_log_up_log - totient_prime - trunc_logP - lognM - primesX - pdiv_id - pdiv_pfactor - path: mathcomp/algebra/polyXY.v theorems: - sizeYE - swapXY_is_scalable - max_size_coefXY - poly_XaY0 - path: mathcomp/algebra/vector.v theorems: - dimv0 - lfun_addC - sumv_sup - comp_lfun0l - memvK - span_basis - comp_lfunNl - free_span - fun_of_lfunK - memv_capP - vs2mxP - capvSl - hommx1 - sub_span - dim_span - path: mathcomp/fingroup/perm.v theorems: - perm_mulP - out_perm - cast_perm_inj - porbit_id - porbit_perm - odd_tperm - tpermKg - inj_tperm - path: mathcomp/algebra/ssrint.v theorems: - addSz - ler_pMz2r - ltr_pMz2l - ler_wnMz2l - exprSz - exprz_out - sqrn_dist - mulrN1z - sgzN1 - distnEr - path: mathcomp/algebra/intdiv.v theorems: - divzN - coprimez_dvdr - gcdzMl - modzz - coprimezMl - path: mathcomp/ssreflect/choice.v theorems: - pickle_taggedK - sig2W - choose_id - path: mathcomp/field/fieldext.v theorems: - minPoly_dvdp - vsval_multiplicative - subfx_inj_is_multiplicative - dim_refBaseField - path: mathcomp/ssreflect/fintype.v theorems: - val_seq_sub_enum - predT_subset - eq_forallb - nth_enum_ord - bumpC - image_pre - disjointWl - enum_rank_in_inj - card_geqP - forall_inP - fintype1 - cardID - neq_lift - path: mathcomp/algebra/zmodp.v theorems: - unit_Zp_mulgC - sub_Zp_1 - Zp_abelian - Fp_cast - path: mathcomp/character/character.v theorems: - cfRepr_prod - irr_inj - xcfunZl - xcfun_r_is_additive - cfRepr_muln - constt_charP - cfRes_irr_irr - irr_classK - cfker_repr - lin_Res_IirrE - cfRes_eq0 - cfAut_char - lin_charV - irr_consttE - char1_gt0 - path: mathcomp/solvable/sylow.v theorems: - Sylow_superset - ZgroupS - path: mathcomp/field/falgebra.v theorems: - adjoin_cons - expv0 - lfun_invE - expv1n - agenv_sub_modl - lfun_mulrRV - path: mathcomp/field/algC.v theorems: - truncC0 - truncCM - Cnat_prod_eq1 - posP - eqCmod_addl_mul - eqCmodMl - eqCmodD - eqCmod_trans - CtoL_is_multiplicative - path: mathcomp/ssreflect/path.v theorems: - mem2E - splitP2r - rotr_ucycle - mem_merge - rotr_cycle - mem2r_cat - sorted_eq_in - cycle_relI - drop_sorted - splitPr - path: mathcomp/algebra/mxpoly.v theorems: - map_mx_companion - map_char_poly - rVpoly_is_linear - horner_rVpoly_inj - path: mathcomp/algebra/fraction.v theorems: - tofrac0 - equivf_trans - path: mathcomp/ssreflect/div.v theorems: - eqn_div - eqn_modDl - dvdn_eq - modnMmr - dvdn0 - dvdn_lcmr - path: mathcomp/solvable/frobenius.v theorems: - Frobenius_kerS - FrobeniusJgroup - path: mathcomp/solvable/alt.v theorems: - simple_Alt_3 - path: mathcomp/solvable/jordanholder.v theorems: - JordanHolderUniqueness - gactsI - gastabsP - gactsP - path: mathcomp/solvable/burnside_app.v theorems: - S23_inv - S05_inj - eqperm_map2 - path: mathcomp/algebra/rat.v theorems: - scalqE - fracq0 - normqE - numq_le0 - natq_div - addqC - path: mathcomp/algebra/qpoly.v theorems: - size_mk_monic_gt1 - npolyXE - qpoly_mulVz - big_coef_npoly - path: mathcomp/character/inertia.v theorems: - inertia_isom - im_cfclass_Iirr - nNG - path: mathcomp/fingroup/gproduct.v theorems: - complP - bigcprodW - sdprodg1 - injm_pairg1 - cprodP - perm_bigcprod - dprodJ - divgrMid - astabsEsd - sdprod_subr - xsdprodm_dom1 - bigcprodYP - cprodWpp - dprodWC - path: mathcomp/field/qfpoly.v theorems: - plogpD - path: mathcomp/solvable/gseries.v theorems: - morphpre_maximal - path: mathcomp/ssreflect/generic_quotient.v theorems: - right_trans - path: mathcomp/algebra/archimedean.v theorems: - aut_natr - floor_ge_int - ceil_def - path: mathcomp/algebra/interval.v theorems: - le_ninfty - oppr_itvco - le_bound_trans - path: mathcomp/solvable/nilpotent.v theorems: - solvableS - ucn1 - path: mathcomp/ssreflect/fingraph.v theorems: - eq_froots - order_id - relU_sym - order_set_finv - finv_eq_can - finv_f_cycle - path: mathcomp/solvable/center.v theorems: - center_dprod - center_sub - path: mathcomp/field/separable.v theorems: - Derivation_mul_poly - char0_PET - path: mathcomp/solvable/commutator.v theorems: - comm3G1P - der_subS - commgX - isog_der - path: mathcomp/solvable/gfunctor.v theorems: - gFsub - path: mathcomp/ssreflect/ssrAC.v theorems: - count_memE - path: mathcomp/field/closed_field.v theorems: - ex_elim_qf - path: mathcomp/algebra/finalg.v theorems: - zmod_abelian - path: mathcomp/fingroup/automorphism.v theorems: - ker_autm - path: mathcomp/ssreflect/binomial.v theorems: - ffactSS - path: mathcomp/solvable/hall.v theorems: - coprime_quotient_cent