name: math-comp_train num_files: 75 language: COQ few_shot_data_path_for_retrieval: null few_shot_metadata_filename_for_retrieval: null dfs_data_path_for_retrieval: null dfs_metadata_filename_for_retrieval: local.meta.json theorem_cnt: 11381 datasets: - project: /math-comp/ files: - path: mathcomp/solvable/abelian.v theorems: - trivg_exponent - abelian_type_dvdn_sorted - Ohm_leq - abelem_Ohm1P - expg_exponent - TI_Ohm1 - rankJ - abelian_splits - isog_abelem - morphim_pElem - nElem1P - rank_Ohm1 - pnElem0 - rankS - pElemP - nElem0 - Ohm1Eexponent - p_rank_Ohm1 - rank_pgroup - pmaxElemS - is_abelemP - p_rank_pmaxElem_exists - exponent_witness - p_rank_dprod - abelian_type_dprod_homocyclic - morphim_rank_abelian - quotient_p_rank_abelian - dprod_exponent - abelem_cyclic - isog_rank - cprod_abelem - Ohm1_id - abelian_type_gt1 - morphim_LdivT - card_pnElem - isog_homocyclic - p_rankS - injm_pnElem - card_p1Elem - Ohm1_homocyclicP - morphim_Ohm - quotient_pnElem - eq_abelian_type_isog - abelian_type_sorted - p_rank_Hall - max_card_abelian - p_rank_p'quotient - isog_Mho - abelian_type_pgroup - LdivT_J - Ohm1Eprime - OhmEabelian - nElemS - abelem_Ohm1 - Mho1 - Mho_leq - pnElemP - quotient_LdivT - p_rank1 - nElemP - quotient_grank - exponent_quotient - abelemP - sub_Ldiv - Ohm1_eq1 - isog_abelem_card - rank_gt0 - fin_lmod_char_abelem - abelem_order_p - injm_rank - p_rank_le_logn - Ohm_dprod - pnElemPcard - pElemJ - pnat_exponent - rank_abelian_pgroup - injm_pElem - p_rank_le_rank - cyclic_abelem_prime - p_rank_gt0 - dprod_abelem - Ohm_Mho_homocyclic - injm_abelem - OhmS - pmaxElem_exists - pi_of_exponent - card_p1Elem_p2Elem - quotient_Ldiv - pmaxElem_LdivP - abelem_pgroup - OhmJ - Ohm0 - exponent_injm - grank_abelian - nElemI - pmaxElemP - partn_exponentS - abelian_type_subproof - injm_pmaxElem - abelem1 - abelem_homocyclic - Mho_sub - OhmPredP - exponent_isog - Mho_dprod - isog_Ohm - p_rank_witness - quotient_pElem - injm_nElem - exponent1 - exponentS - exponentP - trivg_Mho - Ohm_char - LdivJ - p_rankJ - Mho_normal - p_rankElem_max - size_abelian_type - Ohm_sub - cyclic_pgroup_dprod_trivg - quotient_abelem - pElemI - rank_abelem - nt_pnElem - exponent_Hall - isog_abelian_type - card_p1Elem_pnElem - dprod_homocyclic - exponent_cyclic - morphim_grank - morphim_abelem - LdivP - pmaxElemJ - Ohm_p_cycle - injm_Ldiv - cprod_exponent - p_rank_abelian - abelian_structure - abelemE - morphim_p_rank_abelian - MhoE - p1ElemE - Ohm1_abelem - fin_Fp_lmod_abelem - rank1 - Ohm_normal - homocyclic1 - Ohm1_cent_max - p2Elem_dprodP - morphim_pnElem - exponent_gt0 - group_Ldiv - p_rank_Sylow - prime_abelem - morphim_Ldiv - sub_LdivT - MhoJ - exponent_dvdn - Mho_cprod - Mho_char - Ohm_id - logn_le_p_rank - exponent_dprod_homocyclic - mul_card_Ohm_Mho_abelian - cycle_abelem - injm_p_rank - dvdn_exponent - pElemS - pnElemI - grank_min - OhmE - abelemJ - abelem_splits - grank_witness - Mho_p_elt - pnElemE - isog_p_rank - meet_Ohm1 - abelem_pnElem - pnElemJ - MhoEabelian - Ohm1_cyclic_pgroup_prime - rank_Sylow - abelian_type_abelem - rank_geP - homocyclic_Ohm_Mho - p_rank_quotient - abelian_type_homocyclic - MhoS - logn_quotient - card_homocyclic - abelian_exponent_gen - exponentJ - def_pnElem - isog_grank - is_abelem_pgroup - fin_ring_char_abelem - exponent_cycle - count_logn_dprod_cycle - abelian_rank1_cyclic - Mho_cont - piOhm1 - p_rank_geP - injm_grank - path: mathcomp/algebra/mxalgebra.v theorems: - mxrank_cap_compl - eqmxMfull - rowV0P - ltmx_irrefl - adds0mx - map_capmx_gen - addsmx_nop0 - cent_mx_ideal - mxrank_sum_leqif - mxrank0 - stablemxN - row_free_castmx - map_row_base - mulsmxDl - map_row_ebase - ltmx1 - capmx_eq_norm - mxrank_mul_ker - mxrankS - mxrankE - diffmxE - map_capmx - eqmxMfree - ltmxErank - eq_row_full - row_sub - sub_capmx - summx_sub - eqmx_conform - matrix_modr - row_fullP - mxrankM_maxr - capmx_idPl - cap0mx - mxrank_opp - logn_card_GL_p - mxrank_adds_leqif - rank_leq_row - map_submx - mulsmx_subP - stablemx0 - negb_row_free - stablemx_sums - mxring_id_uniq - sub_daddsmx - rank_ltmx - sub_addsmxP - eqmx_col - mxrank_fullrowsub - sub_dsumsmx - mxrank_ker - eqmx_eq0 - capmx_norm_eq - row_subP - capmxC - nary_mxsum_proof - addsmx_addKl - genmx_id - rowsub_comp_sub - sub_ltmx_trans - genmx_cap - addsmx_nop_eq0 - addsmx_compl_full - mxdirect_addsP - maxrowsub_free - mxrankMfree - mulsmxS - sub_rVP - lt1mx - eq_maxrowsub - row_full_unit - stablemxC - rank_rV - proj_mx_sub - center_mxP - fullrankfun_inj - addsmx_addKr - capmx_diff - sumsmx_subP - eqmxMunitP - mulsmxA - card_GL - mulmxKpV - stablemx_unit - memmx1 - mulmxP - eqmxP - lt0mx - center_mx_sub - inj_row_free - addsmx_idPr - eq_genmx - rowsub_sub - mxdirect_adds_center - proj_mx_compl_sub - row_full_inj - eq_row_base - eqmx_stable - mulmx_coker - row_subPn - genmx_sums - eq_rank_unitmx - addmx_sub_adds - submx_full - genmx_diff - rank_diag_block_mx - addsmx_nop_id - submx_rowsub - eqmx_sym - memmx_addsP - genmx0 - addsmxE - submx_refl - submxElt - ltmxE - capmx1 - capmx_idPr - submxMl - addsmxS - map_genmx - fullrowsub_full - lt_eqmx - mulmx1_min_rank - eqmx_rank - row_full_castmx - capmx_nopP - stablemxD - sub_sumsmxP - memmx0 - mxdirect_trivial - row_base_free - mxrank_tr - eqmx_scale - mxrank_disjoint_sum - mxrank_injP - maxrowsub_full - mxrank_leqif_sup - sub0mx - row_free_map - addsmx_diff_cap_eq - capmxMr - adds0mx_id - adds_eqmx - mem0mx - map_cokermx - pinvmx_full - mxrank_map - memmx_map - mulsmxP - eigenvalueP - kermx0 - mulsmx0 - eigenvectorP - mxdirect_sumsE - capmxSr - mulmx0_rank_max - add_proj_mx - submx0 - mxdirect_sums_center - nz_row_sub - complete_unitmx - scalar_mx_cent - map_center_mx - mulmxKp - eigenvalue_map - cokermx_eq0 - eqmx_opp - map_kermx - eqmx_sums - eq_fullrowsub - col_mx_sub - card_GL_1 - capmx0 - stablemxM - sub_kermxP - sumsmx_sup - muls0mx - eqmxMr - eq_row_sub - mxdirect_sumsP - mulVpmx - mxring_idP - mulsmxDr - mxrank1 - Gaussian_elimination_map - stable0mx - capmxE - sub_bigcapmxP - cap1mx - eqmx_refl - mxdirect_sums_recP - row_full_map - mxrank_scale_nz - mxrank_coker - row_free_inj - rV_subP - map_pinvmx - map_cent_mx - mxdirect_sum_eigenspace - cent_mx_fun_is_linear - mxrank_gen - cent_mxP - mulmxKV_ker - row_freeP - mxdirect_delta - rank_col_mx0 - scalemx_sub - comm_mx_stable - mxrank_delta - mxdirect_addsE - submx_trans - map_col_base - rank_copid_mx - comm_mx_stable_ker - capTmx - capmx_nop_id - map_eigenspace - stableCmx - eqmx0 - sub_qidmx - addsmx_sub - eqmx_sum_nop - capmx_normP - stablemx_row_base - mxdirectEgeq - memmx_sumsP - map_mulsmx - pinvmx_free - addsmxSr - rank_mxdiag - stableDmx - eqmx_rowsub_comp_perm - has_non_scalar_mxP - rank_col_0mx - capmxSl - mulmx_ebase - addsmx0_id - addsmxC - row_free_unit - ltmx_trans - genmx1 - genmx_bigcap - ltmx_sub_trans - mem_mulsmx - proj_mx_0 - maxrankfun_inj - map_eqmx - capmxA - qidmx_cap - mxrankM_maxl - eqmx_rowsub - stablemx_full - sumsmxMr - cap_eqmx - comm_mx_stable_eigenspace - mxdirectE - fullrowsub_free - submxMr - bigcapmx_inf - memmx_subP - mxrank_leqif_eq - addsmxMr - mulmxVp - map_col_ebase - fullrowsub_unit - rank_row_mx0 - submx0null - eqmx_cast - matrix_modl - ltmx0 - mxdirectP - sub_sums_genmxP - mxrank_add - addsmx_idPl - card_GL_2 - ltmxW - eigenspaceP - cent_mx_ring - mxrank_Frobenius - diffmxSl - sub_kermx - submxMfree - row_ebase_unit - mxrank_mul_min - genmx_witnessP - memmx_eqP - sumsmxS - capmx_witnessP - map_complmx - addsmx0 - mxrank_scale - sub_capmx_gen - submxE - muls_eqmx - sub1mx - capmx_compl - proj_mx_id - cent_rowP - rank_row_0mx - eqmx_trans - mulmx_free_eq0 - submxP - addsmxSl - capmxT - sumsmxMr_gen - col_leq_rank - submx1 - eqmx0P - ltmxEneq - mxrank_unit - map_diffmx - genmx_adds - rank_pid_mx - map_addsmx - path: mathcomp/algebra/matrix.v theorems: - map_col_mx - det0 - scalemx_inj - mx11_scalar - mxcol_const - mxcol_sum - unitmx1 - trmxK - lin1_mx_key - row_mxEl - map_mx_key - mxsize_recl - eq_mxdiag - mul_mxcol_mxrow - mul_row_block - col_permM - mxrow0 - mxrowD - mxvecE - colsub_comp - row_usubmx - mx_vec_lin - scalar_mx_sum_delta - map2_usubmx - scale1mx - det_inv - map2_col_perm - mxtrace_is_scalar - map_mxN - map2_row_mx - mul_scalar_mx - add_row_mx - unitmxE - mx0_is_diag - map_xcol - delta_mx_rshift - map2_row - col_mxblock - mxtrace_mxblock - col'_eq - col_mx_key - map2_mxsub - tr_scalar_mx - mxblockEh - row_mx0 - determinant_alternate - mul_rVP - submxblockB - trmx_adj - row_mxKr - col_rsubmx - map2_1mx - mxsub_comp - mxcolB - mx_rV_lin - map_mx_id_in - trmx_delta - mulVmx - scalar_mx_block - trmx_drsub - is_perm_mx_tr - mulmx_is_scalable - addmx_key - map_tperm_mx - det_mulmx - eq_castmx - scale_scalar_mx - map2_lsubmx - scalar_mx_is_additive - tr_col - mulmxN - mulmx_colsub - is_diag_block_mx - map_row_mx - mul_pid_mx - mxcol_recu - scalemxAr - usubmxEsub - mxsub_mul - mxvec_cast - diag_mx_sum_delta - cast_col_mx - mulNmx - mulmxBl - rowE - map2_conform_mx - trmx_const - invmx_out - xcolE - mulmx1 - submxblockK - mxblock_recul - rowP - xcol_const - perm_mxV - diag_const_mx - row_mxsub - mulKVmx - mul_rV_lin - colP - comm_mx_sym - map_mxsub - col_mx_eq0 - tr_row_mx - xrowEsub - flatmxOver - rowsubE - det_diag - map_mxZ - mxblockD - mul_vec_lin_row - rsubmxEsub - tr_row' - map_ursubmx - trmx_usub - row_mx_key - mul_delta_mx - diag_mx_is_linear - invmx_scalar - mxOver_opp_subproof - cormen_lup_correct - mul_block_col - row_rowsub - eq_mxsub - delta_mx_dshift - pid_mx_row - scalemxDl - rowK - curry_mxvec_bij - map_lin1_mx - block_mxEdr - map_mxB - comm_mxB - lift0_perm_eq0 - castmxKV - mxOverM - map2_col_mx - scale_col_mx - map2_mxC - col_mxsub - idmxE - mxtrace_scalar - is_perm_mxMr - mul_row_col - tr_submxblock - submxK - lift0_perm0 - col_mxdiag - map2_mxvec - trmx_cast - map_row_perm - block_mx0 - eq_mxcol - mul_diag_mx - mul_xcol - mxcolN - map_drsubmx - map2_vec_mx - map2_mx0 - mxOverZ - opp_row_mx - block_mxEul - const_mx_key - col_perm_const - vec_mx_eq0 - scalemxDr - map2_mxA - intro_unitmx - map2_ursubmx - tr_mxrow - trmx1 - col_colsub - map2_mx1 - row1 - map_mxM - row'Kd - mxblock0 - GL_VxE - opp_block_mx - mul_rowsub_mx - col'_const - tr_mxcol - map2_rsubmx - is_diag_trmx - mxEmxrow - scalemxAl - tr_pid_mx - submxrow_matrix - eq_rowsub - trigmx_ind - mul_mxrow_mxblock - block_mxEdl - submxrowD - row_permEsub - adjZ - map2_mx_left - expand_det_row - det_lblock - map_col_perm - is_scalar_mx_is_diag - ursubmxEsub - col_eq - row_mxrow - rowsub_comp - vsubmxK - lift0_perm_lift - mxblockK - mulmx_sum_row - mxOverS - mxOver_diagE - mulmxDr - tr_xrow - col_mxEu - map_scalar_mx - mxrowP - cast_row_mx - matrix_key - mx0_is_trig - det_tr - rowEsub - cormen_lup_upper - diagsqmx_ind - map2_mx_key - mul_mx_row - tr_row - is_trig_mxblockP - GL_ME - mul_mxdiag_mxcol - GL_unitmx - block_mx_eq0 - mul_mxdiag_mxblock - mxdiagN - tr_perm_mx - mul_mxrow - mxsub_id - mxtrace_is_semi_additive - mxsub_ffun - row_perm1 - mul_mx_scalar - is_diag_mxP - submxcol_sum - mxcol_mul - row_mx_eq0 - mx0_is_scalar - is_scalar_mx_is_trig - mxrowN - tr_col' - castmx_comp - is_perm_mxMl - map_lin_mx - mx11_is_diag - eq_block_mx - lin_mulmx_is_linear - addNmx - mxrow_const - mul_pid_mx_copid - opp_col_mx - trmx0 - trmx_mxsub - row_mxA - mxvec_delta - delta_mx_key - col_mx0 - rV0Pn - mxdiagD - is_diag_mxEtrig - unitmxZ - mxcol0 - map_mxD - map_usubmx - eq_mxblockP - row_permM - tr_block_mx - map2_trmx - invmx_block_diag - col_perm_key - mulmx1_unit - dsubmxEsub - comm_mxM - summxE - scale_block_mx - ulsubmx_diag - mul_delta_mx_cond - add_block_mx - eq_in_map_mx - col0 - mul_dsub_mx - map2_xcol - unitmx_mul - vec_mxK - mxtraceD - trmx_mul - map2_mxDl - trmxV - cV0Pn - col'Kl - mxOver_scalarE - cofactor_map_mx - mul_mxblock - mxOver_add_subproof - mxOver_constE - pid_mx_col - mxblockEv - mxvec_indexP - all_comm_mx1 - map_copid_mx - mul_adj_mx - map_diag_mx - block_mxKdl - mxblock_recu - mxsub_ffunl - pid_mx_minh - unitmx_inv - conform_castmx - mxOverP - mxsub_const - submxrowN - mxrowB - scalemxA - mxdiagB - col'_col_mx - col_lsubmx - map_pid_mx - map_mx_id - submxcol_matrix - cofactorZ - col1 - map2_dlsubmx - is_trig_mxP - is_trig_block_mx - col_permE - delta_mx_lshift - eq_row_mx - xrowE - mxsubcr - mxdiag0 - scalemx_const - comm_mxN - copid_mx_id - trmx_inv - vec_mx_delta - mxOver_const - mx1_sum_delta - eq_map2_mx - submxcolN - row_mx_const - map_mx_eq0 - lift0_permK - col_const - pid_mx_id - all_comm_mxP - pid_mx_block - row_const - ulsubmxEsub - block_mxKul - scalar_mx_key - colKr - comm_mxE - delta_mx_ushift - row_mxdiag - row_diag_mx - comm1mx - diagmx_ind - scalar_mx_is_diag - row_permE - det_mx11 - swizzle_mx_is_semi_additive - col_mxA - comm_mx_refl - ursubmx_trig - is_diag_mxblock - trmx_mul_rev - scalar_mx_is_multiplicative - map_mx_is_scalar - mul_mxblock_mxrow - mxcolK - xrow_const - submxcol0 - castmx_id - submxrow0 - eq_map_mx - map_mx_is_multiplicative - scalar_mxM - mxvec_eq0 - mulmx1C - usubmx_key - tr_col_mx - mxsub_ffunr - col_permEsub - mulmx0 - submxblockN - map_const_mx - trmx_dlsub - trmx_dsub - mxsub_ind - map_mx_adj - submxblockEv - mulmx_lsub - col_mxKd - map2_ulsubmx - mulmxA - pid_mx_minv - colsub_cast - submxblockEh - row_perm_const - unitmx_tr - row_eq - all_comm_mx2P - block_mxEh - mul_copid_mx_pid - scalar_mxC - map_row - submxrow_sum - eq_colsub - castmx_sym - submxblock_diag - mul_col_perm - submxrowB - map_lsubmx - col_mxcol - block_mxEv - row'_const - is_perm_mxP - comm_mxP - mxcolD - mulmx_diag - matrix_eq0 - map2_0mx - diag_mx_comm - mxrowK - castmxK - eq_col_mx - mul_rV_lin1 - colKl - drsubmx_diag - perm_mxM - row'_eq - flatmx0 - map_block_mx - eq_mxcolP - all_comm_mx_cons - trace_map_mx - map_conform_mx - ringmx_ind - mul_submxrow - map2_const_mx - comm_mx_scalar - det_map_mx - mul_col_row - eq_mxrow - trmx_lsub - map_mx_inv - detM - submxblock0 - expand_det_col - comm0mx - card_mx - rowKd - tr_xcol - pid_mx_key - castmxEsub - lsubmxEsub - row'_row_mx - row0 - swizzle_mx_is_additive - rowKu - submxblock_sum - oppmx_key - map_dsubmx - map2_dsubmx - col_row_permC - mxOver0 - map2_col' - dlsubmxEsub - diag_mxrow - map_unitmx - map_mx_comp - hsubmxK - pid_mx_1 - scalar_mx_is_trig - trace_mx11 - mulmx_block - const_mx_is_additive - map2_mx_right_in - mxsub_eq_id - scalar_mx_is_scalar - mxtrace_is_additive - detZ - map_mx1 - ulsubmx_trig - block_diag_mx_unit - mul_row_perm - mul_vec_lin - mul1mx - dsubmx_key - map_dlsubmx - diag_mx_row - cormen_lup_lower - exp_block_diag_mx - vec_mx_key - mxdiag_recl - map_row' - eq_mxblock - map_mx_inj - row_thin_mx - xcolEsub - map2_drsubmx - map_invmx - mulKmx - map2_row_perm - perm_mx1 - col_mx_const - map_mx_unit - add_col_mx - mul0mx - det_mx00 - mx'_cast - swizzle_mx_is_scalable - det_scalar1 - mxblock_sum - mul_usub_mx - is_diag_mxblockP - eq_mxrowP - colE - mxtraceZ - map_trmx - mxtrace_tr - trmx_conform - is_perm_mxV - col'Esub - mxblock_recl - matrixP - invmxZ - mxtrace1 - nz_row_eq0 - mxsub_eq_colsub - row_ind - mxOver_scalar - mx11_is_trig - mxEmxblock - mulmx_key - tperm_mxEsub - map2_mx_right - unitmx_perm - mulmxK - eq_in_map2_mx - comm_mxD - map_ulsubmx - mxvecK - mxdiagZ - diag_mx_key - dlsubmx_diag - GL_MxE - det_perm - mxdiag_sum - mxsub_eq_rowsub - GL_1E - row_mxKl - map2_block_mx - col_perm1 - mxE - mxvec_dotmul - lin_mul_row_is_linear - eq_mxdiagP - GL_det - mulmxE - comm_mx_sum - row_matrixP - map2_castmx - mxEmxcol - tr_row_perm - col_id - trmx_rsub - map_delta_mx - map2_col - is_trig_mxblock - castmxE - det0P - map2_mxDr - unitr_trmx - det1 - row_row_mx - diag_mxP - rowsub_cast - map_col - det_trig - det_ublock - cormen_lup_perm - comm_scalar_mx - is_diag_mx_is_trig - GL_unit - matrix_sum_delta - col_flat_mx - cofactor_tr - mul_mxrow_mxcol - mxtrace_mulC - colEsub - mul_mx_adj - diag_mx_is_trig - submxrowK - mxtrace_diag - lift0_mx_perm - diag_mxC - scalemx1 - row'Esub - trigsqmx_ind - trmx_eq0 - scalemx_key - adjugate_key - lin_mulmxr_is_linear - row_mul - map2_mx_left_in - mulmx_suml - is_perm_mx1 - row_id - trmx_ulsub - map_mx0 - submxblockD - map_perm_mx - tr_mxdiag - pid_mxErow - mxblock_const - scale_row_mx - submxcol_mul - row_mxEr - sqmx_ind - map_mxvec - castmx_const - pid_mxEcol - mulmxKV - mxsubrc - detV - mulmxDl - mxOver_diag - GL_VE - mxtrace0 - expand_cofactor - mxrow_sum - mx_ind - mulmx_sumr - mulmxBr - matrix0Pn - matrix_nonzero1 - col'Kr - row_mxcol - col_mxKu - map_vec_mx - determinant_multilinear - perm_mx_is_perm - tr_col_perm - mulmxnE - drsubmx_trig - comm_mxN1 - diag_mx_is_additive - mxblockN - col_col_mx - mxblockP - submxcolB - row_mxblock - row_sum_delta - lsubmx_key - comm_mx0 - det_Vandermonde - nonconform_mx - conform_mx_id - mxcolEblock - block_mx_const - map_rsubmx - block_mxKur - rsubmx_key - trmx_key - tr_mxblock - block_mxKdr - thinmx0 - mxsub_cast - pid_mx_0 - trmx_inj - mulmxV - path: mathcomp/ssreflect/order.v theorems: - lt_Taggedl - diffE - leU2E - bigmin_inf - sub_bigmax_seq - joinxB - gt_min - le_sorted_filter - join0x - min_minKx - joinUA - meetUr - subset_bigmax - ltxi_tuplePlt - rcomplPmeet - refl - lcomparable_leP - comparable_lteifNE - codiffErcompl - bigmaxD1 - compl_joins - setKIC - arg_maxP - refl - comparable_bigl - lexU - lt_def - meetUl - leIxr - orEbool - le0x - trans - meetxx - enumT - le0s - size_enum_ord - nhomo_ltn_lt_in - ltxx - join_cons - disj_diffr - lcmE - lt_def - sig_bij_on - trans - join_idPr - decnP - ltn_def - ltgtP - trans - incomparable_eqF - count_lt_nth - joinKIC - diffxB - meet_eq1 - eq_minr - comparable_contra_leq_lt - le_sig - joinBI - contra_not_lt - comparable_contra_leq_le - sub_in_bigmax - complEcodiff - incn_inP - enum_setT - meetUl - comparable_lteif_minr - lt_asym - meetUA - mono_leif - eq_le - rcomplPmeet - compl_inj - diffxx - le_path_filter - count_lt_ge - le_meetU - les0 - sub_bigmin - enum_val_inj - opred_joins - meetKU - meetIB - meet1x - contra_lt_le - joinKI - diffKI - sort_le_sorted - bigmin_geP - meetUl - rcomplPmeet - max_r - maxxx - meetUl - comparable_maxl - comparable_contra_lt_le - maxEge - ltxi_cons - opred1 - bigmax_eq_arg - comparable_contraTle - joinA - contra_leq_le - leifP - le_path_min - lteifN - sig2K - lt_sorted_pairwise - meet_def_le - comparable_leNgt - ltxi0s - lcomparable_ltP - joinE - comparable_min_maxr - leU2l_le - botEprodlexi - nmono_in_leif - count_lt_le_mem - minEge - min_l - bigmin_le_cond - le_cons - bigmax_ge_id - meetxC - diffBx - comparable_arg_maxP - sub_tprod_lexi - comparable_ge_max - inj_homo_lt_in - lteif_minr - le_bigmax_ord - joinxx - compl_meets - comparable_contraPle - joinC - ge_trans - comparable_minC - join_r - comparable_maxEge - joinUKC - anti - comparable_le_max - joins_disjoint - subset_bigmin - le_bigmax2 - homo_ltn_lt_in - comparable_minCA - comparable_max_idPl - leU2 - eqTleif - lex1 - comparable_ltgtP - eq_diff - leI2 - ltEnat - leI2l_le - joinIKC - gt_comparable - le_anti - eq_joinl - joinEprod - comparable_contra_not_le - minEgt - max_minl - anti - eq_leLR - leC - total - enum_val_nth - gcdE - nonincnP - lexi_pair - leUx - comparable_contraFle - nth_count_le - idfun_is_join_morphism - joinBx - diff1x - bigmin_idl - filter_le_nth - meetUKC - le_lt_asym - diffIx - min_idPl - lt1x - refl - lexUr - maxElt - enum_uniq - leW_mono - ge_comparable - lteif_imply - lt_val - rcomplEprod - lt_trans - lexi_tupleP - le_anti - maxKx - lexUl - leUl - trans - enum_ord - omorph0 - bigmin_gtP - meetUl - le_Taggedl - le_bigmin_nat_cond - leEseq - lex1 - lexI - maxCA - joinA - join_idPl - wlog_lt - lt_Taggedr - comparable_sym - contra_leq_lt - diffKU - lexI - minC - eqRank - comparable_maxKx - lt_max - le_max - enum_valP - lt_min - bigmax_mkcondl - nth_enum_ord - enum_valK - maxAC - tnth_meet - comparable_max_minr - enum_rank_inj - omorphI - joinKI - le_anti - le_enum_val - refl - eq_bigmax - joinAC - bigmax_idr - sub_prod_lexi - codiffEprod - joinUC - leif_le - le_bigmin_ord_cond - meets_total - comparable_minEgt - join1x - bigmin_set1 - le_trans - sig_bij - lt_path_sortedE - leEsig - diffUx - leEseqlexi - meetEprod - joinxx - topEdual - diffErcompl - comparable_contra_lt - bigmax_mkcond - meetA - lteif_maxl - lt_eqF - tnth_join - joinIl - dec_inj - comparable_contraNlt - codiffErcompl - botEtprod - bigmin_eq_arg - topEord - sigK - bigmax_ltP - ltx1 - mask_sort_le - leEdual - joinEsubset - lt_def - joinCx - tnth_codiff - meetEsubset - lt_leif - subseq_lt_sorted - diffKI - bigmax_le - lteifNE - meets_setU - eq_meetr - le_def - le_max_id - rank_bij - comparable_maxAC - leI2E - meetsP_seq - neqhead_ltxiE - subseq_lt_path - leBRL - lt_sorted_leq_nth - lteifF - diffErcompl - subseq_le_sorted - lcomparable_ltgtP - subseq_le_path - joinx1 - meets_inf_seq - meetKUC - bigmin_mkcondl - enum_rank_bij - count_le_gt - opred_meets - rcomplEtprod - codiffErcompl - ltrW_lteif - contra_lt_not - lt_nsym - neq_lt - meetUl - comparable_contra_ltn_le - lt_neqAle - joinA - bigmin_idr - gtE - meet_eq0E_diff - valI - ltxI - bigminUl - lt_sorted_eq - sort_lt_sorted - bigminUr - inj_homo_lt - maxEgt - comparable_ge_min - comparable_contra_le - comparable_lt_min - le_eqVlt - index_enum_ord - le_meets - diff0x - sub_in_bigmin - eq_joinr - set_enum - comparable_maxxK - le_bigmax_nat_cond - rankEsum - comparable_contraPlt - valD - ge_anti - bigmax_eq_id - botEsubset - omorphU - meetIKC - diffxU - inj_nhomo_lt - leif_trans - meetKI - contra_ltF - joinKU - meetKU - lt_rank - sorted_mask_sort_le - lt_path_pairwise - nth_enum_rank_in - gt_max - nth_count_gt - enum_rankK_in - bigmax_idl - ltEprod - comparable_contra_le_lt - joinsP_seq - ltEseqlexi - contra_leF - leI2r_le - le_bigmin - joins_setU - le_le_trans - prod_display_unit - sort_lt_id - lteif_maxr - lexI - meetA - comparable_minl - maxEle - bigmin_split - leIl - rcomplPmeet - maxC - ltn_def - rcomplKU - lt_pair - eq_leRL - dvdE - sub_bigmin_seq - complK - rcomplPmeet - ltW_nhomo_in - inj_nhomo_lt_in - omorph_lt - meet0x - perm_sort_leP - diffxI - leEtprod - rank_inj - joinKI - nmono_leif - le_min - complEsubset - comparable_minAC - le_enum_rank - comp_is_bottom_morphism - joinA - comparable_lteif_maxl - ord_display - joins_min_seq - lex1 - le_bigmax - le_sorted_ltn_nth - le_sorted_eq - count_le_nth - leif_refl - anti - sdvdE - complEbool - meet_idPr - le_def - nth_count_ge - val1 - meetUC - lt_def - le_gtF - diffEtprod - meetBx - anti - meetsP - ltW_homo_in - meetE - leBUK - comparable_minEge - complEdiff - meetx1 - complEcodiff - disj_leC - lt_def - mem_enum - meet_cons - comparable_le_min - joinBIC - meets_inf - comparable_arg_minP - sub_bigmax_cond - minElt - meetA - complEtprod - joinKI - incnP - meetxx - lteifNF - topEsubset - bigminD1 - bigmaxIr - gt_def - nat_display - lteif_trans - comparable_minACA - le_trans - meets_ge - Rank1K - joinC - contra_le_not - lt_wval - comparable_contraTlt - ltW - cardT - leW_mono_in - le_path_mask - arg_minP - eq_Rank - joinxx - lteif_anti - complU - leIx2 - join_l - ge_leif - lt_sorted_mask - nth_count_lt - bigmax_leP - meet_idPl - eqhead_ltxiE - nondecnP - opredU - min_minxK - meetxx - le_bigmin_nat - le_comparable - bigminD - leEord - comparable_maxr - bigmaxD - meetUl - meets_seq - min_maxr - maxEnat - maxA - comparable_min_maxl - bigminIr - leBr - leEbool - contra_ltn_lt - homo_ltn_lt - enum_set0 - enum_val_bij - complEdiff - ltEbool - botEord - subset_bigmin_cond - lexI - meet_eql - lexis0 - bigmax_imset - join_eq0 - complEprod - disjoint_lexUr - codiffErcompl - le_mono_in - totalT - minACA - compl0 - setKUC - rcomplPjoin - leIr - complB - lex1 - ltx0 - joinsP - rect - comparable_maxA - leIx - leEmeet - le_sig1 - leUidr - cover_leIxr - le_pair - meetEtotal - comparable_eq_maxl - enum_valK_in - joinUKI - comparable_lteif_minl - joinBKC - comp_is_nondecreasing - complEcodiff - meetUK - leP - rank_bij_on - diffUK - mono_sorted_enum - le_bigmax_cond - sorted_filter_le - leU2r_le - wlog_le - posxP - minxx - leNgt - bigmaxU - contra_ltT - joins_min - lexI - rcomplKI - bigmax_split - leEjoin - complEdiff - mono_in_leif - meetxB - RankEsum - lt_sorted_filter - comparable_leP - lexi_display - setTDsym - bigmaxID - contra_le_leq - leUx - leBLR - meet_r - lt_sig - leCx - bigmax_set1 - min_idPr - trans - filter_sort_le - comparable_lteif_maxr - leW_nmono - le_trans - lt_total - mono_unique - contra_leT - le0x - bigmaxIl - complEdiff - bigmax_lt - contra_le_lt - le_sorted_mask - comparable_min_idPr - joinIr - opredI - comparable_minKx - joinxC - comparable_max_minl - ltxi_pair - leB2 - idfun_is_top_morphism - inc_inj - nondecn_inP - comparable_ltNge - complErcompl - min_r - le_Taggedr - le_rank - subEsubset - le_total - refl - complEcodiff - leEsubset - lex0 - bigmin_imset - topEtlexi - lexI - sub_bigmin_cond - meetKU - bigminID - ltxU - comparable_minxK - le_sorted_pairwise - lteif_minl - diffEprod - ltW_nhomo - bigmin_mkcond - filter_lt_nth - eq_enum_rank_in - comparable_eq_minr - seqprod_display - diffx0 - val0 - bigmaxUl - leBC - lcomparableP - le0x - le_anti - leIidr - sig_inj - contra_not_le - le0x - omorph1 - topEprod - meetEdual - leEjoin - contraFle - joinUK - ltEdual - tnth_compl - meetCx - ltUx - lt_comparable - leEprodlexi - enum0 - contra_lt_ltn - bigminU - eq_bigmin - comparable_maxACA - contra_ltN - nth_enum_rank - le_mono - dec_inj_in - comparableT - le_bigmax_nat - total - orbE - setIDv - ltIx - comparable_contra_not_lt - lteifW - ge_total - ge_min - leIxl - enum_rank_in_inj - rankE - lt_def - minEnat - botEprod - contraPle - comparable_lt_max - joinEdual - trans - lt_geF - contraFlt - topEprodlexi - meetKU - nth_ord_enum - nat1E - sub_bigmax - meetIK - ge_antiT - comparableP - comp_is_join_morphism - meets_max_seq - geE - joinBK - joinEtotal - eq_leif - leEnat - lt_path_filter - ltxi_lehead - card - minA - nth_count_eq - inc_inj_in - eq_cardT - ge_anti - subEbool - le_lt_trans - joinC - contra_lt - leEmeet - le0x - lt_bigmin - meetUl - val_enum_ord - lteifS - disjoint_lexUl - lt0B - diffErcompl - ltEord - disj_le - comparablexx - le_bigmax_ord_cond - seqlexi_display - eq_minl - meetUKU - ltNleif - le1x - dvd_display - leUx - eqhead_lexiE - meetKI - meet_l - enum_val_bij_in - leUx - contra_le_ltn - comp_is_meet_morphism - meetx0 - contra_le - comparable_minA - botEtlexi - contraPlt - total - contra_lt_leq - opredU - joinKI - bigmin_le_id - joinEseq - meetC - min_maxl - disj_diffl - lt_Rank - comparable_maxEgt - meetC - lexi_lehead - le_trans - joins_seq - Rank2K - sub_seqprod_lexi - mem2_sort_le - lt_le_trans - lt_sorted_uniq_le - bigmin_eq_id - botEnat - le_path_sortedE - valU - sorted_subseq_sort_le - lt_leAnge - subset_bigmax_cond - max_maxxK - le_bigmin_ord - comparable_contraNle - lt0x - leif_eq - lexU2 - rankK - sigE12 - minKx - bigmax_mkcondr - sorted_filter_ge - meetKIC - meetEtprod - meetxx - subseq_sort_le - le0x - leIidl - totalU - ltxis0 - lt_def - comparable_contraFlt - tnth_diff - ltEtprod - contra_ltn_le - joinIB - meets_max - nhomo_ltn_lt - andEbool - leW_nmono_in - comparable_minr - lteifT - minCA - leEprod - bool_display - contraNlt - sorted_filter_lt - eq_maxr - LatticePred.opred_meets - le_joins - bigmin_le - lt_sorted_uniq - disj_leC - andbE - minxK - omorph_le - join_def_le - meetACA - botEdual - eq_ltRL - le_bigmin2 - max_l - ltxi_tupleP - gt_eqF - rcomplPjoin - eq_enum - anti - lt_val - meetC - topEsig - rcomplPjoin - joinx0 - cardE - topEtprod - joinEtprod - refl - maxACA - cover_leIxl - joinIl - nat0E - codiffEtprod - eq_maxl - max_maxKx - joins_le - lexi0s - lexC - joinIK - sorted_filter_gt - path: mathcomp/solvable/gfunctor.v theorems: - idGfun_closed - gFmod_cont - gFgroupset - gFnormal_trans - trivGfun_cont - gFmod_hereditary - gFunctorS - morphimF - injmF_sub - gFnorm_trans - gFsub_trans - injmF - pcontinuous_is_hereditary - gFisog - idGfun_cont - gFcont - gFnorm - gFunctorI - gFmod_closed - idGfun_monotonic - gFchar - gFnorms - gFcompS - gFchar_trans - gFhereditary - continuous_is_iso_continuous - gFiso_cont - gFcomp_cont - gFnormal - gFid - gFcomp_closed - gF1 - gFisom - pmorphimF - pcontinuous_is_continuous - path: mathcomp/ssreflect/ssrnat.v theorems: - expnS - addnK - lt0b - ltn_subCl - ltn0 - eq_binP - ltn_sqr - addnn - contra_leqF - mono_leqif - eqSS - ltn_predRL - minnSS - ltnSE - sqrnD_sub - leq_nmono - eq_ex_maxn - gtn_max - leq_eqVlt - ltn_Sdouble - addnBCA - ltn_pmul2r - half_leq - ltn_exp2l - maxnSS - minnMl - leqW - anti_leq - subnBAC - doubleS - odd_geq - add1n - subnDr - addn4 - gtn_half_double - iter_muln - leq_mul2l - doubleE - half_bit_double - leq_addr - addn_eq0 - leq_total - subnAC - ltn_predK - addn_eq1 - muln_eq0 - leqP - ltn_neqAle - iter_succn - mulnAC - addnE - expn_eq0 - subnCBA - iter_addn_0 - eqn_add2l - leq_sqr - minKn - ltnNge - eqnP - eq_iterop - doubleD - addSnnS - addn_negb - muln_gt0 - leq_subCl - doubleK - leq_exp2r - leq_add2l - nat_of_mul_pos - contraTltn - subDnCAC - ltn_psubLR - prednK - muln0 - eqnE - ltn_sub2l - minn_maxl - decn_inj_in - expnAC - addE - ltn_pfact - addnAC - uphalf_leq - subDnAC - expIn - leq_sub - mulSnr - oddB - addn_maxr - contra_ltn - maxn_minr - subSS - exp1n - leq_subRL - ubnPleq - minn_idPl - ltnW - mulnDl - leq_pmull - addnBAC - ltn_add2l - contra_leqN - ltnNleqif - leqif_eq - leq_exp2l - posnP - double_eq0 - leq_sub2rE - oddE - anti_geq - inj_homo_ltn_in - maxnAC - subn1 - inj_homo_ltn - ltP - leqNgt - nat_of_add_bin - expnMn - iter_muln_1 - addnI - addBnA - leq_fact - ex_maxnP - leqif_mul - ltn_subRL - ltn_min - odd_uphalfK - eq_leq - lt0n - maxnn - mulnDr - ltn_subrR - addn_minl - iteropS - nat_semi_morph - ltnP - eqn_pmul2r - contra_ltnN - ltn_subLR - minnK - leqSpred - mulnn - minn_idPr - addnCA - eq_ex_minn - factS - even_halfK - leqif_refl - expnM - doubleB - oddD - subn_minl - ltn_psubCl - max0n - addn_maxl - subn0 - geq_minr - iter_in - nat_of_mul_bin - subn_maxl - contra_leq_ltn - find_ex_minn - ltn_addl - leq_pfact - halfD - oddX - expE - ltngtP - leq_min - ltn_double - addn1 - add3n - leq_uphalf_double - muln1 - leq_sub2r - nat_AGM2 - minn_maxr - geq_leqif - eqb0 - expnE - plusE - double0 - leq_mul2r - exp0n - eq_leqif - iter_predn - expnSr - minnACA - subnBl_leq - add2n - expn0 - neq0_lt0n - addnBl_leq - addnCBA - eqn_add2r - eqn_exp2r - subn_eq0 - iterX - muln_eq1 - subnK - ltn_fact - oddS - iterM - leqifP - leqW_mono_in - ltn_mul2r - addnBA - minusE - minnA - minnCA - leq_sub2lE - factE - mulnb - add4n - contra_not_leq - iteriS - mulnACA - ltn_sub2rE - eqn_sub2rE - addnACl - nat_Cauchy - maxnMr - gtn_eqF - maxn0 - even_uphalfK - leq_half_double - leq_maxl - lt0n_neq0 - contraFleq - contra_ltn_not - oddN - leqif_trans - doubleMl - oddb - uphalfE - fact_geq - homo_ltn - eqn_leq - uphalf_gt0 - leq_addl - iterS - addnBr_leq - addnS - ltn_Pmulr - ltn_expl - subnDAC - iter_addn - nat_of_binK - mulnC - incn_inj_in - addn2 - ltn_trans - mulnA - ltn_addr - ltn_pexp2l - eqn0Ngt - iterSr - doubleE - ltn_exp2r - ltn_pmul2l - decn_inj - leq_double - maxnCA - incn_inj - mulnS - homo_leq - sqrn_gt0 - fact_gt0 - mulnBr - maxnC - contra_leq_not - leq_subrR - gtn_neqAge - addnBn - odd_ltn - nat_of_exp_bin - subnDl - eqb1 - contraPltn - iter_fix - eqn_pmul2l - homo_ltn_in - contraFltn - inj_nhomo_ltn_in - subnKC - leq_pexp2l - subn_if_gt - lt_irrelevance - maxnK - leqnSn - ltn_add2r - odd_double - eqn_sub2lE - maxKn - sub1b - subnSK - ltnW_homo - eq_iteri - ltn_mul - maxnE - contraNleq - leq_b1 - ltn_predL - leq_maxr - geq_half_double - maxnACA - mulnBl - bin_of_natK - eqn_mul2r - nat_of_succ_pos - ltnn - subSKn - addn0 - ubnPeq - muln2 - expnD - expn1 - eqn_sqr - odd_double_half - maxn_idPr - ltn_eqF - double_gt0 - ex_minnP - maxnA - subSnn - leq_mul - ltn_subrL - addnABC - maxnMl - subDnCA - subKn - fact0 - leq_psubCr - maxn_minl - mulnCA - ltn_uphalf_double - subnDA - contra_ltnF - nat_semi_ring - leq_nmono_in - subnBr_leq - ltn_geF - contraPleq - minnMr - subBnAC - succnK - ltnSn - addKn - leq_max - leq_ltn_trans - mulnbl - addn3 - ltn_sub2r - addnACA - leq_subr - mulSn - geq_minl - leqW_nmono_in - uphalf_double - leq_pmul2l - addnA - mulnE - add0n - ltn_mul2l - ltnW_nhomo_in - geq_min - addnC - iter_succn_0 - gtn_uphalf_double - subn_sqr - min0n - contra_leqT - minn0 - contraTleq - addBnCAC - ltn_leqif - leq_pred - addn_min_max - leq_gtF - addn_minr - subn_gt0 - sub0n - oddM - leqnn - contra_ltn_leq - le_irrelevance - eqTleqif - minnC - leq_mono_in - sqrn_inj - ltnW_homo_in - succn_inj - mulnbr - subnBA - add_mulE - minnn - leq0n - mul0n - leq_subLR - leP - ltn0Sn - neq_ltn - mul1n - ltn_subCr - inj_nhomo_ltn - subnS - ubnP - subnn - addn_gt0 - contra_leq - expnI - addnCAC - nat_of_add_pos - contraNltn - nat_power_theory - subnE - eqn_mul2l - ltn_Pmull - minnAC - sqrnB - expn_gt0 - odd_gt0 - addIn - leq_trans - leq_Sdouble - geq_max - eq_iter - leqVgt - path: mathcomp/solvable/nilpotent.v theorems: - nilpotentS - nilpotent1 - lcn_normalS - ucn_char - ucn_sub - lcn_norm - quotient_sol - injm_sol - der_bigdprod - lcn_cont - lcn1 - ucn_nilpotent - abelian_nil - der_bigcprod - quotient_center_nil - nil_comm_properl - lcn_sub - ucn0 - morphim_ucn - isog_nil_class - nil_class0 - morphim_nil - ucn_norm - lcnSnS - nilpotent_proper_norm - sol_der1_proper - ucnSn - cyclic_nilpotent_quo_der1_cyclic - isog_nil - der_cprod - der_dprod - lcnSn - lcn_char - series_sol - nilpotent_sub_norm - derivedP - abelian_sol - centrals_nil - ucn_lcnP - ucn_bigcprod - morphim_lcn - ucn_normalS - ucn_normal - ucn_group_set - ucn_central - lcnE - metacyclic_sol - bigdprod_nil - lcn_bigcprod - ucn_dprod - lcn_dprod - ucn_bigdprod - ucnP - morphim_sol - ucn_subS - nil_class_quotient_center - ucn_cprod - nilpotent_sol - lcn0 - ucn_nil_classP - ucn_pmap - mulg_nil - nil_class_injm - solvable1 - lcn2 - lcn_sub_leq - lcnS - ucn_comm - nilpotent_class - nil_class_morphim - nil_comm_properr - ucn_sub_geq - center_nil_eq1 - cprod_nil - nil_class1 - lcn_normal - lcn_nil_classP - injm_ucn - dprod_nil - lcnP - lcn_bigdprod - quotient_ucn_add - lcn_central - lcn_cprod - ucnE - nilpotent_subnormal - nil_class_ucn - ucnSnR - lcn_group_set - isog_sol - path: mathcomp/algebra/fraction.v theorems: - pi_opp - addN_l - mulC - pi_mul - tofracMn - tofrac_eq0 - pi_inv - equivf_def - equivf_r - Ratio_numden - Ratio0 - tofrac_is_multiplicative - tofracMNn - tofrac1 - addC - denom_ratioP - inv0 - equivf_l - tofracB - mulA - mul1_l - Ratio_numden - add0_l - tofracD - tofracM - RatioP - mul_addl - equivf_refl - pi_add - numer0 - tofrac_eq - equivfE - denom_Ratio - numer_Ratio - addA - tofracXn - nonzero1 - tofrac_is_additive - tofracN - mulV_l - path: mathcomp/fingroup/action.v theorems: - astab1Js - actpermM - orbit_transl - atrans_dvd_index_in - orbit_inv - is_total_action - astabR - gacent1 - qactE - porbit_actperm - afix_cycle - injm_faithful - sub_astabQ - setactVin - contra_orbit - astabsR - orbit_sym - afix_gen_in - conjG_is_action - astabs_Aut_isom - gact_stable - acts_joing - afix_actby - abelian_classP - actperm_id - afixS - quotient_astabQ - gactX - comp_is_groupAction - afixRs_rcosets - sub_afixRs_norms - orbit_in_sym - astab_setact_in - subset_faithful - qact_domE - acts_quotient - qact_proof - restr_permE - astab_norm - astabs_act - aperm_is_action - conj_astabQ - astabs_mod - orbit_conjsg_in - gacent_ract - setactE - trans_subnorm_fixP - orbitE - orbit_partition - card_orbit_stab - comp_is_action - acts_sum_card_orbit - astab_comp - afixJ - acts_in_orbit - sub_afixRs_norm - acts_subnorm_fix - gacent_actby - astabsP - acts_ract - astabQ - atrans_supgroup - card_orbit1 - astabsJ - dom_qactJ - gacentY - orbit_in_eqP - actCJV - acts_gen - afix_cycle_in - atrans_acts - subgroup_transitiveP - actXin - astabU - astab1_set - amoveK - act_reprK - atrans_dvd_in - astabs_comp - afix_comp - sum_card_class - acts_subnorm_subgacent - astab_gen - astabs_range - acts_sub_orbit - afix_ract - orbitJ - gacentM - qactJ - actX - astabsU - afixM - sub_astab1_in - im_actm - gacentIdom - actsI - modactEcond - astabP - im_restr_perm - mem_setact - astab_normal - autactK - astabs_setact - card_setact - astab_subact - orbit_conjsg - fixSH - Cayley_isom - act_inj - orbit_stabilizer - triv_restr_perm - Aut_in_isog - restr_perm_isom - perm_act1P - astabM - sub_astab1 - Cayley_isog - faithful_isom - orbit_in_trans - gacentC - ker_actperm - mactE - astab1Rs - rcoset_is_action - astab_sub - orbit_lcoset - morph_gacent - atransPin - orbitR - orbitJs - conjg_is_groupAction - atrans_acts_in - orbit_trans - setactJ - gacts_range - morph_astab - actMin - orbit_actr - afixU - subgacentE - ract_is_action - morph_gastab - orbit_refl - astabs_subact - orbit_eq_mem - afix_subact - amove_orbit - astab_act - actKin - orbit_lcoset_in - morphim_actm - gacentD1 - morph_gact_irr - afixMin - astab1_act_in - actsD - gacent_comp - astabs_quotient - astab1_act - Aut_restr_perm - index_cent1 - astabsQ - modact_faithful - astabs1 - acts_act - orbit_rcoset - qact_is_groupAction - gacentQ - card_orbit - atransP - group_set_astab - atransP2in - injm_Aut_full - orbit_in_transl - gacentJ - card_conjugates - afixJG - gacent_cycle - actsU - faithfulR - perm_mact - astabs_actby - gactR - subgroup_transitivePin - mact_is_action - atrans_dvd - astabCin - modactE - gacent_gen - atrans_orbit - astabsIdom - afix_mod - astab1P - astabC - val_subact - acts_char - orbit_rcoset_in - sub_act_proof - astabRs_rcosets - isom_restr_perm - astabs_dom - modact_is_action - acts_irr_mod - afix1P - qactEcond - astab_mod - setact_orbit - restr_perm_commute - setact_is_action - group_set_astabs - gacentU - gacts_char - astabIdom - classes_partition - restr_perm_on - card_classes_abelian - reindex_astabs - class_formula - astabsI - astab_trans_gcore - sub_astabQR - Frobenius_Cauchy - orbitRs - gactV - orbitP - group_set_gacent - porbitE - astabQR - orbit_eqP - astab_actby - gacent_mod - astab_ract - amove_act - actmE - actM - atransP2 - acts_qact_dom - comp_actE - restr_perm_Aut - morph_afix - astab_setact - ractE - orbit_morphim_actperm - acts_orbit - gact1 - faithfulP - afixD1 - orbit_act_in - card_orbit_in - astabs_set1 - gacentS - actKV - actCJ - orbit_actr_in - ker_restr_perm - actmEfun - astab_range - astabsD1 - injm_actm - astab1J - autact_is_groupAction - orbit1P - acts_irr_mod_astab - orbit_act - actby_is_action - modact_is_groupAction - astabsC - ractpermE - acts_fix_norm - orbit_transversalP - astabJ - modgactE - astab1 - injm_Aut_sub - astab_dom - actsRs_rcosets - actsQ - Aut_sub_fullP - actpermE - afix_gen - acts_dom - astabS - gact_out - afix1 - SymE - actmM - transRs_rcosets - morph_gastabs - gacentIim - acts_subnorm_gacent - subact_is_action - im_actperm_Aut - qact_subdomE - path: mathcomp/algebra/qpoly.v theorems: - in_qpoly_small - size_lagrange_ - qpolyCN - qpolyC0 - qpoly_mulz1 - npolypK - qpolyC_proof - lagrange_gen - qpolyCM - qpolyC_is_multiplicative - npoly_is_a_poly_of_size - lagrange_free - in_qpolyZ - rVnpolyK - qpolyCD - lagrange_sample - qpoly_intro_unit - lagrangeE - mk_monic_neq0 - mk_monic_X - card_monic_qpoly - monic_mk_monic - mem_npoly_enum - qpoly_mulA - poly_of_qpolyZ - size_mk_monic_gt0 - nth_npolyX - qpolyXE - in_qpoly0 - npoly_vect_axiom - poly_of_qpolyD - npolyP - in_qpolyM - coefn_sum - npoly_rV_K - npolyp_key - in_qpoly_multiplicative - coef_npolyp - qpoly_scaleDr - npolyX_gen - mk_monic_Xn - qpoly_nontrivial - qpoly_scaleAl - card_npoly - qpoly_scaleAr - qpolyC_natr - npoly_enum_uniq - npoly_submod_closed - qpoly_inv_out - size_mk_monic - card_qpoly - lagrange_def_sample - size_npoly0 - qpolyC_is_additive - poly_of_qpoly_sum - lagrange_full - nth_lagrange - irreducible_poly_coprime - size_npoly - poly_of_qpolyX - in_qpoly1 - polyn_is_linear - npolyX_coords - npolyX_full - poly_of_qpolyM - char_qpoly - qpoly_scaleA - npolyX_free - qpoly_mul_addl - qpoly_mul_addr - size_lagrange_def - size_lagrange - qpoly_mul1z - in_qpoly_is_linear - in_qpolyD - dim_polyn - qpoly_mulC - qpolyCE - lagrange_coords - lagrange_key - qpoly_mulzV - path: mathcomp/character/inertia.v theorems: - norm_inertia - cfConjg1 - cfConjg_eqE - inertia_dprod - inertia_morph_im - cfRes_Ind_invariant - inertia_opp - cfclass_transr - Inertia1 - inertia_mod_quo - inertia_valJ - cfConjgDprodr - cfConjgMorph - conj_cfConjg - cfConjgInd_norm - cfConjgInd - sub_inertia - cfConjgRes - cfRes_prime_irr_cases - constt_Ind_ext - Inertia_sub - conjg_IirrKV - cfConjg_is_linear - cfclassInorm - card_cfclass_Iirr - inertia_dprodr - cfclass_inertia - cfResInd - cfConjg_char - inertia_bigdprod_irr - cfConjgIsom - dvdn_constt_Res1_irr1 - cfConjgMnorm - cfConjgE - conjg_Iirr_inj - inertia_bigdprodi - inertia_injective - cfAutConjg - cfConjgMod - inertia_add - normal_inertia - inertia_id - irr_induced_Frobenius_ker - sub_Inertia - sub_inertia_Res - cfConjgRes_norm - cfConjg_iso - cfclass_sym - extend_to_cfdet - cfclass1 - extend_linear_char_from_Sylow - extend_solvable_coprime_irr - cfclass_Ind - cfConjgK - inertia_sum - sNG - cfclass_IirrE - inertia_irr0 - reindex_cfclass - cfConjg_is_multiplicative - cfConjgQuo_norm - cfdot_irr_conjg - cfConjg_eq1 - inertia_prod - cfDetConjg - Clifford_Res_sum_cfclass - inertia_irr_prime - extendible_irr_invariant - inertia0 - cent_sub_inertia - conjg_Iirr_eq0 - eq_cfclass_IirrE - cfConjgEJ - invariant_chief_irr_cases - cfConjgKV - sub_inertia_Ind - cfConjgQuo - inertia_Frobenius_ker - cfConjg_subproof - cfConjg_lin_char - cfConjgBigdprodi - cfConjg_id - inertia_scale_nz - cfConjg_cfuniJ - conjg_IirrK - cfclass_uniq - cfConjgDprodl - cfConjgEin - normal_Inertia - cfclassP - cent_sub_Inertia - conjg_IirrE - cfker_conjg - inertia_mul - inertia_dprodl - cfclass_invariant - center_sub_Inertia - inertia_sdprod - norm_Inertia - cfConjg_cfun1 - inertia_dprod_irr - cfclass_refl - inertia_scale - inertiaJ - cfConjgEout - conjg_inertia - constt_Ind_mul_ext - cfConjgM - inertia_morph_pre - group_set_inertia - inertia1 - extend_coprime_linear_char - cfConjgJ1 - size_cfclass - constt0_Res_cfker - cfConjg_cfuni - cfConjgSdprod - cfConjgDprod - cfdot_Res_conjg - Frobenius_Ind_irrP - cfConjgBigdprod - solvable_irr_extendible_from_det - conjg_Iirr0 - path: mathcomp/field/galois.v theorems: - comp_kHom_img - fixedPoly_gal - inAEndK - gal_oneP - aut_mem_eqP - gal_generated - galNormV - galM - kHom_to_gal - galTrace_fixedField - gal_kAut - kHom_extends - normalFieldS - galTrace_is_additive - galNormX - gal_matrix - kHom_lrmorphism - normalField_kAut - galNorm_gal - galois_connection_subset - gal_kHom - kAut1E - galK - galNorm_fixedField - mem_fixedFieldP - fixedFieldS - gal_eqP - normalField_galois - limg_gal - kHomExtend_scalable_subproof - normalField_cast_eq - kHomS - Hilbert's_theorem_90 - kHom_eq - gal_reprK - memv_gal - kHom_poly_id - gal_cap - galoisS - normalField_isog - normalField_normal - kAEnd_norm - splittingFieldForS - galois_connection - normalField_isom - kHom_root - kAut_eq - normalField_root_minPoly - gal_independent - galois_fixedField - mem_galNorm - kHomExtend_poly - kHomExtend_id - gal_AEnd - fixedField_bound - k1HomE - kHom_to_AEnd - comp_AEndK - kHom_horner - gal_mulP - galS - splittingPoly - kAutS - gal_sgvalK - kHomExtendP - comp_AEnd1l - kAEnd_group_set - mem_kAut_coset - inv_is_ahom - galois_dim - galV - gal_is_morphism - normalField_img - gal_repr_inj - normalField_castM - kHomSr - fixedFieldP - gal_id - root_minPoly_gal - normalField_ker - galNorm_prod - kHom_kAut_sub - gal_invP - kHomSl - gal_independent_contra - kHom_is_additive - enum_AEnd - galois_factors - fixed_gal - fixedField_is_aspace - kHomExtend_val - galNorm_eq0 - mem_galTrace - splitting_galoisField - kAutf_lker0 - k1AHom - eq_galP - galois_connection_subv - kHom_is_multiplicative - galTrace_gal - splittingFieldP - galNorm1 - kHom_dim - fieldOver_splitting - normalField_factors - kHom_root_id - kHomExtendE - kAutE - splitting_field_normal - gal_conjg - dim_fixedField - inv_kHomf - galNorm0 - normal_fixedField_galois - path: mathcomp/field/qfpoly.v theorems: - card_primitive_qpoly - qlogp0 - plogp0 - map_fpoly_div_inj - qX_expK - qpoly_mulVp - coprimep_unit - sh_gt1 - card_qfpoly - qpoly_inv0 - qX_exp_neq0 - qX_neq0 - map_poly_div_inj - qX_in_unit - powX_eq_mod - qlogp_eq0 - qlogp_qX - primitive_poly_in_qpoly_eq0 - card_qfpoly_gt1 - gX_order - in_qpoly_comp_horner - qX_order_dvd - plogp1 - pred_card_qT_gt0 - qlogpD - plogp_div_eq0 - mk_monicE - primitive_polyP - qlogp1 - qX_exp_inj - gX_all - qX_order_card - plogp_lt - primitive_mi - plogp_X - dvdp_order - path: mathcomp/solvable/finmodule.v theorems: - fmodV - actsgHG - fmodX - act0r - actr_is_groupAction - sgG - transfer_cycle_expansion - fmod_addrA - injHGg - fmod_addNr - congr_fmod - actZr - sum_index_rcosets_cycle - injHg - fmodK - fmval0 - rcosets_cycle_transversal - actNr - injm_fmod - fmodP - coprime_abel_cent_TI - fmodKcond - actrKV - actrM - rcosets_cycle_partition - Gaschutz_transitive - transferM - fmvalN - actr1 - fmod_add0r - fmvalJ - fmodJ - actr_is_action - transfer_indep - defHGg - fmod1 - transfer_morph_subproof - actrK - fmvalA - fmvalJcond - fmod_inj - actAr - fmvalZ - sXG - Gaschutz_split - path: mathcomp/algebra/intdiv.v theorems: - dvdzz - gcd0z - Gauss_dvdzr - zprimitive_irr - modzMl - dvdpP_rat_int - gcdz1 - mulz_modl - ltz_divRL - zchinese_mod - gcdz_idPl - divz_small - divzMpl - modz_ge0 - divz_abs - eisenstein - zchinese_remainder - dvdz_Pexp2l - sgz_contents - size_zprimitive - zpolyEprim - gcdzCA - map_poly_divzK - modNz_nat - modz1 - coprimeNz - dvdz_lcm - dvdz_charf - dvdp_rat_int - egcdzP - zprimitiveZ - modz_absm - dvdz_exp2r - expz_min - Gauss_dvdz - divz0 - dvdz_lcmr - modzDm - dvdz_mull - zcontentsZ - modzDr - divzMr - modz_small - Gauss_dvdzl - gcdzN - dvd1z - divzMl - lcmz_neq0 - ltz_ceil - modzNm - gcdzDr - zprimitive_id - zcontents_primitive - dvdz_eq - coprimez_pexpl - divz_ge0 - coprimezE - gcdz_eq0 - Qint_dvdz - sgz_lead_primitive - dvdz_mul2r - divNz_nat - gcdzDl - Gauss_gcdzl - dvdz0 - zprimitive0 - Qnat_dvd - modzDmr - zcontentsM - dvdz_mul2l - lez_pdiv2r - size_rat_int_poly - divzMA - modz_abs - gcdz_idPr - gcdz_modl - mulzK - modzMmr - lez_divRL - dvdzE - dvdz_mulr - divz_eq - dvdz_gcd - eqz_modDr - coprimezP - dec_Qint_span - mulKz - lcm0z - lez_divLR - zcontents_monic - ltz_pmod - modzDml - divzMDl - divzz - mod0z - expzB - divzK - gcdzMDl - zchinese_modl - coprimezMr - modz_nat - dvdz_trans - dvdz_pexp2r - mulz_modr - lcmzC - coprimez_dvdl - div0z - dvdzP - lcmz_ge0 - divzDr - gcdzC - eqz_mod_dvd - divzMA_ge0 - modzMm - eqz_mul - dvdz1 - coprimez_sym - zprimitive_monic - dvdz_exp - gcdNz - mulz_gcdr - ltz_divLR - gcdzMr - gcdzA - int_Smith_normal_form - modzDl - dvd0z - dvdz_mod0P - rat_poly_scale - dvdz_gcdl - divz_mulAC - mulz_divA - polyOver_dvdzP - modzMml - gcdzACA - gcdzAC - Bezoutz - dvdz_gcdr - modzMDl - lez_div - mulz_divCA - dvdz_mul - zprimitiveM - Gauss_gcdzr - divzA - divzAC - dvdpP_int - modzXm - zcontents0 - coprimezXr - modz_mod - zchinese_modr - lez_floor - divzMpr - modzN - mulz_gcdl - zprimitive_min - gcdz_modr - divzDl - divz1 - zcontents_eq0 - divz_nat - coprimezN - path: mathcomp/algebra/ssralg.v theorems: - rmorph_sign - oppr_eq0 - pair_mulA - valZ - pair_mulC - rmorph_alg - lastr_eq0 - charf'_nat - mull_fun_is_semi_additive - raddfZnat - unitrV - mulrDr - exprB - natrXE - charf0P - Frobenius_autMn - natrDE - cat_dnfP - scale_is_scalable - divalg_closedZ - prodfV - ffun_mul_addl - linearN - lregM - sqrrD - natr_mod_char - divalg_closedBdiv - scalarP - natn - semiring_closedM - exprDn_char - rpred_nat - subr_sqrDB - iter_addr - expr_sum - fmorph_eq - scale0r - unitrX_pos - dnf_to_rform - unitrN1 - unitrX - mulr1 - dnf_to_form_qf - mulr_signM - rpred_div - exprBn_comm - lregMl - commr_sym - sum_ffun - mulr2n - mulKr - foldExistsP - iter_addr_0 - mulr_natl - scalerA' - rregP - rpredMNn - mulrDl - semiringClosedP - scaler0 - solP - natrD - unitrPr - eq_sol - char_lalg - fmorphV - mulrI_eq0 - pair_mulVl - ffun_addC - divrr - mulr1_eq - scalerBl - mul0r - addrNK - rpredMsign - submod_closedB - val1 - idfun_is_scalable - rmorphMn - unitr0 - eval_Pick - rmorphD - scalerAl - proj_satP - exprDn - commrN - sub0r - exprNn_char - size_sol - scalarAr - Frobenius_autE - rpred_sign - algMixin - ffun_scale_addl - mulr_fun_is_semi_additive - exprZn - scalable_linear - addrCA - pair_addC - rmorphN - rpred_prod - scalerCA - scaler_prodr - rmorph_unit - lalgMixin - compN1op - idfun_is_semi_additive - addr0 - raddf0 - scaler_suml - natr1E - addNr - mulrAC - telescope_prodf - sumrMnr - fmorph_eq1 - lreg1 - sqrf_eq1 - expf_eq0 - prodrMl - divr1_eq - exprNn - natf_neq0 - mulrnDl - subr_sqr - in_algE - rpred_sum - mulrI0_lreg - pair_mulDl - addNKr - ffun_mulA - divr1 - exprVn - ffun_scaleA - addrACA - charf_prime - signr_odd - mulIf - addrAC - mul0rn - addKr - Frobenius_autX - bool_fieldP - can2_linear - valB - addrI - rpredDr - prodrM_comm - scaler_unit - scalerDl - signrN - scalarZ - pair_add0 - unitrMr - eq_sat - mulKf - invr_out - prodrN - rpred_divl - lregX - expr0 - ffun_mul_0l - sdivr_closedM - rmorphV - rpredV - rmorph1 - signrZK - scaler_prod - subrX1 - raddfD - raddf_sum - rmorph_eq1 - mulrnDr - sumr_const_nat - mulf_eq0 - scaler_eq0 - linearMn - invr_inj - imaginary_exists - addrr_char2 - pairMnE - raddfZsign - rreg_neq0 - rpredMl - natrB - exprBn - submodClosedP - scalerKV - subring_closed_semi - sub_fun_is_additive - pair_mulVr - unitrN - oner_eq0 - raddfMn - pair_unitP - prodf_neq0 - eqr_oppLR - sqrrB - mulr1n - rpredN1 - mulVr - commrN1 - quantifier_elim_rformP - add0U - val0 - rpred1M - commrD - prodrMn_const - divrr - can2_semi_additive - valD - fpred_divr - expr1n - idfun_is_multiplicative - sqrf_eq0 - valD - subr0 - unitrM_comm - lregN - prodr_const - linearB - Frobenius_autB_comm - expr_mod - pair_mulr0 - raddf_eq0 - natrME - signr_addb - rev_unitrP - rpredBl - mulrn_char - prodr_undup_exp_count - invb_out - Frobenius_autD_comm - pair_mul1l - mulrACA - mulrN1 - scalerMnr - additive_linear - invr_sign - pair_invr_out - signr_eq0 - addIr - ffun_mul_0r - prodrMr_comm - eqr_div - linearPZ - rreg1 - addUA - pair_scaleAr - comRingMixin - qf_evalP - comp_is_multiplicative - mulrC - invr_out - null_fun_is_semi_additive - div1r - mulrnAC - sumrN - expfB - signrE - addrN - natr0E - mulfVK - telescope_sumr_eq - divKr - sqrr_sign - divIr - pair_addA - expr2 - mulf_neq0 - mull_fun_is_scalable - lreg_neq0 - subr_sqr_1 - pair_mulDr - invr1 - ffun_mulC - exprD - opp_is_additive - mulrS - commrM - add_fun_is_semi_additive - to_rform_rformula - mulrSr - mulVb - eq_eval - linearZ - iter_mulr - mulr_fun_is_scalable - raddfB - expr_dvd - raddfMnat - addrK_char2 - rpred0 - divKf - mulNr - unitrE - mulrnBr - rmorph_nat - mulrBl - unitfE - linearZZ - linearD - prodrMn - mulrN - mulrC - opprD - lreg_sign - rpredZeq - subIr - mulrNN - prodf_seq_neq0 - null_fun_is_scalable - mul0r - mulrVK - subr_eq0 - charf_eq - exprMn_n - mulfI - unitr1 - divrI - mulr_suml - commr1 - prodrXr - ffunMnE - raddfMNn - to_rterm_id - rregX - linearZ_LR - eqr_sum_div - rpredZsign - ffun_addN - divr_closedM - fmorph_char - Frobenius_autM_comm - pair_scaleDl - If_form_rf - smulr_closedM - pair_scaleDr - can2_scalable - scaler_sign - prodrMr - valD - addf_div - foldForallP - rregM - IdomainMixin - unitrMl - mulVKf - mulrCA - divring_closedBM - rpredX - mulr_sign - invr_eq1 - subr_eq - scaleN1r - fst_is_scalable - rpredZnat - oppr0 - submod_closedZ - fpred_divl - lregP - id - rpredDl - commr_refl - Frobenius_aut0 - inv_out - sub_fun_is_scalable - subr0_eq - fpredMl - exprD1n - Frobenius_autN - raddf_inj - opp_is_scalable - linearP - invrN1 - sol_subproof - If_form_qf - addrK - same_env_sym - divff - valM - raddfN - scaler_sumr - raddf0 - ffun_mul_1l - rmorphXn - subring_closedB - scale_fun_is_scalable - invrN - commrB - valN - mulrnAl - subKr - ffun_scale_addr - pair_mul1r - raddfMsign - mulrA - mulrK - pair_scaleAl - qf_to_dnf_rterm - add_fun_is_scalable - eqf_sqr - scaler_prodl - subring_closedM - subrXX - pair_addN - commr_nat - ffun_scale1 - intro_unit - divr_closedV - mulNrn - sum_ffunE - semiring_closedD - sumr_const - commrX - invfM - revrX - sumrMnl - Frobenius_aut_is_additive - telescope_prodr - scaler_injl - expr1 - pair_one_neq0 - invr_signM - expr0n - rmorphismMP - oner_neq0 - mulr_natr - exprS - sqrrN - fmorph_eq0 - scalerBr - mulr_algl - exprMn - addrKA - sqrrD1 - natr1 - mulr_algr - scalerMnl - mulVr - subalgClosedP - rmorphB - unitrM - divr_signM - signrMK - invrM - to_rformP - subr_char2 - rmorph_prod - invr_eq0 - smulr_closedN - invrK - sqrrB1 - ffun_addA - prodrMl_comm - rmorph_comm - nat1r - opprB - rpred_divr - scalerI - mulfK - commr_sum - rpredD - unitrP - subalg_closedBM - rmorph_eq_nat - rmorph_char - linearMNn - divrNN - commr0 - ffun1_nonzero - mulrnAr - comm_alg - divringClosedP - expr_div_n - unitr_sdivr_closed - oppr_char2 - zmodClosedP - rpredMn - telescope_sumr - sumrB - rmorph0 - rregMr - fmorph_unit - opprK - mul1r - fst_is_semi_additive - linear_sum - bin_lt_charf_0 - raddfD - in_alg_is_additive - Pick_form_qf - subrXX_comm - commr_prod - scaler_nat - mulr0 - valB - Frobenius_aut_nat - fmorph_div - linear_closedB - fmorph_inj - natrM - zmod_closedD - val0 - rpredXN - linear0 - mulIr0_rreg - telescope_prodr_eq - scalerAr - divrN - comp_is_scalable - comp_is_semi_additive - expf_neq0 - mulr0 - pair_scale1 - rmorph_div - N1op - rpredB - addKr_char2 - addr_eq0 - snd_is_multiplicative - mulr0 - snd_is_scalable - sdivr_closed_div - subalg_closedZ - scaleNr - rpredMr - rpredBC - rregN - qf_to_dnfP - can2_additive - ffun_add0 - ffun_mul_1r - mulC_mulrV - commr_sign - scale1r - mulrnA - zmod_closedN - oppr_inj - mulN1r - mulr0n - rmorphM - invf_div - mulrnBl - snd_is_semi_additive - subringClosedP - natr_prod - charf0 - quantifier_elim_wf - mulIr_eq0 - char0_natf_div - exprMn_comm - prodf_eq0 - commrMn - valM1 - eval_tsubst - expfS_eq1 - natf0_char - dvdn_charf - eq_holds - addr0_eq - mulrI - divring_closed_div - path: mathcomp/fingroup/gproduct.v theorems: - sdprod_isog - dprodEsd - sdprodWY - divgrM - pprodP - isog_set1X - cprodJ - sdpair1_morphM - cprod_normal2 - ker_pprodm - setX_prod - dprodYP - remgr_id - dprodWY - injm_pair1g - dprodWcp - cprodWC - cprodE - bigcprodEY - sdpairE - pairg1_morphM - morphim_sdprodml - sdpair_act - pprodWY - remgrM - dprodP - sdprod_mul_proof - xsdprodm_act - morphim_pprodmr - morphim_coprime_dprod - quotient_pprod - sdprod_recr - dprodE - sdprodm_sub - sdprod_normal_complP - morphim_sdprodm - dprodWsdC - morphim_dprodmr - cprodmEl - actsEsd - cprodEY - divgr_eq - dprod_normal2 - gacentEsd - sdprod_context - dprodmEl - setX_gen - im_xsdprodm - cprod0g - injm_bigdprod - mem_dprod - dprodm_eqf - subcent_TImulg - cprod_modr - cprod_modl - ker_sdprodm - im_cprodm - im_sdprodm - bigdprodYP - trivg0 - setX_dprod - sdprodm_norm - sdpair2_morphM - sdprodWC - pprodWC - mem_sdprod - injm_sdpair1 - morphim_cprodm - im_sdpair - bigcprodWY - morphim_pairg1 - morphim_pprodm - complgC - dprod_modl - sdprod_compl - cprodW - sdprodmE - triv_cprod - quotient_coprime_dprod - dprodA - splitsP - remgrP - mul0g - snd_morphM - sdprod_recl - injm_sdpair2 - group_not0 - isog_setX1 - cprodC - morphim_sdprodmr - isog_dprod - sdpair_setact - divgrMl - bigdprod_card - sdprod_mul1g - dprodg1 - sdprod_mulVg - sdprodE - morphim_cprodml - quotient_sdprodr_isom - dprodm_cprod - sdprod_modl - pprodmM - quotient_sdprodr_isog - quotient_coprime_sdprod - injm_sdprodm - index_sdprod - dprodEY - dprod_modr - pair1g_morphM - sdprodJ - dprod_card - cprodg1 - sdprodm_eqf - dprod1g - sdprod_modr - bigdprodWY - pprodE - morphim_cprodmr - bigdprodW - cprodm_sub - remgrMid - sdprodWpp - sdprod_inv_proof - index_sdprodr - ker_dprodm - reindex_bigcprod - imset_mulgm - extprod_mulVg - injm_dprod - cprod_ntriv - morphim_pprod - sdprodEY - morphim_cprod - bigdprodWcp - pprodmEr - sdprodP - sdprod_mulgA - group0 - remgrMl - pprodg1 - sdprod_sdpair - mem_divgr - xsdprodm_dom2 - injm_xsdprodm - dprodmEr - cprodWY - morphim_pair1g - morphim_fstX - bigcprod_coprime_dprod - sdprodW - mulgmP - cprodA - cprodmEr - astabEsd - mem_bigdprod - pprodW - extprod_mulgA - sdprod_card - dprodWsd - pprodmE - im_sdpair_TI - remgr1 - cprodmE - group_setX - morphim_dprodm - morphim_coprime_bigdprod - pprodEY - mulg0 - morphim_sndX - quotient_cprod - im_sdprodm2 - cprodm_actf - dprodmE - sdprod_isom - subcent_sdprod - pprodJ - cprod1g - morphim_pprodml - dprodC - im_dprodm - injm_sdprod - im_sdpair_norm - mem_remgr - cprodm_norm - fst_morphM - dprodEcp - sdprodmEl - injm_pprodm - sdprod1g - morphim_dprodml - ker_cprodm - path: mathcomp/character/mxrepresentation.v theorems: - linear_mxsimple - eqg_mx_abs_irr - Clifford_astab1 - hom_mxmodule - mxsimpleP - mx_rsim_abs_irr - hom_component_mx - rstabs_submod - row_gen_sum_mxval - Wedderburn_min_ideal - gen_mul1r - rfix_mx_rstabC - mxval_is_multiplicative - mxval_gen1 - map_group_ring - map_section_repr - rkerP - Clifford_is_action - val_submodP - gring_indexK - rstabs_act - rstabs_in_gen - rker_gen - gen_addA - morphim_mx_irr - mx_iso_refl - rker_map - submod_mx_repr - quo_mx_quotient - mxvalM - mxmodule_eqg - rcent_eqg - mx_faithful_irr_center_cyclic - hom_mxsemisimple_iso - mx_reducibleS - annihilator_mxP - mxsemisimple_module - gring_mxA - rsim_regular_factmod - rsim_rcons - norm_sub_rstabs_rfix_mx - gring_free - gring_mxJ - rstab_norm - rstab_act - factmod_mx_faithful - mx_JordanHolder_max - envelop_mx1 - gring_opM - mx_Schur_onto - rfix_gen - val_submod_inj - primitive_root_splitting_abelian - rfix_factmod - classg_base_center - mxsimple_morphim - rker_factmod - in_factmod_eq0 - rfix_morphpre - Wedderburn_mulmx0 - mxval_grootXn - irr_degree_abelian - kquo_mxE - rstabs_quo - val_submodS - in_submod_module - irr1_mode - mxvalV - val_gen_row - gen_addC - mxsimple_eqg - gen_dim_ex_proof - quo_repr_coset - gring_mxK - map_mxminpoly_groot - val_genD - in_genZ - gen_is_additive - gring_projE - rfix_submod - irr_mode_unit - reducible_Socle1 - quo_mx_coset - Wedderburn_annihilate - conj_mx_irr - Clifford_atrans - rcent_quo - mxvalN - val_factmod_inj - mxsemisimple0 - mxrank_in_submod - regular_op_inj - sG_f'fG - classg_base_free - add_sub_fact_mod - cyclic_mx_module - map_regular_subseries - rowval_gen_stable - val_factmodE - mx_butterfly - mx_irr_abelian_linear - in_genK - irr_center_scalar - mem_sub_gring - mx_JordanHolder - center_kquo_cyclic - mxsimple_module - subg_mx_abs_irr - gen_addNr - rsim_regular_series - rker_subg - mxmodule_envelop - mxsimple_semisimple - rstabs_morphpre - component_socle - gring_op_id - Socle_module - mxmodule_conj - Wedderburn_sum - Clifford_rank_components - in_gen_row - mx_faithful_irr_abelian_cyclic - repr_mxMr - rstabs_subg - rank_irr1 - Wedderburn_sum_id - rfix_mx_id - Clifford_component_basis - Socle_direct - rker_morphpre - component_mx_key - rsim_last - subg_mx_repr - addsmx_module - ker_irr_comp_op - factmod_mx_repr - rstab_eqg - irr_degree_gt0 - mem_gring_mx - rstab_morphim - gring_op1 - rker_quo - rcent_map - gen_mx_irr - val_submodE - rker_morphim - in_submodK - map_enveloping_algebra_mx - mx_iso_module - socle_mem - quo_mx_irr - sumsmx_module - sums_R - coset_splitting_field - rstab_group_set - component_mx_isoP - repr_mx1 - rstabs_conj - eqmx_rstabs - mx_series_rcons - subSocle_direct - repr_mxX - mxval_inj - submod_mx_irr - rcenter_group_set - mx_rsim_def - socle_exists - mxsimple_exists - eqmx_module - in_factmod_module - Wedderburn_closed - mx_Maschke - kquo_mx_faithful - gring_rowK - irr1_rfix - socle_simple - mxval1 - mxmoduleP - map_regular_mx - Wedderburn_subring_center - irr_repr'_op0 - morphpre_mx_abs_irr - val_factmod_eq0 - mxsimple_abelian_linear - extend_group_splitting_field - val_gen0 - mxsimple_cyclic - cent_mx_scalar_abs_irr - Wedderburn_id_mem - mx_rsim_scalar - quotient_splitting_field - not_rsim_op0 - capmx_subSocle - mxtrace_dadd_mod - component_mx_id - kermx_centg_module - rstabs_factmod - val_genK - rstab_in_gen - sG_f'fG - mxval_groot - mx_rsim_sym - map_rfix_mx - mx_faithful_inj - val_gen_rV - rstab_sub - mx_irrP - mxsimple_subg - irr_modeM - splitting_cyclic_primitive_root - socleP - gen_mulC - val_Clifford_act - val_factmodP - rfix_eqg - mx_iso_trans - rstabs_rowval_gen - Wedderburn_direct - mx_irr_map - reducible_Socle - max_size_mx_series - map_mx_faithful - degree_irr1 - sum_mxsimple_direct_sub - op_Wedderburn_id - Wedderburn_is_id - genmx_component - val_submod1 - rstabs_morphim - base_free - eqmx_semisimple - regular_mx_repr - in_factmodJ - map_gring_op - Clifford_componentJ - principal_comp_subproof - nth_map_rVval - irr_comp_rsim - Clifford_basis - socle_can_subproof - in_genD - rker_mx_rsim - Clifford_rstabs_simple - eqg_repr_proof - section_eqmx - map_mx_repr - in_factmodE - irr_reprE - mx_abs_irrP - cyclic_mxP - abelian_abs_irr - mx_Schreier - mxnonsimpleP - regular_module_ideal - nz_row_mxsimple - group_splitting_field_exists - Wedderburn_disjoint - irr_mx_mult - mx_Schur_inj - component_mx_semisimple - rstab_conj - irr_comp_envelop - val_factmodS - rowval_genK - socle_irr - capmx_module - gring_opG - eqg_mx_faithful - hom_mxP - rcent_subg - submx_in_gen - rker_normal - mxmodule_morphpre - mxtrace_Socle - repr_mxK - max_submod_eqmx - mx_rsim_faithful - mxtrace_submod1 - proj_mx_hom - gen_dim_gt0 - sat_gen_form - eval_mulT - rstab_submod - card_gen - cycle_repr_structure - mx_rsim_iso - map_reprE - hom_envelop_mxC - cyclic_mx_sub - kermx_hom_module - Clifford_hom - map_gring_proj - DecSocleType - mx_iso_component - mxsimple_map - eval_gen_term - mxmodule_rowval_gen - gring_valK - cyclic_mx_id - eqmx_rstab - gring_row_mul - Socle_iso - in_genN - cyclic_mx_eq0 - in_genJ - hom_mxsemisimple - envelop_mxP - normal_rfix_mx_module - subSocle_module - mxval0 - der1_sub_rker - mxmodule_form_qf - mxsemisimple_reducible - subg_mx_faithful - Wedderburn_is_ring - rker_norm - mx_Schur_inj_iso - scalar_mx_hom - mxrank_iso - rconj_mx_repr - mxrank_rsim - mx_series_repr_irr - rfix_mx_conjsg - in_factmodsK - dec_mx_reducible_semisimple - map_regular_repr - rfix_subg - mx_Schur_iso - submx_in_gen_eq - gen_mx_repr - rfix_mxS - rstabs_sub - group_closure_closed_field - Socle_semisimple - rstab_factmod - envelop_mx_ring - mxval_centg - mx_series_lt - irr_comp'_op0 - max_submodP - mx_rsim_factmod - gen_ntriv - mxval_genM - memmx_cent_envelop - last_mod - val_genJ - morphim_mx_repr - irr_degreeE - centgmxP - irr_mode1 - nz_socle - eqmx_iso - mxvalD - base_full - component_mx_def - rstab_morphpre - morphim_mx_abs_irr - in_submodE - irr_modeX - PackSocleK - rank_irr_comp - rfix_conj - map_gring_mx - eval_mxmodule - mxmodule_map - linear_irr_comp - mx_Schur - mx_JordanHolder_exists - eval_mxT - rstab_normal - val_submod_module - mxtrace_rsim - envelop_mxM - Clifford_astab - component_mx_disjoint - mxval_genV - rconj_mxJ - hom_component_mx_iso - rsim_submod1 - Clifford_iso - mxtrace_component - rstabs_eqg - gen_invr0 - linear_mx_abs_irr - mx_reducible_semisimple - rker_submod - mx_rsim_trans - rfix_regular - gen_dim_ub_proof - proj_factmodS - mx_rsim_map - gen_dim_factor - repr_mx_unitr - row_full_dom_hom - dec_mxsimple_exists - conj_mx_faithful - intro_mxsemisimple - mxsimple_iso_simple - rstabS - mxtrace_dsum_mod - repr_mx_unit - mxmodule_morphim - gring_op_mx - mx_iso_sym - genK - mxmodule_subg - group_closure_field_exists - rfix_mx_module - val_submodK - section_eqmx_add - repr_mx_free - map_mx_abs_irr - in_factmodK - in_submodJ - val_genZ - rstabs_map - subg_mx_irr - rstab_subg - morphim_mxE - repr_mxV - rker_eqg - mx_subseries_module - rcent_conj - mxmodule0 - rker_conj - quo_mx_repr - component_mx_iso - non_linear_gen_reducible - Clifford_iso2 - regular_mx_faithful - gring_opE - submx_rowval_gen - rank_Wedderburn_subring - morphpre_mx_repr - repr_mxVr - rsim_regular_submod - val_submodJ - mx_abs_irrW - gring_mxP - Wedderburn_center - envelop_mx_id - valWact - val_genN - gen_add0r - row_hom_mxP - groupCl - rsim_irr_comp - subSocle_iso - dom_hom_mx_module - Clifford_Socle1 - mx_subseries_module' - gen_mulVr - semisimple_Socle - irr_mode_neq0 - centgmx_map - val_factmodK - mxtrace_regular - rstab_quo - irr_comp_id - sum_irr_degree - centgmx_hom - addsmx_semisimple - irr1_repr - repr_mxKV - rcent_group_set - mxrank_in_factmod - set_nth_map_rVval - rfix_quo - sumsmx_semisimple - mxmodule_trans - mx_factmod_sub - mx_rsim_irr - path: mathcomp/algebra/polydiv.v theorems: - dvdp_eq_mul - ltn_divpr - divp_eq - divpK - size2_dvdp_gdco - divpD - dvdp_Pexp2l - eqp_mull - coprimep_dvdr - rmodpZ - divp_small - Gauss_dvdp - modp_eq0 - rdivp_mull - divpZr - size_gcdp1 - edivp_def - coprimep_XsubC2 - divp_eq - gcdp_mull - rgdcop0 - dvdpP - coprimep_modr - gcdp_scaler - eqp_rgdco_gdco - eqp_trans - divpp - egcdp_recP - coprimepMl - irredp_neq0 - rmodp_addl_mul_small - redivp_key - mulKp - dvdp1 - rdivpDl - dvd1p - divpP - polyXsubCP - modp_mull - modpZl - leq_modp - Bezout_eq1_coprimepP - Nrdvdp_small - dvdp_eq_mul - eqp_div - leq_gcdpr - modNp - uniq_roots_rdvdp - modpZr - take_poly_rmodp - rdvdp_XsubCl - eqp_coprimepr - eqp0 - eqp_mul2l - eqp_exp - modp1 - dvdp_eq_div - rdvdpP - dvdpZl - map_divp - divp_modpP - leq_divp - egcdpE - divpKC - gcdp_eq0 - rdivp_eq - dvdp_mul - gcdpE - map_modp - dvdp_exp2l - mulpK - divpKC - divpE - modp0 - eqp_modpl - coprimep_def - dvdp_subr - coprimep_comp_poly - modpP - mulKp - eqp_map - irredp_XaddC - eq_dvdp - dvdp_mod - mupMr - dvdpE - mup_XsubCX - gdcopP - root_dvdp - modp_mul - dvdp_eq - rdvdp_eqP - root_bigmul - divp_mulCA - eqp_rgcd_gcd - divpp - dvdp_mul2r - divpAC - dvdp_exp2r - eqpxx - dvdp_comp_poly - mu_prod_XsubC - eqp_divl - divpK - divpE - divp_dvd - egcdp0 - XsubC_dvd - coprimep_expl - mup_ltn - divp_addl_mul - gcdp_scalel - dvdp_addr - edivp_def - divp_addl_mul_small - modp_coprime - dvdp_leq - dvdp_div_eq0 - dvdp_eq_div - rmod0p - dvdp_prod_XsubC - dvdp_add_eq - rdvdp_leq - polyXsubC_eqp1 - dvdp_eq - rgcd0p - gcdpp - mup_leq - eqp_divr - rdvdpN0 - rdvdp_mull - rmodpp - leq_rmodp - gdcop0 - rdvdpp - eqp_size - dvdp_exp_XsubCP - modpP - polyC_eqp1 - rdivpDr - modpZl - scalp0 - mulKp - divp_mulA - rdivpK - edivp_redivp - rmodpN - coprimep_map - dvdp_gcd_idl - coprimep_pexpl - rdvdp0 - gdcop_map - ltn_rmodpN0 - divpN - dvdp_gdcor - eqp_eq - egcdpP - mulKp - modpD - rmodp1 - dvdp_eq - divp_pmul2l - dvdp_addl - eqp_gcd - Gauss_gcdpl - eqp_mod - eqp_monic - rmodp_mull - ltn_divpl - ulc_eqpP - divpD - dvdpP - rdiv0p - gcdp_mul2r - gcdp_exp - rmodp_mulml - root_biggcd - mulpK - redivp_eq - redivp_map - rdvdp1 - gcdp0 - edivp_map - divpE - rdvdp_eq - rgcdp0 - divp_mulAC - eqp_gcdr - divp_mulA - dvdp_pexp2r - divpK - edivp_eq - rdvd0pP - coprime1p - prod_XsubC_eq - edivpP - root_gdco - eq_rdvdp - dvdp_mulIl - gcdp_comp_poly - drop_poly_divp - drop_poly_rdivp - Bezout_coprimepP - coprimepZl - gcdp_eqp1 - divp_addl_mul - coprimep_sym - dvdp_add - coprimep_addl_mul - irredp_XsubC - modpC - coprimep_pexpr - divp0 - divp_divl - dvdpZr - comm_redivpP - dvdp_map - divp_eq - irredp_XsubCP - mupM - divpP - rdivp_eq - coprimepPn - mupMl - div0p - modp_addl_mul_small - expp_sub - dvdp_trans - dvdp_gcdr - gcdp_modl - rmodp_mulmr - coprimep_XsubC - redivp_def - eqp_modpl - rmodp_small - coprimep_size_gcd - modpN - coprimep0 - modp_id - coprimep_root - eqp_coprimepl - edivp_key - dvdp_gcdl - rmodpp - divp1 - rdivp_small - root_factor_theorem - scalp_map - eqp_div_XsubC - dvdp_gcdlr - eqpf_eq - eqpP - rmodpp - divp_pmul2l - leq_divpr - eqp_gdcol - coprimepMr - coprimep_gdco - take_poly_modp - gcdp_def - gcdp_addl - rdivp_addl_mul_small - rgcdpE - coprimepP - divpKC - scalpE - modp_small - rdvd1p - gcdp_mul2l - divpZr - dvdp_gcd - mupNroot - divp_mulCA - Gauss_dvdpr - dvdUp - divp_pmul2r - coprimepX - rdivpp - eqp_divl - eqp_rmod_mod - rscalp_small - eqp01 - eqp_dvdr - leq_rdivp - modpE - leq_trunc_divp - gtNdvdp - rmodp_mull - root_factor_theorem - rmodpB - eqp_mul2r - rmodp_eq0 - divpN - coprimep_dvdl - divpN0 - dvdp_mulIr - divp_divl - leq_divpl - gcdp_addr - dvdp_exp_sub - dvdp_eqp1 - Bezout_coprimepPn - Gauss_gcdpr - dvdp_eq - scalpE - expp_sub - dvdp_gcd_idr - eqp_modpr - root_coprimep - gcdpC - mulp_gcdl - eqpfP - modp_XsubC - dvdpP - eqp_mulr - rdivp_addl_mul - modpE - dvd0p - redivp_eq - modpZr - ltn_modpN0 - root_gcd - mod0p - rdivpp - eqp_gdcor - size_divp - dvdp_subl - horner_mod - rdivp_eq - eqp_dvdl - divp_mulAC - dvdpE - modpp - rmodpC - Bezoutp - rdivp0 - modpE - eqp_rdiv_div - mulpK - mulp_gcdr - rcoprimep_coprimep - rmodp_compr - divp_pmul2r - edivpP - coprimep1 - modpD - modp_addl_mul_small - egcdp_map - redivpP - dvdp_size_eqp - Gauss_dvdpl - rmodp0 - uniq_roots_dvdp - coprime0p - divpp - divp_eq - divpZl - leq_gcdpl - dvdp_mul_XsubC - rdivp1 - mulpK - size_poly_eq1 - rdvdp_mull - modp_mulr - coprimep_modl - dvdpP - gcdp1 - dvdp_mul2l - dvd_eqp_divl - dvdp_mulr - eqp_ltrans - eqp_gcdl - rdivpK - divpZl - dvdpNl - rmodpD - scalpE - ltn_modp - modpN - dvdp_sub - modp_mul - ucl_eqp_eq - coprimep_div_gcd - dvdp0 - divpAC - path: mathcomp/solvable/frobenius.v theorems: - FrobeniusJ - partition_class_support - Frobenius_subl - Frobenius_reg_compl - Frobenius_partition - semiprimeJ - normedTI_memJ_P - Frobenius_Ldiv - regular_norm_coprime - semiregularS - Frobenius_ker_dvd_ker1 - Frobenius_ker_coprime - Frobenius_index_coprime - semiregular_prime - normedTI_S - partition_normedTI - FrobeniusJcompl - Frobenius_context - semiregular1r - semiregularJ - normedTI_J - semiprimeS - Frobenius_action_kernel_def - normedTI_P - injm_Frobenius_compl - Frobenius_coprime - Frobenius_ker_Hall - Frobenius_subr - Frobenius_trivg_cent - FrobeniusJker - FrobeniusWker - injm_Frobenius_ker - Frobenius_kerP - cent_semiprime - Frobenius_actionP - semiregular_sym - semiregular1l - regular_norm_dvd_pred - set_Frobenius_compl - Frobenius_index_dvd_ker1 - ltn_odd_Frobenius_ker - semiprime_regular - Frobenius_dvd_ker1 - cent1_normedTI - FrobeniusWcompl - injm_Frobenius_group - Frobenius_reg_ker - FrobeniusW - cent_semiregular - Frobenius_compl_Hall - path: mathcomp/algebra/archimedean.v theorems: - natr_mul_eq1 - floor1 - floorX - conj_natr - intrKfloor - sum_truncK - floorK - natr_sum_eq1 - intrEfloor - trunc0Pn - floor_itv - trunc0 - floorP - ceilX - raddfZ_nat - gt_pred_ceil - rpredZ_nat - floor_le - ceil_itv - floorD - truncX - sqr_intr_ge1 - floorpK - norm_intr_ge1 - truncM - Rreal_int - ceil_le - floor_def - int_num_subring - rpred_nat_num - floor_subproof - raddfZ_int - ceil_le_int - intr_aut - truncK - intr_ler_sqr - intr_nat - le_ceil - ceilM - natr_normK - intrP - conj_intr - ceil0 - rpredZ_int - natr_ge0 - intrEsign - intrKceil - natr_exp_even - truncD - aut_intr - trunc_gt0 - floor0 - ceilD - intr_int - floorpP - intrEge0 - rpred_int_num - ceilN - Rreal_nat - ceilK - ceil1 - intrEceil - natr_prod_eq1 - floorM - trunc_floor - natr_aut - ge_floor - natr_gt0 - natrEint - intr_normK - path: mathcomp/fingroup/perm.v theorems: - perm_onM - porbitPmin - permKV - porbitV - lift_perm_id - odd_permV - odd_mul_tperm - perm1 - cast_perm_id - permS0 - cast_perm_comp - perm_onto - prod_tpermP - perm_on_id - tpermV - odd_perm_prod - card_porbit_neq0 - cast_ord_permE - cast_permE - porbit_sym - lift_permV - perm_oneP - lift_permM - tpermC - porbit_traject - cast_permK - perm_on1 - tpermL - perm_proof - tpermK - perm_onV - Sym_group_set - odd_permJ - tpermR - tuple_permP - perm_invP - im_perm_on - permX - card_Sn - permX_fix - tpermD - isom_cast_perm - eq_porbit_mem - card_Sym - tperm_on - apermE - iter_porbit - imset_perm1 - uniq_traject_porbit - odd_perm1 - porbits_mul_tperm - cast_perm_sym - tperm2 - porbitsV - lift_perm1 - tpermP - tperm1 - tpermJ - permK - perm_closed - cast_permKV - odd_lift_perm - im_permV - permJ - lift_perm_lift - cast_perm_morphM - pvalE - lift_permK - card_perm - odd_permM - perm_inj - perm_invK - permP - permS01 - tperm_proof - permS1 - mem_porbit - permM - permE - perm_onC - path: mathcomp/fingroup/morphism.v theorems: - morphpreP - morphpreV - im_sgval - injm_morphim_inj - morphim_ker - injm_sgval - morphim_setIpre - invm_subker - injm_subcent1 - morphimGK - morphimU - card_im_injm - mkerr - morphim_subnorm - injm_cent1 - kerP - morphpreI - morphim_cent1 - morphJ - morphV - domP - injm_norms - morphim_cents - ker_norm - mem_morphpre - morphim_restrm - ker_injm - injm_normal - card_isog - isog_transr - eq_in_morphim - isog_trans - injm_cent - invmK - injm_comp - isom_isog - morphpreIim - sgval_sub - injm_invm - morphmE - morph_injm_eq1 - dom_ker - morphimSGK - morphim_invm - morphim_trivm - morphpre_set1 - morphR - morphim_eq0 - isog_subg - morphimIG - morphim_abelian - morphpreSK - rcoset_kerP - isogEhom - injm_subnorm - morphpre_cent - idm_isom - injm_restrm - morphpreS - nclasses_isog - morphpre0 - invmE - morphpre_cent1 - morphim_subcent - trivm_morphM - restrmP - sub_isom - im_restrm - morph_dom_groupset - ker_rcoset - morphim_class - injm_abelian - morphpreD - morphim_cent - morphimE - morphpre_subcent1 - morphim_invmE - isog_isom - morphpreMr - morphpre_idm - ker_sgval - morph1 - morphim_factm - classes_morphim - morphimD1 - injmP - eq_morphim - ker_sub_pre - ker_ifactm - morphim_inj - misomP - order_injm - morphim1 - isom_sub_im - injm_subg - morphimDG - mkerl - restr_isom_to - homgP - morphpre_cent1s - morphim_norms - leq_morphim - morphim_injG - morphim_set1 - homg_trans - morphim_cycle - morphpre_ifactm - isog_eq1 - morphim_isom - morphim_injm_eq1 - comp_morphM - subgmK - im_invm - morphpre_normal - morphimSK - morphimIim - restr_isom - sub_morphpre_injm - injm_eq - ker_subg - injm_factm - morphimI - morphpre_inj - morphimMl - morphim_cent1s - injm_cents - morphpre_subnorm - morphim_subcent1 - morphpreMl - injmD1 - isogP - ker_factm_loc - injm_idm - morph_prod - morphimT - morphpre_factm - isom_subg - morphM - morphimD - morphim_sub - im_subg - ker_restrm - injmK - morphpre_restrm - morphim_idm - ker_comp - morphimIdom - morphimJ - morphpre_proper - morphimV - isomP - isog_transl - morphpreIdom - isom_card - morphimY - idm_morphM - im_idm - morphim_norm - morphX - ker_idm - morphimP - isog_abelian - isom_im - morphim_subnormG - injm_proper - injm_norm - morphpre_groupset - homg_refl - injmI - morphpre_invm - injm1 - morphpre_cents - sub_isog - morphim_normG - restrmEsub - mem_morphim - morphpre_norm - card_injm - isog_hom - isog_refl - eq_homgr - isom_inj - injm_factmP - mker - ifactmE - morphim_homg - im_ifactm - ker_normal_pre - morphpreU - isom_sym - morphim_gen - morphim_ifactm - morphimR - leq_homg - morphimS - morphpreJ - morphimEsub - ker_invm - injm_subcent - morphimMr - ker_factm - sub_morphim_pre - isom_sgval - morphim_groupset - morphpre_norms - morphpreE - morphpre_comp - nclasses_injm - morphim_comp - factm_morphM - injmSK - ltn_morphim - ker_normal - path: mathcomp/fingroup/quotient.v theorems: - coset_idr - quotient_norm - morphpre_qisom - card_homg - injm_qisom - sub_cosetpre_quo - homg_quotientS - quotient_class - index_injm - cosetpre_cent1 - weak_second_isog - im_qisom_proof - quotient_cents - quotient0 - quotientGI - quotient_inj - quotientE - dvdn_morphim - quotientMidr - kercoset_rcoset - norm_quotient_pre - im_qisom - coset_default - morphim_qisom_inj - quotient_abelian - quotientS - coprime_morph - ltn_quotient - qisom_inj - quotientMr - card_quotient_subnorm - second_isog - inv_quotientN - index_quotient_eq - cosetpre_cent - cosetpreK - coset_kerl - divg_normal - quotient_proper - third_isog - quotient1_isom - quotientMl - quotientU - quotient_gen - coset_norm - sub_quotient_pre - third_isom - val_coset - quotientJ - qisom_isog - coprime_morphl - index_morphim - qisom_isom - cosetpre_proper - cosetpre_cent1s - coset_mem - quotient1 - qisom_ker_proof - cosetpre_set1 - logn_morphim - quotient_subcent - cosetP - im_coset - trivg_quotient - quotient_isog - quotientSK - cosetpre_subcent - quotient_norms - coset_mulP - card_cosetpre - quotmE - coset_one_proof - mem_repr_coset - quotient_sub1 - quotientS1 - qisomE - coset1 - first_isom - coset_range_mul - coset_reprK - quotientD1 - quotient_subnormG - first_isog - quotient_subnorm - cosetpre_normal - quotientGK - first_isog_loc - imset_coset - quotient_cent1s - cosetpre_set1_coset - qisom_restr_proof - morphim_qisom - quotientR - sub_im_coset - quotientV - cosetpreM - quotientInorm - coset1_injm - coset_kerr - val_coset_prim - quotm_dom_proof - quotientSGK - quotientY - normal_cosetpre - ker_coset - inv_quotientS - card_morphpre - coset_invP - quotientIG - cosetpre_subcent1 - dvdn_quotient - coset_oneP - coset_morphM - index_morphpre - ker_quotm - repr_coset_norm - coset_id - coprime_morphr - quotient_isom - quotientD - coset_range_inv - index_quotient_ker - quotientK - restrm_quotientE - quotient_homg - morphim_quotm - im_quotient - card_quotient - quotientT - val_quotient - index_cosetpre - repr_coset1 - cosetpreSK - quotientYidr - index_quotient - mem_quotient - card_morphim - quotient_injG - quotient_cent1 - quotient_set1 - leq_quotient - first_isom_loc - injm_quotm - sub_cosetpre - cosetpre_gen - quotientI - quotm_ker_proof - quotient_setIpre - quotient_subcent1 - quotientDG - quotient1_isog - quotientYidl - quotient_cent - classes_quotient - cosetpre_cents - ker_coset_prim - quotient_normG - val_qisom - char_from_quotient - quotientYK - quotientMidl - quotient_neq1 - second_isom - path: mathcomp/ssreflect/fintype.v theorems: - existsb - negb_exists_in - proper_card - enumP - ordS_subproof - predX_prod_enum - exists_inPn - mem_sub_enum - exists_eq_inP - eq_rlshift - eq_card_trans - lift_max - bij_on_image - disjointU - card2 - proper_subn - subxx_hint - eqfun_inP - flatten_imageP - cardC - f_iinv - ord_pred_bij - card_sig - bumpS - tag_enumP - in_iinv_f - eq_lrshift - ltn_ord - subxx - enum_val_nth - subset_leq_card - rev_ord_proof - subset_cons - card0 - ord_pred_subproof - unit_enumP - size_enum_ord - fin_all_exists2 - image_injP - enum_default - card_option - sub_enum_uniq - mem_ord_enum - eq_disjoint - negb_forall - exists_inP - card_gt0P - forallPP - disjoint_cat - card_prod - inordK - dinjectiveP - seq_sub_axiom - unlift_subproof - enum_rankK_in - enum_rank_ord - leq_ord - eq_existsb - cast_ord_inj - enum_uniq - f_invF - void_enumP - codomP - eq_disjoint_r - card_image - splitK - invF_f - subset_catl - card_uniqP - codom_val - eq_disjoint1 - disjoint0 - disjoint_has - eq_card - sum_enum_uniq - bumpK - size_codom - eq_card - lift_subproof - max_card - card_ord - card_seq_sub - enum_ordSr - leq_bump - codom_f - rshift_subproof - subset_pred1 - card_gt2P - pred0P - subset_all - eq_lshift - card_void - card1 - cardX - eq_forallb_in - ord_predK - fin_all_exists - size_image - seq_subE - subset_cons2 - image_f - ord_enum_uniq - enum_val_bij - iinv_f - canF_invF - bij_on_codom - image_iinv - canF_RL - subset_eqP - cast_ord_proof - card_size - injectivePn - cardD1 - cardT - pred0Pn - proper_trans - preim_iinv - eq_card0 - enum_val_bij_in - extremumP - uniq_enumP - count_enumP - rshift_inj - lift_eqF - eq_invF - subsetP - lift0 - mem_image - mem_iinv - ordSK - eq_pick - imageP - forallPn - lshift_inj - pcan_enumP - disjointU1 - filter_subset - leq_card_in - forallP - enum1 - pre_image - prod_enumP - eq_disjoint0 - disjointWr - leq_image_card - seq_sub_pickleK - nth_codom - enum_ord0 - eq_subset_r - val_ord_enum - arg_minnP - fin_pickleK - eq_enum_rank_in - eq_rshift - nth_enum_rank_in - bumpDl - existsP - exists_inb - lift_inj - unlift_some - eq_card1 - cardU1 - nth_ord_enum - sub_ordK - mem_seq_sub_enum - option_enumP - splitP - disjointW - subset_leqif_card - disjoint_sym - cast_ordK - properE - unbumpS - card_le1P - fintype1P - nth_enum_rank - fintype0 - sub_ord_proof - enum_val_inj - eq_codom - mask_enum_ord - card_sum - card_le1_eqP - unlift_none - enum_ordSl - val_sub_enum - unbumpDl - card_sub - ord_pred_inj - enum0 - widen_ord_proof - map_preim - rev_ordK - enum_rank_subproof - unbumpKcond - liftK - enum_valK_in - inord_val - seq_sub_default - mem_sum_enum - ord_inj - ordS_bij - sub_proper_trans - canF_LR - rev_ord_inj - card_gt1P - card_codom - subset_trans - eq_existsb_in - inj_leq - card_preim - enum_rank_bij - subsetE - bij_eq_card - nth_image - index_enum_ord - subset_cardP - inj_card_bij - codomE - properP - enum_rankK - inj_card_onto - card1P - properxx - image_codom - eq_card_sub - card_tagged - eq_enum - existsPP - enumT - enum_rank_inj - card0_eq - image_pred0 - disjointFl - eq_card_prod - canF_sym - dinjectivePn - leq_card - eq_subset - card_in_image - eq_cardT - forall_inPP - disjoint_cons - subset_predT - eq_image - eqfunP - unliftP - card_unit - mem_enum - proper_sub_trans - disjoint_subset - subset_disjoint - eq_subxx - injF_bij - cardE - negb_forall_in - subsetPn - cast_ord_id - split_ordP - cast_ordKV - neq_bump - bool_enumP - mem_card1 - existsPn - val_enum_ord - cardC1 - unbumpK - injectiveP - subset_filter - iinv_proof - disjointFr - map_subset - leq_bump2 - ord1 - subset_cat2 - enum_valK - enum_val_ord - enum_valP - disjoint1 - path: mathcomp/ssreflect/bigop.v theorems: - sub_le_big_seq_cond - pair_big_idem - big_enum_val_cond - leq_bigmax_seq - big_ord_narrow_cond - big_distrl - big_enum_cond - big_split_ord - big_has - big_ord1_cond - some_big_AC_mk_monoid - sum1_count - big_geq_mkord - big_ord_narrow - big_mkcondl_idem - addmC - exchange_big_dep - big_allpairs_idem - big_nat_rev - exchange_big_dep_nat - sum_nat_seq_eq1 - big_mkcondr - big_allpairs_dep - mulmAC - big_nat_widenl - oopC_subdef - le_big_nat_cond - deprecated_filter_index_enum - big_ord_recr - big_cat_idem - big_nat1_cond_eq - big_nat_mul - mulmCA - partition_big - bigmax_eq_arg - sum1_card - exchange_big_nat_idem - big_ltn - mulm1 - idem_sub_le_big_cond - mem_index_iota - big_image_cond - sum_nat_eq0 - big_ord_narrow_leq - prodn_gt0 - bigA_distr_big_dep - big_mask_tuple - big_add1 - big_mkord - eq_big_op - oop1x_subdef - big_rmcond_in_idem - big_enum_rank - eq_big_idx_seq - mulmACA - mem_index_enum - prod_nat_const_nat - big_rem_AC - big_rmcond_idem - eq_bigmax_cond - bigID_idem - le_big_nat - prod_nat_seq_eq1 - big_map - foldl_idx - oopA_subdef - perm_big_supp_cond - big_rcons_op - eq_big_nat - big_geq - bigD1 - bigmax_sup - sub_le_big - big_bool - uniq_sub_le_big - oACE - big_condT - big_rec - oopx1_subdef - idem_sub_le_big - big_nat_cond - big_allpairs - big_andE - uniq_sub_le_big_cond - leq_sum - eq_big_idx - card_bseq - sig_big_dep - big_id_idem_AC - congr_big_nat - big_seq_cond - big_nth - big_split - mul1m - big_change_idx - iteropE - telescope_sumn_in - bigmax_leqP - mulC_dist - big_undup - big_mkcond - big_mask - big1_idem - big_rec3 - pair_bigA_idem - perm_big - big_andbC - big_distr_big_dep - big1 - big_AC_mk_monoid - subset_le_big - prodn_cond_gt0 - index_enum_uniq - leq_prod - big_cat_nested - big_image - opCA - big_load - sub_in_le_big - prod_nat_const - big_allpairs_dep_idem - reindex - mul0m - big_ind3 - big_pred0_eq - big_rmcond - big_enumP - expn_sum - pair_big_dep - big_pred1_eq_id - big_cat_nat_idem - big_enum_val - exchange_big_idem - telescope_big - sum_nat_eq1 - exchange_big_nat - pair_big - big_undup_iterop_count - sum_nat_const - exchange_big - big_flatten - big_const_nat - big_cat_nat - biglcmn_sup - big_distr_big - big_pred1_id - big_ind2 - big_hasC - big_map_id - big_catl - biggcdn_inf - reindex_onto - foldrE - bigU - big_distrlr - mulC_zero - sum1_size - mulmDr - big_const_idem - big_ind - prod_nat_seq_neq1 - sub_le_big_seq - big_has_cond - big_filter - big_ord0 - prod_nat_seq_eq0 - eq_big_seq - big_rev_mkord - bigmax_leqP_seq - mulmDl - big_endo - big_const_ord - big_nat1 - congr_big - big1_eq - dvdn_biglcmP - bigD1_seq - big_const - exchange_big_dep_idem - mulC_id - mulmA - sumnE - big_catr - sum_nat_seq_eq0 - big_rmcond_in - big_id_idem - leqif_sum - pair_big_dep_idem - big_enum - perm_big_supp - leq_bigmax_cond - big_cons - bigA_distr_big - big_ord_recl - foldlE - reindex_inj - big_seq1 - leq_bigmax - big_mkcondl - big1_seq - big_mkcondr_idem - big_filter_cond - mulm0 - prod_nat_seq_neq0 - sum_nat_const_nat - eq_bigl_supp - sum_nat_seq_neq0 - bigID - big_rem - sumnB - big_ord_widen_cond - big_ord1 - big_seq - addmAC - big_nat_recr - big_pred1 - big_addn - big_morph - big_index_uniq - big_pred0 - big_ltn_cond - bigU_idem - telescope_sumn - big_ord_widen_leq - big_pmap - big_pred1_eq - big_if - index_enum_key - bigmax_sup_seq - big_only1 - mulmC - big_nil - addmCA - big_nat_widen - eq_bigr - add0m - pair_bigA - big_nat1_id - big_seq1_id - big_split_idem - big_nseq - le_big_ord - big_all - big_const_seq - big_mkcond_idem - partition_big_idem - bigD1_ord - big_ord_widen - cardD1x - exchange_big_dep_nat_idem - path: mathcomp/algebra/rat.v theorems: - normr_num_div - rat_linear - denq_mulr_sign - Qint_def - mulVq - le_rat0 - fracq_eq - sgr_denq - frac0q - oppq_frac - fracq_opt_subdefE - lerq0 - invq_frac - mulqC - mulq_def - ler_rat - ler0q - coprimeq_den - mulqA - divqP - sgr_scalq - sgr_numq_div - norm_ratN - numqN - ratzE - coprime_num_den - rat0 - rat_eq - sgr_numq - minr_rat - le_rat0M - rat_vm_compute - addq_subdefC - mulq_addl - fracqE - denq_gt0 - ratzM - gt_rat0 - absz_denq - add0q - rat_eqE - is_natE - lt_ratE - addq_def - invq0 - numq_sign_mul - Qnat_def - addq_frac - truncP - numqK - valq_frac - numq_lt0 - ratr_is_additive - ratr_norm - rpred_rat - signr_scalq - mulq_subdefE - fracq_eq0 - denqVz - nonzero1q - ratzN - intq_eq0 - divq_num_den - rat1 - ratz_frac - floor_rat - fmorph_eq_rat - numq_div_lt0 - RatK - le_ratE - QnatP - ltr_rat - fracq_subproof - fracqMM - ltr0q - denqN - invq_def - den_fracq - numq_int - numq_ge0 - valqK - fracqP - ge_rat0_norm - coprimeq_num - denq_norm - ratr_int - le_rat0_anti - scalq_def - normr_denq - denq_lt0 - is_intE - addNq - addqA - le_rat_total - denq_eq0 - numq_eq0 - ratr_sg - maxr_rat - ratr_nat - subq_ge0 - mulq_frac - oppq_def - ratzD - addq_subdefA - mulq_subdefC - ratr_is_multiplicative - addq_subdefE - scalq_eq0 - ge_rat0 - lt_rat_def - numq_gt0 - fmorph_rat - val_fracq - rat_ring_theory - denq_int - num_fracq - fracq_opt_subdef_id - le_rat0D - denq_neq0 - lt_rat0 - ratP - ceil_rat - numqE - denqP - path: mathcomp/solvable/alt.v theorems: - Alt_index - rfd_odd - trivial_Alt_2 - rgdP - not_simple_Alt_4 - Alt_subset - simple_Alt5_base - Sym_trans - Alt_trans - Alt_normal - Alt_norm - Alt_even - rfd_funP - rfd_iso - card_Sym - aperm_faithful - rfdP - path: mathcomp/solvable/cyclic.v theorems: - morph_generator - orderXpnat - has_prim_root_subproof - quotient_cyclic - cyclicY - morphim_cyclic - order_inj_cyclic - Zp_unit_isom - cyclicP - expg_cardG - order_inf - cyclic_dprod - field_mul_group_cyclic - Aut_prime_cyclic - im_cyclem - cyclic1 - Zp_unitmM - eltmM - card_Aut_cycle - totient_gen - cycle_generator - order_dvdG - isog_cyclic - orderXexp - eltmE - cycleMsub - div_ring_mul_group_cyclic - sub_cyclic_char - eq_subG_cyclic - morph_order - Aut_cyclic_abelian - im_Zp_unitm - cardSg_cyclic - cyclemM - Zp_unit_isog - injm_generator - im_Zpm - cycle_cyclic - cyclicJ - ZpmM - metacyclicP - Euler_exp_totient - generator_cycle - Aut_prime_cycle_cyclic - generator_coprime - cyclic_abelian - expgK - Aut_cycle_abelian - isog_cyclic_card - metacyclic1 - Zp_isom - injm_cyclem - cycleM - orderXgcd - cyclicS - nt_prime_order - sum_totient_dvd - cyclic_metacyclic - Zp_isog - field_unit_group_cyclic - quotient_cycle - expg_znat - orderXdvd - cyclic_small - expg_zneg - im_eltm - cycle_sub_group - orderXpfactor - nt_gen_prime - eltm_id - has_prim_root - orderM - injm_Zpm - eq_expg_mod_order - cyclicM - units_Zp_cyclic - injm_eltm - order_dvdn - dvdn_prime_cyclic - metacyclicS - card_Aut_cyclic - generator_order - orderXprime - injm_cyclic - cycle_subgroup_char - sum_ncycle_totient - path: mathcomp/field/algC.v theorems: - Cint_Cnat - conjL_nt - Cnat_sum_eq1 - minCpoly_subproof - Crat_divring_closed - eqCmod_refl - mulA - sqrtK - floorCK - conj_is_semi_additive - natCK - floorC0 - norm_Cint_ge1 - norm_eq0 - minCpoly_eq0 - truncCX - CratP - dvdC_zmod - Creal1 - algC_invautK - getCratK - eqCmod_nat - Cint_int - minCpoly_aut - addA - LtoC_K - dvdC0 - sposD - algCreal_Im - eqCmodDr - dvdC_trans - truncCK - eqCmod0_nat - rpred_Crat - Creal_Crat - conjK - Crat1 - nz2 - truncC_def - Cnat_gt0 - posJ - Cnat_norm_Cint - floorCM - conj_Cnat - floorCD - truncC1 - dvdCP_nat - eq_root_is_equiv - aut_Cnat - truncCD - dvdC_mul2l - mulC - Creal0 - rpredZ_Cint - raddfZ_Cint - eqCmod_transl - add0 - normM - sposDl - eqCmod_transr - truncC0Pn - zCdivE - dvdC_mulr - CnatEint - Crat_aut - eqCmodN - Creal_Cnat - posE - Cnat_nat - minCpoly_monic - addN - algC_autK - Cint_rat - eqCmodMl0 - leB - intCK - eqCmodDl - truncC_gt0 - CintP - normD - mul2I - algCi_subproof - conj_is_additive - Cnat_aut - dvdC_mul2r - eqCmod0 - algCrect - floorCX - pos_linear - Cnat0 - eqCmodm0 - iJ - algCreal_Re - CtoL_inj - CnatP - CtoL_K - eqCmodMr0 - Cnat_mul_eq1 - Cint_normK - conj_is_multiplicative - size_minCpoly - conj_Crat - dvdCP - Cint0 - Crat_rat - CintE - ratCK - conj_Cint - dvdC_refl - normN - addC - Cint_aut - Cint_ler_sqr - eqCmodM - algC_invaut_subproof - archimedean - nz2 - getCrat_subproof - rpredZ_Cnat - dvd0C - mulD - raddfZ_Cnat - dvdC_mull - Cnat_exp_even - norm_Cnat - dvdC_int - rpred_Cnat - sqrMi - algC_invaut_is_additive - minCpolyP - algebraic - normE - conj_subproof - root_minCpoly - eqCmod_sym - nCdivE - CintEsign - normK - CtoL_P - truncC_itv - one_nz - floorC_def - floorCN - LtoC_subproof - sqr_Cint_ge1 - inv0 - CtoL_is_additive - closedFieldAxiom - Cnat1 - Cnat_ge0 - dvdC_nat - floorC1 - Creal_Cint - floorCpP - conj_nt - sqrtE - Crat0 - path: mathcomp/ssreflect/generic_quotient.v theorems: - left_trans - encModRelP - pi_DC - pi_morph1 - pi_mono2 - equal_toE - mpiE - reprP - quotW - encoded_equivP - eqquotE - equiv_refl - sortPx - reprK - pi_morph11 - eq_op_trans - eqmodP - equiv_sym - ereprK - eqmodP - eq_lock - equivQTP - equiv_rtrans - encModEquivP - equiv_ltrans - canon_id - piP - repr_ofK - pi_CD - encoded_equivE - quotP - encModRelE - sort_Sub - eqmodE - equiv_trans - encoded_equiv_is_equiv - eqmodE - eqquotP - qreprK - path: mathcomp/solvable/extraspecial.v theorems: - gtype_key - exponent_pX1p2n - card_pX1p2n - DnQ_extraspecial - isog_pX1p2 - isog_2extraspecial - rank_DnQ - exponent_pX1p2 - card_pX1p2 - pX1p2S - card_DnQ - DnQ_pgroup - isog_pX1p2n - rank_Dn - DnQ_P - Q8_extraspecial - gactP - Grp_pX1p2 - pX1p2n_extraspecial - actP - isog_2X1p2 - not_isog_Dn_DnQ - pX1p2_extraspecial - Ohm1_extraspecial_odd - pX1p2id - pX1p2n_pgroup - path: mathcomp/algebra/ssrnum.v theorems: - gtr_pMr - ler_nat - ger_pMl - lteifNl - lteifNr0 - lerDl - deg_le2_poly_ge0 - minr_nMr - rootC_gt0 - normC_sum_eq1 - lerN10 - ltr_wpMn2r - ler_ndivrMr - nmulr_llt0 - trunc_itv - degpN - nmulr_lge0 - deg2_poly_minE - lteifN2 - real_lerNnormlW - sqa2 - oppr_min - ler_distlBl - real_normrEsign - normr0 - ler_prod - natf_div - normrV - ler0_norm - lteif_nM2l - invCi - ImMr - le00 - mulr_sign_norm - rootC_ge0 - ltr0_ge_norm - invf_nlt - gtr0_sg - nat_num1 - mulrn_wge0 - rootCK - oppr_lt0 - pnatr_eq1 - ltr_nat - ImM - ler_distlDr - ltrDl - le0_add - ltr_pMn2r - natrK - conj_Creal - eqrXn2 - exprn_odd_le0 - agt0 - deg2_poly_factor - deltam - lteif_pM2l - normC2_rect - sqrtC0 - real_arg_minP - r1N - ler_normr - ltr_prod - deg2_poly_noroot - lerD2r - maxr_pMl - normrMsign - deg2_poly_ge0 - real_ler_distlCDr - ler_iXn2l - normr_real - ltrD2l - normr_unit - real_exprn_even_lt0 - ltr_pDr - subr_ge0 - conjC_ge0 - nneg_divr_closed - ler_wpMn2l - ler_pM2r - ler0_ge_norm - deg2_poly_root1 - deg_le2_poly_delta_le0 - posrE - leif_mean_square_scaled - trunc_subproof - Im_div - sqrtrV - deg2_poly_gt0l - ltr_distlCDr - big_real - subr_gt0 - real_mono - ltr1n - normrN1 - real_nmono - ger0_real - ler10 - poly_ivt - eqr_pMn2r - lef_nV2 - ger1_real - mul_conjC_ge0 - Nreal_ltF - subr_lteifr0 - eqr_norm2 - lerD - real_ler_distlCBl - subC_rect - ler_wnMn2l - ImE - exprn_even_gt0 - real_ler_normlW - leif_Re_Creal - ltr0Sn - invr_gt1 - ltr0_sqrtr - lteif_ndivlMr - real_ltgtP - imaginaryCE - ltr_distl - eqr_nat - mulr_ege1 - pmulr_lgt0 - real_maxNr - real_nmono_in - ler0_sqrtr - lerBlDl - pmulrn_rgt0 - leif_AGM_scaled - real_leif_norm - conjC_rect - lteif_norml - ltr01 - deg2_poly_le0 - le0N - subr_lt0 - geC0_conj - ler1n - sgr_gt0 - sqrtC_inj - lerMn2r - rootC_subproof - aa4gt0 - normrEsg - a4gt0 - normr_le0 - pmulrn_lle0 - real_oppr_max - deg2_poly_lt0m - rootC_gt1 - intrE - ImV - sqrtC1 - conjC1 - ler_rootC - leifBRL - ltr_nnorml - aneq0 - le_total - ler_normlP - eqC_semipolar - ler_leVge - ler_wnM2l - exprn_even_lt0 - ltf_nV2 - ltr0n - ler_pMn2r - prod_real - ltr_nDl - mulr_gt0 - real0 - ltr_eXnr - nat_num0 - deg2_poly_lt0r - gtr_nMr - aneq0 - deg2_poly_le0r - poly_itv_bound - invf_ngt - lteif_ndivrMl - lerD2l - real_mono_in - minr_to_max - real_lteif_norml - normM - normr1 - rootCMr - real_ltr_distlDr - sqrtr_gt0 - conjCN1 - Creal_Im - gtrBl - gtr0_le_norm - pmulr_rlt0 - oppr_ge0 - normM - nz2 - lt0_cp - sqrtC_eq0 - realNEsign - nposrE - deg2_poly_max - a4gt0 - lerNnormlW - nmulr_rge0 - ler_sqr - b2a - pexpIrn - ler_pMl - deg2_poly_root1 - ler_ltB - ler_nMr - minrN - real_ltgt0P - ltr_prod_nat - lteif_pdivrMr - le_total - ltrN10 - ler_pMr - ler_peMr - int_num1 - exprn_gt0 - ltrBrDl - leif_sum - sqr_sqrtr - sgr_norm - lerBrDl - normr_nneg - deltaN - mulrIn - sgr0 - normr0P - mulr_Nsign_norm - realN - ler_wnDl - deg2_poly_ge0r - deg2_poly_gt0r - lteif01 - mulr_sg_eqN1 - conjC0 - pmulr_rle0 - exprn_even_ge0 - invf_gt1 - real_leP - eq0_norm - maxNr - ImMl - rootC0 - gt_ge - normr_prod - minr_nMl - real_leif_mean_square - natrG_neq0 - ltrB - Crect - prodr_gt0 - invf_le1 - lteifBrDr - deltam - sgrP - addr_max_min - degpN - eqr_normN - rootC_lt0 - deg2_poly_root2 - ler_neMr - lt_le - ler_nMn2l - sgrV - ler_nV2 - root1C - nz2 - neq0Ci - mulrn_wlt0 - leif_0_sum - signr_le0 - mulr_le0 - eqr_norm_id - nmulrn_rgt0 - invr_lt0 - eqr_sqrtC - deg2_poly_factor - ler_wpDr - ltr0_sg - expr_ge1 - ltr0_real - Re_lock - leN_total - ltr_iXnr - leif_pM - real_addr_minl - ler_ltD - sqrtC_ge0 - ltr_normr - sqrtCM - invf_plt - nnegrE - real_leif_AGM2 - invr_gt0 - lteifD2l - r2N - exprn_egt1 - argCleP - real_addr_closed - lteifD2r - mulrn_wgt0 - normr_nat - lerB_dist - sqrtC_gt0 - deg2_poly_le0l - lef_pV2 - splitr - deg2_poly_minE - deg2_poly_lt0 - nmulr_rgt0 - ler_wpM2r - gtr_pMl - posrE - ltr_distlDr - gerBl - addC_rect - ler_distD - sgr_id - gtr_nMl - ltr_pM2l - lern0 - expr_lt1 - realB - leif_normC_Re_Creal - le00 - ImMil - normCBeq - rootC1 - int_num_subring - CrealE - num_real - deg2_poly_gt0l - real_exprn_odd_lt0 - ltr_nMl - natf_indexg - leif_rootC_AGM - pmulrn_rge0 - sqrp_eq1 - leif_nM - real1 - addr_ge0 - neqr0_sign - invr_ge1 - real_ler_norm - lerDr - ltr_pMr - ltr_wnDl - oppr_gt0 - char_num - mulr_ge0_le0 - deg2_poly_gt0r - invr_ge0 - leif_pprod - ltr_normlP - ler_pdivlMl - invf_ple - signr_lt0 - real_addr_maxr - real_ler_distl - normCDeq - lerNr - poly_disk_bound - truncP - lt0r_neq0 - pos_divr_closed - real_ltr_distlCBl - Creal_ImP - numNEsign - ger0_norm - ltrgt0P - lteif_normr - addr_ss_eq0 - le01 - ltr_nwDl - realE - bigmin_real - mulr_egt1 - ler_iXnr - normCKC - nz2 - trunc_def - natrP - lerN2 - ger_pMr - ltr01 - naddr_eq0 - ieexprn_weq1 - ltr_wnDr - ler_norm - sqrtr_ge0 - deg2_poly_lt0m - sqrtrM - ltr_leD - ler_nnorml - ltrXn2r - ltr_ndivrMl - Nreal_gtF - deg2_poly_ge0 - lt0_add - ReMir - real_minr_nMr - gt0_cp - ler_eXnr - sgr_def - ltrr - rootC_eq1 - ltr0N1 - normC_sum_upper - le0r - addr_ge0 - paddr_eq0 - lerr - conj_normC - mulr_ge0 - pmulrnI - natrE - ltrBrDr - eqNr - real_addr_maxl - pmulr_rge0 - eqC - ltrn0 - lteif_pdivrMl - realn - lerB_real - min_real - pneq0 - minNr - numEsign - le0r - ltr_wpXn2r - leif_nat_r - invr_sg - boundP - leif_AGM2_scaled - real_leNgt - sqrtC_lt0 - sgrN - deg2_poly_ge0l - gtr0_real - ReMl - truncP - ler_wMn2r - real_comparable - rootC_le0 - ler_niMl - realEsqr - lteifBlDl - ltr_pM2r - maxr_nMl - max_real - leif_AGM2 - ler_normlW - normrEsign - Re_is_additive - rootC_Re_max - leifBLR - rootC_le1 - rootC_lt1 - real_ltr_normr - invC_Crect - lteifNr - real_ltP - ltr_nDr - deg2_poly_ge0r - exprn_odd_gt0 - mulr_ge0_gt0 - nnegrE - deg2_poly_lt0l - realn_mono_in - ler_pM - real_minrN - ler_norml - ler_distlCDr - deg2_poly_le0m - signr_gt0 - nmulr_lgt0 - sqr_ge0 - deg2_poly_factor - pmulr_rgt0 - ger_nMr - ltrD - norm_conjC - realn_nmono - real_ltr_distlCDr - rectC_mulr - ltr_distlBl - ltr_pdivlMr - ltrMn2r - realn_nmono_in - ger0P - invf_nge - realV - ger0_def - ler_pdivrMl - midf_lt - sgr1 - deg2_poly_root2 - real_ler_normr - sqrtr0 - normr_id - ler_pV2 - nmulrn_rge0 - neg_unity_root - ltrNr - ler_weXn2l - pexpr_eq1 - real_leif_AGM2_scaled - real_exprn_odd_ge0 - deg2_poly_root2 - ltr_nM2l - mulrn_eq0 - sqrCK - sgr_nat - sgr_le0 - le0_cp - le0_mul - ltrN2 - pmulrn_lgt0 - ltr_normlW - exprn_ile1 - ltrNnormlW - eqr_norml - ler_eXn2l - real_maxrN - real_minr_nMl - midf_le - conjCi - Re_conj - subr_comparable0 - eqr_rootC - ler_pM2l - deg2_poly_gt0m - deg2_poly_maxE - lteif_nM2r - nmulr_lle0 - real_ltr_normlP - invf_pgt - lteif_pdivlMl - nonRealCi - mul_conjC_gt0 - le_trans - ler_ndivrMl - ltr_pV2 - nmulrn_rle0 - lerBrDr - normC_rect - real_ler_distlDr - le_def - invf_ge1 - Creal_Re - sum_real - ltrBlDr - ltrgtP - deg2_poly_gt0 - CrealP - normr_gt0 - normC2_Re_Im - ler_sqrtC - deg2_poly_factor - realD - prodr_ge0 - real_wlog_ltr - ltr_leB - realrM - ltr_nV2 - real_ge0P - ler1_real - Creal_ReP - ler_real - deg2_poly_min - ltr_pDl - ler0_def - deg2_poly_root1 - ler_distlC - sgrM - realEsg - Im_rect - real_mulr_sign_norm - eqrMn2r - rootCMl - real_ltr_norml - Im_is_additive - deg2_poly_ge0l - addr_min_max - mulr_lt0 - pmulr_lge0 - ler_peMl - ltr0_neq0 - maxrN - ltr_ndivlMl - le_normD - real_wlog_ler - invC_norm - pmulr_rgt0 - comparable0r - divC_rect - real_minNr - exprCK - pexprn_eq1 - ler_wpDl - eqr_sqrt - CrealJ - comparabler_trans - exprn_ege1 - real_exprn_odd_gt0 - ler_distlCBl - real_maxr_nMr - natr_nat - sqrtrP - ltf_pV2 - conjC_nat - ler_distl - ler_addgt0Pl - realEsign - ler_piMr - ger_nMl - Cauchy_root_bound - pmulr_llt0 - normCi - ltr_pwDr - ltr_wpDl - sgr_eq0 - a2 - lteif_nnormr - leifD - ltr_pM - exprn_ge0 - realX - subr_le0 - ler_addgt0Pr - expr_le1 - ler_wpM2l - ler0N1 - real_maxr_nMl - lteif_ndivlMl - normC_sum_eq - xb4 - real_exprn_even_ge0 - ler01 - sqrtCK - ltr_ndivrMr - lerP - lerB - deg_le2_poly_delta_ge0 - lteif_pdivlMr - ltr_pMl - exprn_ilt1 - ltr_rootC - ImMir - lteif_ndivrMr - ltrBlDl - addr_maxr - real_leVge - ler_nMl - rootC_inj - lteifBrDl - ltW - ltr_norml - ltr_pMn2l - mulr_sg_eq1 - normr_lt0 - addr_maxl - lerNl - ler_ndivlMl - ler_wsqrtr - conjC_eq0 - numEsg - natrG_gt0 - Im_conj - ler_normB - natr_indexg_neq0 - sgr_lt0 - nat_num_semiring - divr_ge0 - normr_sg - rootC_ge1 - distrC - ltr_wMn2r - ltr_iXn2l - sqrtr_subproof - real_divr_closed - pmulrn_lge0 - signr_inj - real_ler_distlBl - ler_nM2l - normrN - real_mulr_Nsign_norm - ReMr - upper_nthrootP - deg2_poly_noroot - archi_boundP - num_real - divr_gt0 - ler0_real - real_ler_norml - ler_psqrt - normr_idP - ltr_sqr - a4 - oppr_le0 - minr_pMr - expr_gt1 - mulrn_wle0 - maxr_to_min - real_exprn_even_le0 - normr_sign - invC_rect - real_oppr_min - sgrX - Nreal_geF - lteifBlDr - psumr_eq0P - real_addr_minr - ler0n - exprn_even_le0 - invf_lt1 - geC0_unit_exp - lteif_distl - ler_sqrt - realMr - ltr_nM2r - realrMn - unitf_lt0 - pmulrn_llt0 - ger0_le_norm - Re_rect - sgr_smul - ReV - sqrCK_P - ltr_wpDr - mulr_le0_ge0 - real_eqr_norml - gtrDl - signr_ge0 - lt_def - normC_def - ler_neMl - oppC_rect - nmulr_rlt0 - rootCX - norm_rootC - deg2_poly_le0m - ler_wnDr - Im_lock - invr_le1 - ger0_def - Re_i - ltr_rootCl - sqrn_eq1 - sgr_cp0 - ltr_sqrtC - ler_dist_normD - real_lteif_normr - ltr_eXn2l - sqrtC_le0 - ler_dist_dist - ler_pXn2r - ltr_pdivlMl - mulC_rect - gtrN - invr_le0 - rootCV - subr_lteif0r - maxr_pMr - realM - deg2_poly_ge0m - lerBlDr - real_le0P - rootCpX - real_leif_mean_square_scaled - normf_div - rectC_mull - ler_pdivlMr - sumr_ge0 - deltaN - mul_conjC_eq0 - pmulr_lle0 - deg2_poly_root1 - gerDr - le_normD - lt01 - a2gt0 - mulCii - invr_lt1 - sqr_sg - eqCP - neq0_mulr_lt0 - lteif_pM2r - real_ler_normlP - subr_gt0 - a1 - real_ltNge - addr_minl - ltr10 - invf_pge - ReE - gerDl - ler_niMr - ltr_pXn2r - ler_pdivrMr - maxr_nMr - ltrD2r - pmulrn_rlt0 - ler_piMl - ltr_nMr - sqrtr1 - ltr_ndivlMr - rootC_eq0 - lteif0Nr - real_exprn_even_gt0 - eq0_norm - Re_div - ler_sum - pneq0 - sgrMn - path: mathcomp/solvable/sylow.v theorems: - nilpotent_maxp_normal - card_Syl_dvd - Baer_Suzuki - Sylow_exists - nil_class3 - pgroup_nil - nil_Zgroup_cyclic - Hall_pJsub - card_p2group_abelian - trivg_center_pgroup - morphim_Zgroup - Hall_psubJ - sub_nilpotent_cent2 - pgroup_fix_mod - nil_class2 - Syl_trans - pcore_sub_astab_irr - nilpotent_Hall_pcore - Sylow_setI_normal - Sylow_trans - Hall_setI_normal - nontrivial_gacent_pgroup - pgroup_sol - nil_class_pgroup - pcore_faithful_irr_act - p2group_abelian - Sylow's_theorem - small_nil_class - Sylow_subJ - normal_pgroup - Frattini_arg - max_pgroup_Sylow - nilpotent_pcoreC - card_Syl - coprime_mulG_setI_norm - pi_center_nilpotent - Sylow_subnorm - normal_sylowP - Sylow_gen - Sylow_transversal_gen - path: mathcomp/field/fieldext.v theorems: - size_Fadjoin_poly - Fadjoin0 - mulfxC - prodvAC - base_aspaceOver - minPolyxx - field_subvMr - field_module_eq - monic_minPoly - base_moduleOver - root_minPoly - mem1v - p0z0 - Fadjoin_nil - field_module_semisimple - sub1v - irredp_FAdjoin - baseField_scaleDr - aspaceOver_suproof - nz_p0 - Fadjoin_polyX - nonzero1fx - field_mem_algid - adjoin0_deg - subfx_irreducibleP - subfield_closed - subfx_inj_is_additive - map_minPoly - vspaceOver_refBase - subfx_scalerDr - Fadjoin_poly_is_linear - field_dimS - Fadjoin_polyC - pi_subfx_inj - minPolyOver - AEnd_lker0 - fieldExt_hornerX - modp_polyOver - subfx_poly_invE - dim_sup_field - poly_rV_modp_K - vsval_invf - Fadjoin_eq_sum - aimg_is_aspace - pi_subfext_add - subfx_scaleAr - subfx_inj_eval - dim_Fadjoin - AHom_lker0 - subfx_fieldAxiom - fieldOver_scaleAl - subfx_scalerA - polyOver_subvs - subfx_inj_base - polyOverSv - subfx_scalerDl - fieldOver_scaleE - subfx_inj_root - mem_aspaceOver - sup_field_module - baseField_scale1 - addfxC - Fadjoin_idP - baseField_vectMixin - pi_subfext_inv - addfxA - dim_vspaceOver - nz_p - baseField_scaleDl - Fadjoin_polyP - iotaPz_repr - adjoin_deg_eq1 - z0Ciota - iotaPz_modp - sub_baseField - add0fx - aspaceOverP - sub_adjoin1v - subfx_eval_is_additive - p0_mon - dim_aspaceOver - subfxEroot - subvs_fieldMixin - mempx_Fadjoin - fieldOver_scaleDl - field_module_dimS - prodvCA - gcdp_polyOver - fieldOver_scaleDr - root_small_adjoin_poly - aspace_divr_closed - baseVspace_module - mul1fx - prodvC - fieldOver_scaleA - FadjoinP - minPoly_irr - addfxN - mulfxA - fieldExt_hornerC - baseField_scaleA - F0ZEZ - pi_subfext_opp - equiv_subfext_is_equiv - adjoin_degree_aimg - subfx_scaleAl - prodv_is_aspace - subfx_eval_is_multiplicative - fieldExt_hornerZ - pi_subfext_mul - min_subfx_vect - subfx_evalZ - field_subvMl - algid1 - mem_baseVspace - baseField_scaleE - dim_cosetv - alg_polyOver - dim_baseVspace - trivial_fieldOver - nz_x_i - mulfx_addl - dim_field_module - subfx_inv0 - fieldOver_vectMixin - subfxE - Fadjoin_poly_mod - baseField_scaleAr - fieldOver_scaleAr - size_minPoly - Fadjoin1_polyP - vspaceOverP - minPolyS - Fadjoin_poly_eq - baseField_scaleAl - baseAspace_suproof - Fadjoin_polyOver - module_baseAspace - adjoin_degreeE - minPoly_XsubC - Fadjoin_seqP - n_gt0 - Fadjoin_sum_direct - base_vspaceOver - fieldOver_scale1 - subfx_injZ - Fadjoin_poly_unique - path: mathcomp/character/character.v theorems: - cfBigdprodi_lin_char - cfker_constt - cfcenter_sub - lin_charV_conj - cfDprodr_lin_char - irr_inv - cfMorph_charE - subGcfker - cfAut_lin_char - cfDetRes - xcfunZr - cfDetMorph - cfQuo_irr - cfRepr_dsum - dsumx_mul - cap_cfker_normal - neq0_has_constt - cfConjC_irr1 - cfdot_sum_irr - irr_prime_injP - conjC_IirrK - trow_is_linear - cfAut_irr1 - Iirr_cast - add_mx_repr - cfker_reg_quo - cfdot_Res_ge_constt - irr_free - tprodE - cfRepr_inj - dprodr_IirrE - cfConjC_lin_char - sdprod_IirrE - TI_cfker_irr - irr_classP - card_afix_irr_classes - mxtrace_prod - irr_basis - cfcenter_repr - lin_char_unity_root - cfRegE - socle_of_Iirr_bij - irr_eq1 - cfReg_sum - cfRepr_standard - isom_IirrE - cfkerEirr - cap_cfcenter_irr - conjC_Iirr0 - cfaithful_reg - dprod_IirrEl - cfSdprod_irr - cfun1_irr - aut_IirrE - irr1_gt0 - Res_irr_neq0 - cfnorm_Res_leif - irrWnorm - Iirr1_neq0 - cfDet_order_dvdG - lin_char_prod - Res_sdprod_irr - cap_cfker_lin_irr - lin_char_group - char1_ge_constt - reindex_irr_class - Ind_irr_neq0 - cfnorm_irr - cfRepr_subproof - dprod_Iirr0r - eq_irr_mem_classP - conjC_IirrE - cfInd_eq0 - cfRepr_sub - lin_char_neq0 - eq_subZnat_irr - cfMorph_char - isom_Iirr0 - cfcenter_cyclic - cfRes_lin_char - char_sum_irr - lin_charX - dprodr_Iirr0 - prod_mx_repr - trowbE - cfMod_charE - cfBigdprodi_char - irr_of_socle_bij - mod_Iirr0 - irr_cfcenterE - cfRepr1 - cfExp_prime_transitive - socle_Iirr0 - cfDprodr_irr - cfker_irr0 - cfMod_irr - Wedderburn_id_expansion - cfMod_char - dprod_Iirr0l - lin_charM - cfcenter_normal - cfcenter_group_set - irr_faithful_center - max_cfRepr_mx1 - linear_char_divr - dprod_Iirr_onto - dprod_Iirr0 - cfRepr_char - irr1_bound - constt_Res_trans - quo_Iirr_eq0 - dprod_IirrEr - cfMorph_lin_char - cfRepr_rsimP - mod_IirrK - eq_addZ_irr - morph_Iirr_eq0 - cfBigdprod_irr - cfConjC_irr - cfBigdprodi_lin_charE - cfQuo_lin_charE - irrP - cforder_lin_char - constt_ortho_char - cfdot_aut_char - groupC - constt_cfInd_irr - cfkerE - cfRes_char - aut_Iirr_inj - cfBigdprod_Res_lin - cfBigdprod_lin_char - irr_orthonormal - sdprod_Iirr0 - cfBigdprod_char - cfIsom_char - cfRepr_morphim - xcfun_id - cfker_Res - sAG - dprod_IirrK - dprodl_Iirr0 - irr_char - cfIsom_irr - dprodr_IirrK - mul_conjC_lin_char - eq_scaled_irr - cfDetD - card_Iirr_abelian - dprod_IirrE - irr_cyclic_lin - cfDprodKl_abelian - cfun1_char - sdprod_Iirr_eq0 - morph_Iirr_inj - quo_IirrK - quo_IirrE - cfBigdprodi_charE - normC_lin_char - cfDet_order_lin - trow0 - cfIirrE - aut_Iirr0 - cfcenter_eq_center - isom_IirrKV - cfDet_lin_char - irr1_neq0 - cfun1_lin_char - second_orthogonality_relation - nKG - cfBigdprodKabelian - trowb_is_linear - cfun0_char - cfun_sum_cfdot - class_IirrK - character_table_unit - cfDprod_irr - congr_irr - conjC_irrAut - first_orthogonality_relation - dprod_Iirr_inj - isom_IirrK - trow_mul - cfcenter_fful_irr - cfdot_dprod_irr - cfMorph_irr - cfSdprod_char - detRepr_lin_char - cfIirr_key - mod_Iirr_eq0 - cfDprod_char - cfkerEchar - char_sum_irrP - cfIsom_lin_char - prod_repr_lin - cfRes_lin_lin - cfDetMn - cfConjC_char1 - NirrE - cfIirrPE - dprod_Iirr_eq0 - mul_lin_irr - Cnat_cfdot_char_irr - sdprod_Res_IirrE - cforder_irr_eq1 - lin_char_der1 - sdprod_IirrK - irr_sum_square - cfBigdprod_eq1 - xcfun_mul_id - cfRepr_dadd - eq_signed_irr - irr1_degree - isom_Iirr_eq0 - repr_rsim_diag - cfDet_id - cfDprodKr_abelian - char1_ge_norm - irr_reprP - irr1_abelian_bound - has_nonprincipal_irr - xcfun_is_additive - mx_rsim_socle - irr_prime_lin - mod_IirrE - repr_irr_classK - inv_dprod_Iirr0 - irr0 - morph_Iirr0 - cfRepr_sim - cforder_lin_char_gt0 - cfker_center_normal - isom_Iirr_inj - cfQuo_charE - lin_charW - cfdot_irr - cfAut_char1 - irr_neq0 - cfBigdprodi_irr - cfDprod_eq1 - cfdot_char_r - solvable_has_lin_char - cfInd_char - cfAut_irr - coord_cfdot - cfQuo_lin_char - mx_rsim_dsum - cfcenter_subset_center - Cnat_irr1 - irrK - cfDet0 - cfBigdprodKlin - cfSdprod_lin_char - card_subcent1_coset - cfker_Ind - xcfunG - mx_rsim_dadd - cfDprodl_char - conjC_Iirr_eq0 - lin_char_irr - lin_irr_der1 - dprodl_IirrE - card_Iirr_cyclic - invr_lin_char - Cnat_char1 - generalized_orthogonality_relation - cfRepr0 - mem_irr - dprodl_IirrK - char_reprP - morph_IirrE - mx_rsim_standard - cfDetIsom - Nxi - cfDprodl_lin_char - irrWchar - usumx_mul - char1_eq0 - cfMod_lin_charE - constt_irr - cfConjC_char - Res_Iirr0 - aut_Iirr_eq0 - quo_Iirr0 - fful_lin_char_inj - cfDet_mul_lin - XX'_1 - conjC_charAut - irrRepr - xiMV - socle_of_IirrK - irrEchar - xcfun_repr - cfDprodr_char - cfDetRepr - tprod_tr - cfReg_char - cfMorph_lin_charE - mul_char - cfQuo_char - char_abelianP - card_lin_irr - mx_repr0 - quo_IirrKeq - lin_char_unitr - eq_scale_irr - char_inv - cfun_sum_constt - cforder_lin_char_dvdG - char_cfcenterE - cfDprod_lin_char - char1_ge0 - dprodr_Iirr_eq0 - cfcenter_Res - det_is_repr - irr_aut_closed - irr_of_socleK - constt_cfRes_irr - lin_char1 - sdprod_Res_IirrK - cfker_nzcharE - cfReprReg - mod_Iirr_bij - add_char - path: mathcomp/field/algnum.v theorems: - Aint_aut - Crat_spanP - eqAmodMr0 - eqAmod_refl - eqAmod_addl_mul - restrict_aut_to_normal_num_field - eqAmod0_rat - Crat_span_zmod_closed - eqAmodMl0 - dec_Cint_span - eqAmodN - restrict_aut_to_num_field - fin_Csubring_Aint - Aint0 - eqAmodMl - Cint_span_zmod_closed - eqAmod0_nat - eqAmodD - dvdA_zmod_closed - num_field_exists - mem_Cint_span - Aint_prim_root - Aint1 - eqAmod0 - Aint_subring - eqAmod_rat - rmorphZ_num - eqAmodm0 - eqAmodMr - dvdn_orderC - Aint_Cint - eqAmod_transl - exp_orderC - eqAmod_sym - root_monic_Aint - Crat_spanM - Aint_unity_root - eqAmod_transr - alg_num_field - mem_Crat_span - Crat_spanZ - Aint_Cnat - map_Qnum_poly - eqAmod_trans - num_field_proj - eqAmod_nat - eqAmodM - Cint_spanP - Crat_span_subproof - fmorph_numZ - Aint_int - extend_algC_subfield_aut - eqAmodDl - eqAmodDr - algC_PET - Cint_rat_Aint - path: mathcomp/algebra/poly.v theorems: - drop_poly_is_linear - comm_poly_exp - multiplicity_XsubC - mul_0poly - coefXM - root_ZXsubC - polyOverZ - comp_poly0 - mul_poly_key - size_map_polyC - size_Poly - fmorph_unity_root - nderivnC - monicXnaddC - prim_root_dvd_eq0 - map_polyXaddC - nderivnMn - size_polyC_leq1 - odd_polyE - commr_polyXn - dvdn_prim_root - lead_coefM - aa4 - polySpred - polyOverNr - comm_polyX - rpred_horner - size_polyXn - size_exp_leq - prim_root_natf_neq0 - derivnC - derivnB - scale_poly_eq0 - rootE - comp_poly_eq0 - nderivnXn - lead_coefDr - size_poly_eq - mul_polyDr - derivMXaddC - poly2_root - comp_polyXaddC_K - horner_eval_is_linear - prim_order_dvd - scale_polyC - mul_poly0 - derivn1 - coefMXn - horner_coef_wide - lead_coefX - nderivn_def - polyOver0 - size_exp - polyseqXn - rreg_polyMC_eq0 - hornerN - prim_expr_order - lead_coef_monicM - root_exp_XsubC - scale_1poly - polyC0 - root_polyC - deg2_poly_root1 - size1_polyC - even_polyD - monic_neq0 - coefXn - coef_opp_poly - derivnXn - lead_coef_map_inj - closed_nonrootP - size_odd_poly - rmorph_root - lead_coefMX - polyOver_addr_closed - monic_lreg - polyX_key - map_polyZ - commr_horner - monic_exp - aneq0 - polyXsubC_eq0 - deg2_poly_canonical - lead_coef_exp - polyOverC - closed_rootP - rootN - coef0 - polyOverXaddC - map_poly_inj - mul_polyC - rmorph_unity_root - hornerXn - poly_inj - polyCM - mapf_root - coef0_prod_XsubC - polyOver_poly - factor_Xn_sub_1 - size_prod_seq - comp_poly_multiplicative - scale_poly_key - lead_coefXnsubC - factor_theorem - prim_root_charF - size_exp_XsubC - take_polyDMXn - odd_polyD - comm_polyM - unity_rootE - root0 - horner_prod - deg2_poly_root1 - polyOver_deriv - root_prod_XsubC - drop_polyDMXn - size_prod_seq_eq1 - size_prod_leq - coefB - derivnMNn - derivMNn - even_polyZ - lead_coef_map - rootPt - polyOverXnsubC - polyCV - comm_poly1 - polyCMn - derivMn - take_poly0l - coef_map_id0 - dec_factor_theorem - odd_polyZ - size_drop_poly - map_poly_is_multiplicative - prim_rootP - coef_drop_poly - sum_odd_poly - sum_even_poly - coef_comp_poly_Xn - poly_mulVp - polyseq_cons - hornerMX - rootPf - map_poly_com - prim_expr_mod - size_prod_eq1 - polyCK - derivXsubC - size_add - size_comp_poly2 - coefMn - polyOverXn - map_polyC - comp_poly_is_linear - nderivn0 - hornerD - size_opp - coefCM - nderivnMNn - comp_polyM - prim_root_eq0 - commr_polyX - map_prod_XsubC - prim_root_exp_coprime - roots_geq_poly_eq0 - lead_coefDl - poly_take_drop - unity_rootP - derivnMXaddC - hornerXsubC - mul_lead_coef - deg2_poly_root2 - map_polyE - map_comm_coef - deriv_exp - map_poly_comp_id0 - map_poly_is_additive - root_exp - horner_map - coefXnM - coefPn_prod_XsubC - poly_intro_unit - monic_map - size_polyC - poly_inv_out - even_polyE - eqp_take_drop - polyOverXsubC - size_poly - size_poly0 - size_Mmonic - size_polyX - lead_coefE - comp_polyX - rootZ - derivM - max_poly_roots - odd_polyMX - size_even_poly_eq - even_polyC - polyC_inj - polyseqXaddC - comp_polyZ - monic_mulr_closed - monic_prod_XsubC - polyseqMX - polyOver_mulr_2closed - polyC_eq0 - take_polyMXn_0 - horner_algX - nderiv_taylor_wide - polyX_eq0 - poly_even_odd - rreg_size - comp_poly_MXaddC - prim_root_pi_eq0 - polyseqC - coef_mul_poly - comp_polyB - lead_coef_Mmonic - comp_poly0r - derivXn - poly_idomainAxiom - horner0 - size_map_inj_poly - polyC1 - nderivn_map - mem_root - coef_odd_poly - map_comm_poly - polyP - deg2_poly_canonical - drop_polyZ - mul_polyA - size_XmulC - derivnZ - size_sum - root_XaddC - coef_cons - polyseqK - aut_unity_rootC - horner_coef0 - scale_polyAl - comp_polyXr - add_poly0 - sqa2neq0 - poly_mul_comm - max_unity_roots - hornerCM - coef0_prod - multiplicity_XsubC - monicXaddC - fmorph_root - lead_coef_eq0 - derivSn - nderiv_taylor - horner_comp - monic1 - size_poly_gt0 - coefMC - nderivnB - horner_is_linear - monicXn - poly_initial - size_map_poly - in_alg_comm - polyOver_derivn - hornerX - size_mulXn - deriv0 - rootM - comm_coef_poly - lead_coef_lreg - size_prod_XsubC - multiplicity_XsubC - polyseqMXn - polyseq0 - polyC_natr - lead_coef1 - derivn_is_linear - polyseqXsubC - horner_exp - polyCD - coef0M - prim_order_gt0 - coef_derivn - lead_coefN - aut_unity_rootP - nderivn_is_linear - coef_deriv - coefMr - eq_map_poly - rreg_lead - map_diff_roots - comm_polyD - opp_poly_key - drop_poly0r - size_MXaddC - coefX - map_Poly - comp_polyE - coefC - monicMl - size_mul - coef_nderivn - horner_morphX - coef_poly - cons_poly_def - deriv_mulC - lt_size_deriv - horner_is_multiplicative - polyseq_poly - derivnS - polyOverXnaddC - even_polyMX - deriv_comp - polyC_multiplicative - closed_rootP - map_polyXn - polyOver_comp - take_poly0r - derivn0 - aut_prim_rootP - comp_poly2_eq0 - prod_map_poly - a1 - polyOver_mul1_closed - poly0Vpos - size_Cmul - horner_algC - hornerC - size_prod - nderivnZ - deg2_poly_factor - map_inj_poly - monicP - size_scale_leq - hornerM_comm - map_poly_id - eq_poly - poly_key - size_proper_mul - polyseqX - map_polyK - size_cons_poly - drop_poly_sum - comp_polyD - derivn_map - max_ring_poly_roots - root_size_gt1 - eq_prim_root_expr - deriv_map - take_polyD - polyOverX - eq_in_map_poly_id0 - size_poly1 - eq_in_map_poly - lead_coefXsubC - size_even_poly - poly_morphX_comm - coefZ - monicE - coef_map - lead_coef0 - pneq0 - splitr - poly_invE - poly_unitE - coef_take_poly - rreg_div0 - derivC - monic_prod - map_uniq_roots - lead_coefZ - coefp0_multiplicative - monic_rreg - all_roots_prod_XsubC - polyOver_nderivn - a2neq0 - lreg_lead0 - coef_Poly - lreg_lead - pE - monicXnsubC - rootX - lead_coef_map_eq - horner_cons - derivnD - size_mul_eq1 - char_poly - coefD - drop_poly0l - poly_def - lead_coefXnaddC - coef_sum - rootP - horner_exp_comm - PolyK - coefMNn - map_poly0 - add_polyA - derivn_poly0 - gt_size_poly_neq0 - lead_coefC - size_take_poly - lead_coef_comp - derivB - nderivn_poly0 - size_map_poly_id0 - coef_even_poly - scale_polyA - lreg_polyZ_eq0 - size_poly1P - lead_coefXn - root_XsubC - drop_polyMXn - odd_poly_is_linear - lead_coef_prod_XsubC - derivnMn - lead_coef_poly - horner_morphC - nderivnMXaddC - exp_prim_root - size_monicM - map_poly_comp - alg_polyC - comp_Xn_poly - sum_drop_poly - map_polyX - take_poly_id - fmorph_primitive_root - size_comp_poly - comp_poly_Xn - horner_eval_is_multiplicative - mem_unity_roots - monicX - size_XnsubC - lead_coef_proper_mul - poly1_neq0 - hornerZ - map_polyC_eq0 - lead_coef_prod - coefK - derivD - nderivnN - coef_mul_poly_rev - add_polyN - monicXsubC - mul_poly1 - hornerMXaddC - size_XsubC - take_poly_sum - uniq_roots_prod_XsubC - horner_sum - uniq_rootsE - size_mul_leq - nderivnD - mul_1poly - coefM - nderivn1 - mul_polyDl - drop_polyMXn_id - nil_poly - horner_Poly - odd_polyC - polyCN - take_polyZ - comp_polyC - monic_comreg - horner_poly - even_poly_is_linear - hornerMn - polyOverS - scale_polyDr - root_comp - path: mathcomp/field/separable.v theorems: - extendDerivation_id - separable_generatorP - adjoin_separable_eq - separable_polyP - extendDerivation_horner - separable_deriv_eq0 - separable_refl - poly_square_freeP - strong_Primitive_Element_Theorem - make_separable - eqp_separable - separableS - Derivation_scalar - Derivation_separable - sub_inseparable - charf_n_separable - separableP - adjoin_separableP - Primitive_Element_Theorem - separable_Fadjoin_seq - cyclic_or_large - extendDerivation_scalable_subproof - extendDerivationP - separable_generator_mem - separable_poly_neq0 - charf0_separable - separable_map - separable_root - separableSl - purely_inseparableP - purely_inseparable_trans - separable_root_der - finite_PET - eq_adjoin_separable_generator - adjoin_separable - Derivation_exp - separablePn - separable_elementP - inseparable_sum - sub_adjoin_separable_generator - separable_sum - separable_inseparable_decomposition - inseparable_add - extendDerivation_additive_subproof - Derivation1 - separable_coprime - separable_mul - separable_elementS - separable_nz_der - charf_p_separable - Derivation_separableP - purely_inseparable_elementP - DerivationS - separableSr - Derivation_mul - Derivation_horner - separable_exponent - purely_inseparable_refl - large_field_PET - separable_nosquare - separable_trans - path: mathcomp/solvable/extremal.v theorems: - r_gt0 - cyclic_SCN - odd_pgroup_rank1_cyclic - Grp_2dihedral - defQ - dihedral2_structure - modular_group_classP - card_quaternion - def2qr - card_ext_dihedral - def_q - prime_Ohm1P - involutions_gen_dihedral - maximal_cycle_extremal - ltqm - card_2dihedral - modular_group_structure - Grp_ext_dihedral - generators_modular_group - cyclic_pgroup_Aut_structure - Grp_quaternion - r_gt0 - def_r - dihedral_classP - def_p - bound_extremal_groups - card_modular_group - card_semidihedral - card - generators_quaternion - generators_semidihedral - quaternion_structure - aut_dvdn - Grp'_dihedral - semidihedral_structure - card_dihedral - act_dom - extremal2_structure - eq_Mod8_D8 - ltrq - Grp_dihedral - Grp - Grp_modular_group - q_gt1 - q_gt0 - symplectic_type_group_structure - Grp_semidihedral - semidihedral_classP - quaternion_classP - cancel_index_extremal_groups - path: mathcomp/solvable/maximal.v theorems: - injm_Fitting - Fitting_group_set - SCN_P - der1_stab_Ohm1_SCN_series - Ohm1_stab_Ohm1_SCN_series - card_extraspecial - p_index_maximal - Phi_Mho - p3group_extraspecial - charsimple_dprod - isog_extraspecial - index_maxnormal_sol_prime - p_core_Fitting - Phi_quotient_abelem - trivg_Phi - Fitting_sub - pcore_Fitting - Phi_nongen - injm_special - sol_prime_factor_exists - Phi_joing - extraspecial_prime - solvable_norm_abelem - exponent_special - Phi_normal - Phi_sub - SCN_max - simple_sol_prime - charsimpleP - Phi_quotient_cyclic - maxnormal_charsimple - cprod_extraspecial - injm_extraspecial - center_special_abelem - Fitting_pcore - Fitting_normal - p_maximal_index - minnormal_solvable - Fitting_nil - Fitting_eq_pcore - FittingEgen - Fitting_char - split1_extraspecial - Phi_char - PhiJ - card_subcent_extraspecial - p_abelem_split1 - Frattini_continuous - abelem_split_dprod - Phi_sub_max - critical_extraspecial - cent1_extraspecial_maximal - Phi_min - quotient_Phi - Thompson_critical - Phi_cprod - Phi_mulg - critical_class2 - p_maximal_normal - injm_Phi - extraspecial_nonabelian - trivg_Fitting - morphim_Fitting - abelem_charsimple - charsimple_solvable - center_aut_extraspecial - pmaxElem_extraspecial - isog_Phi - PhiS - card_center_extraspecial - Ohm1_cent_max_normal_abelem - Phi_proper - max_SCN - isog_Fitting - exponent_Ohm1_class2 - morphim_Phi - abelian_charsimple_special - FittingS - minnormal_charsimple - exponent_2extraspecial - Phi_quotient_id - extraspecial_structure - SCN_abelian - critical_p_stab_Aut - path: mathcomp/field/falgebra.v theorems: - prodv_sub - agenvX - vsval_invr - memv_adjoin - id_is_ahom - prodvSr - memv_algid - expv_line - adim1P - adjoinSl - ker_sub_ahom_is_aspace - centraliser_is_aspace - prod1v - adjoin_seqSl - FalgType_proper - agenvS - agenvE - subvs_mulDr - skew_field_algid1 - agenvM - adjoin_seq1 - aimg_adjoin_seq - prodv1 - aimgM - lfun_mulE - adjoin_seqSr - prodvS - subvs_mul1 - adjoin_nil - dim_cosetv_unit - sub_agenv - unitrP - expv_id - mulVr - amull1 - aspacef_subproof - algid_eq1 - prodv0 - expv2 - Falgebra_FieldMixin - subvs_scaleAr - amulr_inj - prodvDl - skew_field_dimS - centv1 - aimgX - aspace1_subproof - cent1v1 - agenvEr - not_asubv0 - amulr_is_linear - regular_fullv - lfun_invr_out - memvM - limg_amulr - unitr_algid1 - prodv_line - prodvP - dim_algid - centraliser1_is_aspace - adim_gt0 - subvs_mu1l - algid_neq0 - memvV - amE - aimg_agen - asubv - aspace_cap_subproof - lker0_amulr - skew_field_module_semisimple - divrr - subv_adjoin - centv_algid - algidl - expv0n - expvD - amullM - has_algid1 - cent1v_id - agenv_modl - prodvSl - centvP - prod0v - expvS - subvs_mulA - prodv_id - lfun_compE - vbasis1 - subv_cent1 - linfun_is_ahom - amull_inj - cent1vC - algid_subproof - centvsP - polyOver1P - expvSr - subvs_scaleAl - adjoinC - aimg_adjoin - cent1vX - agenv_modr - skew_field_module_dimS - ahomWin - agenv_is_aspace - memv_mul - lfun_unitrP - prodvA - lker0_amull - agenv_id - amulr_is_multiplicative - algid_center - subvP_adjoin - lfun1_poly - vsval_unitr - ahomP - subvs_mulDl - comp_is_ahom - expvSl - invr_out - lfun_mulrV - agenv_sub_modr - adjoin_rcons - seqv_sub_adjoin - subv_adjoin_seq - has_algidP - centvC - dim_prodv - ahom_is_multiplicative - ahom_inP - vspace1_neq0 - dimv1 - centvX - agenvEl - agenv_add_id - expv1 - expvM - memv_cosetP - aimg1 - prodv_key - algid_decidable - lfun_mulVr - cent1vP - path: mathcomp/algebra/mxpoly.v theorems: - geigenspaceE - eigenpoly_map - codiagonalizable1 - sub_kermxpoly_conjmx - eigenvalue_conjmx - mxminpoly_linear_is_scalar - submx_form_qf - integral_root - kermxpolyX - integral_nat - degree_mxminpoly_proof - nth_row_env - mx_root_minpoly - resultant_eq0 - char_poly_monic - diagonalizablePeigen - horner_rVpolyK - conjmx_scalar - conjmxK - map_resultant - integral_add - size_mod_mxminpoly - rVpolyK - mxminpoly_conj - diagonalizableP - algebraic_sub - diagonalizable_for_sum - integral_sub - char_block_diag_mx - diagonalizable0 - conj1mx - stablemx_restrict - sub_eigenspace_conjmx - mxdirect_sum_geigenspace - eval_col_mx - kermxpolyM - companion_map_poly - coef_rVpoly_ord - horner_mx_C - conjuMumx - integral_rmorph - map_geigenspace - size_seq_of_rV - Exists_rowP - integral0 - mxminpoly_dvd_char - simmxP - minpoly_mx_free - eigenpolyP - mulmx_delta_companion - intR_XsubC - integral_horner_root - algebraic0 - diagonalizable_diag - eval_mulmx - diagonalizable_for_mxminpoly - conjmx_eigenvalue - row'_col'_char_poly_mx - diagonalizable_scalar - conjMmx - size_char_poly - map_kermxpoly - horner_mx_conj - algebraic_div - mxminpoly_min - poly_rV_K - eigenvalue_root_min - kermxpolyC - comm_horner_mx - companionmxK - integral_opp - horner_mx_mem - comm_mx_stable_kermxpoly - codiagonalizable_on - root_mxminpoly - integral_div - size_diagA - minpoly_mx_ring - mxminpoly_uconj - algebraic_opp - algebraic_id - codiagonalizablePfull - mx_poly_ring_isom - map_rVpoly - integral1 - size_mxminpoly - mxminpoly_map - horner_mx_stable - comm_mx_stable_geigenspace - integral_inv - map_powers_mx - integral_mul - integral_root_monic - eigenspace_sub_geigen - conjMumx - comm_mx_horner - rVpoly_delta - stablemx_comp - eval_row_var - minpoly_mx1 - char_poly_trig - eval_mxrank - eigenvalue_poly - char_poly_det - poly_rV_is_linear - algebraic_mul - diagonalizable_for_row_base - mxminpoly_monic - horner_mx_X - mxminpoly_minP - simmx_minpoly - conjuMmx - integral_poly - map_mx_inv_horner - Cayley_Hamilton - integral_id - diagonalizable_forPp - eigenpoly_conjmx - degree_mxminpoly_map - mxminpoly_nonconstant - eval_vec_mx - conjVmx - Sylvester_mxE - kermxpoly_prod - mxdirect_kermxpoly - mxminpoly_diag - simmxLR - eval_submx - conjmx0 - kermxpoly_min - minpoly_mxM - integral_algebraic - nth_seq_of_rV - eigenvalue_root_char - mx_inv_hornerK - mxdirect_sum_kermx - map_poly_rV - horner_mx_uconj - eigenspace_poly - simmxPp - eval_mx_term - codiagonalizableP - horner_rVpoly - simmxRL - diagonalizable_forP - dvd_mxminpoly - diagonalizable_conj_diag - kermxpoly1 - XsubC0 - resultant_in_ideal - algebraic1 - diagonalizable_forLR - mxrank_form_qf - horner_mxZ - horner_mxK - conjmxVK - path: mathcomp/field/closed_field.v theorems: - qf_cps_if - eval_amulXnT - rgdcop_recT_qf - holds_ex_elim - redivp_rec_loopP - rgcdp_loopT_qf - redivpTP - rgcdpTP - rgdcopTP - abstrX1 - rgcdpTsP - rgcdpT_qf - rseq_poly_map - isnull_qf - rpoly_map_mul - rgdcop_recTP - redivp_rec_loopT_qf - sizeTP - abstrXP - holds_conjn - rsumpT - eval_poly_mulM - lead_coefTP - countable_algebraic_closure - rgdcopT_qf - redivp_rec_loopTP - eval_lift - ex_elim_seqP - ex_elim_seq_qf - eval_poly1 - wf_ex_elim - redivpT_qf - eval_opppT - holds_conj - qf_simpl - eval_mulpT - isnullP - countable_field_extension - ramulXnT - rabstrX - lead_coefT_qf - rgcdpTs_qf - qf_cps_ret - abstrX_mulM - qf_cps_bind - eval_sumpT - rgcdp_loopP - sizeT_qf - eval_natmulpT - path: mathcomp/fingroup/automorphism.v theorems: - Aut_conj_aut - Aut_morphic - Aut_isomM - char_norm_trans - conj_isom - char_normal - Aut_aut - eq_Aut - im_Aut_isom - injm_char - im_autm - conj_autE - perm_in_inj - perm_inE - Aut_Aut_isom - Aut_isomP - char_injm - conj_aut_morphM - charI - morphim_conj - Aut_closed - autmE - imset_autE - perm_in_on - lone_subgroup_char - char_refl - char_norm - conjgmE - charP - Aut_isom_subproof - char_sub - injm_Aut_isom - morphim_fixP - char_norms - Aut1 - preim_autE - ker_conj_aut - char_trans - injm_autm - charM - Aut_isomE - norm_conjg_im - out_Aut - norm_conj_isom - norm_conj_autE - char_normal_trans - aut_closed - conj_isog - path: mathcomp/ssreflect/fingraph.v theorems: - same_connect - order_gt0 - finv_inv - fconnect_invariant - iter_findex - eq_n_comp_r - connect_closed - eq_fcard - predC_closed - eq_order_cycle - injectivePcycle - fconnect_cycle - fconnect1 - fpath_finv_cycle - fpath_finv_in - size_orbit - finv_in - connect_cycle - connect_sub - fcycle_consEflatten - fcycle_consE - orbit_uniq - subset_dfs - same_fconnect_finv - fcard_id - connect_trans - rgraphK - eq_roots - fclosed1 - order_finv - image_orbit - fconnect_finv - same_fconnect1 - eq_n_comp - iter_finv_in - eq_root - orbit_id - closure_closed - fconnect_id - f_finv_in - eq_connect0 - fcard_order_set - orbitPcycle - root_root - subset_closure - order_cycle - finv_inj_cycle - froots_id - prevE - connect1 - looping_order - mem_orbit - fpath_f_finv_cycle - froot_id - finv_bij - finv_cycle - adjunction_closed - fpath_finv - undup_cycle_cons - intro_closed - cycle_orbit - connectP - fpath_finv_f_cycle - path_connect - fconnect_f - strict_adjunction - cycle_orbit_cycle - eq_fconnect - in_orbit_cycle - fcycleEflatten - fconnect_iter - root_connect - n_comp_connect - iter_order - finv_f_in - iter_order_cycle - n_comp_closure2 - same_connect_r - same_connect1r - fconnect_findex - order_id_cycle - closed_connect - fcard_gt0P - dfsP - intro_adjunction - orbitE - fconnect_orbit - same_connect1 - findex_eq0 - n_compC - findex_max - connect_root - f_finv - finv_inj - orderPcycle - mem_closure - iter_finv_cycle - same_connect_rev - f_finv_cycle - fconnect_sym - eq_finv - findex_iter - iter_order_in - fconnect_eqVf - dfs_pathP - rootP - fcard_gt1P - in_orbit - order_le_cycle - eq_connect - fconnect_sym_in - same_fconnect1_r - finv_f - fpath_f_finv_in - fpath_finv_f_in - iter_finv - connect_rev - fcard_finv - fcycle_rconsE - orderSpred - path: mathcomp/algebra/ssrint.v theorems: - nmulrz_rlt0 - exprz_pintl - mulr0z - distn_eq1 - rpredMz - sgz_odd - ltr_piXz2l - ltr1z - ler_int - pmulrz_llt0 - exprzD_ss - NegzE - distn_eq0 - scalerMzr - lez_total - nonzero1z - mulzn_eq1 - mulrz_le0 - intr_norm - abszMsign - ltr_int - sgzX - ltr_nXz2r - expfz_eq0 - abszN1 - ler_pMz2l - ltr_pXz2r - mulrzAC - distnn - ltr0_sgz - oppzK - rmorphMz - mulr_absz - exprSzr - commr_int - intrV - fmorphXz - exprzMzl - PoszD - lerz0 - mul2z - eqz_nat - subSz1 - natr_absz - exprnP - ler_wpXz2r - pmulrz_lgt0 - mulrbz - mulrz_nat - ltz1D - Frobenius_aut_int - mulrz_suml - rpredZint - realz - commrXz - nmulrz_rgt0 - ffunMzE - rmorphXz - unitr_n0expz - derivMz - mulz_Nsign_abs - pexprz_eq1 - is_intE - leqifD_distz - linearMn - abszM - normr_sgz - natz - sgz_le0 - sgzP - ltNz_nat - ler_wpMz2l - sgz_smul - exprzD_Nnat - invz_out - absz_eq0 - lez_abs - lez0_abs - expfz_neq0 - mulr1z - nmulrz_lge0 - horner_int - oppzD - distnEl - sgrMz - ler_niXz2l - commrMz - intr_sign - mulrz_int - mul0rz - invr_expz - raddfMz - mulNrNz - abszX - lez_anti - sgz_sgr - mulrzDr_tmp - gtz0_ge1 - mulr2z - ltr_eXz2l - ler_wnXz2r - ler_wpiXz2l - is_natE - exprMz_comm - ltzD1 - truncP - Znat_def - expfzMl - ler_nMz2r - intr_sg - ler_weXz2l - mulzA - mulrz_neq0 - rmorphzP - distn0 - mulz0 - absz1 - pexpIrz - ieexprIz - Frobenius_autMz - absz0 - exprnN - mul0z - mulrzr - mulrz_le0_ge0 - addNz - exprzMl - lez1D - exprz_pMzl - abszEsg - ltr_pMz2r - ler_eXz2l - distSn - lez_nat - intS - lez_mul - abszN - ltr_nMz2l - sgz_def - mulrzA_C - intmul1_is_multiplicative - pmulrz_rle0 - nmulrz_lgt0 - eqr_int - leqD_dist - ltzN_nat - rpredXz - expNrz - lerz1 - lez_add - ler1z - ltz_nat - ltrz1 - le0z_nat - sgz_eq0 - unitrXz - eqrXz2 - ler0z - scalezrE - distnS - nmulrz_rle0 - addzC - mulrzz - ltr0z - polyCMz - mulNrz - unitzPl - mulrzAl - mulpz - intr_eq0 - raddf_int_scalable - abszE - natsum_of_intK - PoszM - mulzC - normzN - sgz_gt0 - mulz_sign_abs - absz_gt0 - mulrz_ge0 - exp1rz - sgrEz - mulrzBr - sgz_eq - sgz1 - prodMz - nmulrn - nmulrz_llt0 - sgz_cp0 - mulz_addl - gez0_norm - distnC - exprN1 - sumMz - intrM - mulNz - mulrz_ge0_le0 - distnDl - pmulrz_lle0 - normrMz - ler_wpMz2r - mulz_sg - expr0z - rpred_int - pmulrz_rgt0 - sgz_ge0 - intz - absz_sign - subz_ge0 - commrXz_wmulls - int_rect - leNz_nat - intP - exprzDr - exprz_inv - scalerMzl - mulrNz - intEsg - mulrzBl - intrB - mulz_sg_eq1 - ler_wniXz2l - ltr_nMz2r - sgzN - abszEsign - subzSS - lez0_nat - ZnatP - ltz0_abs - sgz_int - ler_nMz2l - ltr_niXz2l - ler_pXz2r - mulrzDl_tmp - mulzN - lezD1 - mul1z - expfz_n0addr - mulrz_sumr - mulrzA - sgzM - expfzDr - nmulrz_rge0 - idomain_axiomz - gtr0_sgz - sgrz - add1Pz - add0z - subzn - ler_wnMz2r - predn_int - mulVz - ler_wneXz2l - ltrz0 - pmulrz_rge0 - mulrIz - pmulrz_lge0 - int_rect - ler_wpeXz2l - dist0n - mulrzl - intrD - expr1z - sgz_id - exprzAC - exprz_gt0 - predn_int - intrN - ler_nXz2r - NegzE - expfV - nmulrz_lle0 - ltz_def - gez0_abs - mulrzAr - addzA - exprzD_nat - mulz_sg_eqN1 - absz_sg - sgz_lt0 - normr_sg - ler_piXz2l - exprz_ge0 - pmulrn - exprz_exp - sgz0 - addPz - absz_nat - hornerMz - intEsign - rmorph_int - absz_id - lezN_nat - gtz0_abs - path: mathcomp/algebra/vector.v theorems: - vsof_sub - limg_line - capv_idPl - addvA - lfun_vect_iso - vsproj_key - cat_basis - limg_dim_eq - b2mxK - memv_span1 - vsprojK - vs2mxI - span_lfunP - dimv_add_leqif - gen_vs2mx - lker0_compfK - lfun_img_key - eq_limg_ker0 - add_lfunE - span_subvP - memv_cap - funmx_linear - memv0 - vsvalK - comp_lfun0r - lpreimK - subv_anti - memvB - freeP - span_def - free_cons - lfun_key - lker0_compVKf - subvsP - mem0v - congr_subvs - mxof_comp - SubvsE - rVof_sub - diffvSl - capv_compl - coord_free - dimv_sum_leqif - memvN - lpreimS - mxof1 - memv_line - comp_lfunDr - memvD - directv_addP - v2r_inj - fixedSpace_id - subv_sumP - comp_lfunNr - nil_free - limg_cap - dim_vline - sumv_pi_sum - fixedSpace_limg - limgE - coord_sum_free - basis_free - ffun_vect_iso - span_seq1 - capfv - subvP - vecof_delta - addv_pi2_proj - msofK - basis_not0 - span_key - subv0 - lfun_scale1 - hommxE - addv0 - directv_sumE - basisEdim - subvv - coord_vbasis - vlineP - lker_proj - vecof_eq0 - lfun_addA - addvS - capv_idPr - memvf - rVof_linear - vecof_linear - subvs_vect_iso - lker0_lfunK - addv_pi1_pi2 - v2rK - capvv - dimv_cap_compl - coord_is_scalar - span_nil - directv_addE - mul_b2mx - memv_ker - lim1g - leigenspaceE - limgD - memv_suml - lfun_is_linear - vsof_eq0 - mxof_eq0 - projv_id - nil_basis - capv_diff - subvPn - sumv_pi_uniq_sum - basisEfree - dimv_leqif_eq - limg_span - comp_lfun1r - comp_lfunZl - scale_lfunE - hommx_linear - rVof_mul - vsproj_is_linear - span_b2mx - rVof_app - bigcat_basis - addvv - catr_free - lker0_compfVK - perm_free - dimvf - subvf - msof_sub - fixedSpacesP - vs2mxK - mx2vs_subproof - addv_diff_cap - subv_bigcapP - bigcat_free - addv_complf - vecof_mul - addvC - vs2mxF - dimvS - vs2mxD - addv_pi2_id - msof0 - eqEdim - vs2mx0 - free_b2mx - hommx_eq0 - dimv_eq0 - eq_in_limg - vspaceP - add0v - sum_lfunE - lkerE - comp_lfunZr - filter_free - directvP - hommxK - directvEgeq - subvs_inj - mxofK - span_cons - subv_trans - limg_ker_compl - limg_ker0 - vs2mx_sum_expr_subproof - comp_lfunA - vsolve_eqP - vspace_modl - bigcapv_inf - memv_sumP - lker0_limgf - matrix_vect_iso - directv_trivial - sub_vsof - lpreim0 - directv_add_unique - projv_proj - limg_basis_of - daddv_pi_id - vbasis_mem - memv_projC - comp_lfun1l - free_uniq - lker_ker - opp_lfunE - inv_lfun_def - binary_addv_subproof - lpreim_cap_limg - limg_sum - subv_cap - vecofK - subv_add - size_basis - mxof_linear - eqEsubv - nary_addv_subproof - memv_sumr - lim0g - lfun_scaleDr - sub0v - sumfv - memv_pi2 - rVof_eq0 - lfun1_neq0 - lker0_lfunVK - addv_idPl - directv_sum_unique - addv_diff - pair_vect_iso - limgS - capvf - coord_vecof - capvSr - limg_lfunVK - memv_sum_pi - id_lfunE - lfun_scaleA - basis_mem - coord_rVof - memv_span - r2v_inj - vpick0 - rVofK - memv_proj - dimv_leqif_sup - memv_addP - addvSr - sumv_pi_nat_sum - linear_of_free - r2vK - limg_ker_dim - daddv_pi_proj - free_not0 - memv_submod_closed - lfunE - lker0_compKf - vbasisP - lfun_add0 - capvC - hom_vecof - directv_sum_independent - sub_msof - dimv_disjoint_sum - vsof0 - mem_vecof - memvZ - cap0v - r2v_subproof - limg_proj - free_directv - directv_sumP - capv0 - addv_pi1_proj - memv_preim - subset_limgP - dimv_compl - comp_lfunE - rVofE - memv_img - addvSl - coord_basis - lker0_compVf - fullv_lfunP - regular_vect_iso - coord0 - dimv_sum_cap - directvE - memv_pi - addvf - limg0 - fixedSpaceP - dim_matrix - memvE - lfun_scaleDl - lfunPn - lin_b2mx - v2r_subproof - addv_idPr - capvS - memv_pi1 - limg_bigcap - eq_span - hommx_mul - vsval_is_linear - coord_span - row_b2mx - catl_free - vsofK - memv_imgP - lker0P - limg_comp - eqlfun_inP - msof_eq0 - eqlfunP - perm_basis - dimv_leq_sum - freeE - mx2vsK - diffv_eq0 - mem_r2v - lker0_img_cap - freeNE - memv_pick - span_cat - daddv_pi_add - path: mathcomp/ssreflect/path.v theorems: - suffix_sorted - e'_e - eq_in_path - undup_sorted - cycle_path - homo_sorted_in - homo_path_in - all_sort - mem2_map - sort_stable_in - cycle_from_next - order_path_min_in - filter_sort - nextE - loopingP - mono_cycle_in - sub_in_cycle - merge_uniq - path_relI - take_sorted - map_merge - perm_sort_inP - pop_stable - size_traject - sorted_leq_nth - cat_path - merge_stable_sorted - rcons_path - e_e' - take_traject - sorted_mask_in - inj_cycle - cycle_from_prev - right_arc - sort_pairwise_stable - mem2_last - sub_in_path - perm_sortP - subseq_sorted - count_sort - sorted_filter - homo_path - sub_in_sorted - mem_next - mem2_seq1 - subseq_sort_in - homo_sort_map_in - eq_in_cycle - nth_traject - rev_path - mem_fcycle - leElex - path_filter_in - next_prev - mem_sort - sorted_ltn_nth_in - mem2_cat - mono_sorted - next_nth - merge_path - all_merge - path_mask_in - homo_sorted - prefix_sorted - ucycle_uniq - path_sorted - looping_uniq - sort_map - rev_sorted - mem_prev - mono_path - path_le - irr_sorted_eq - homo_cycle_in - homo_cycle - eq_cycle - leT_tr' - infix_sorted - prev_nth - cycle_map - pathP - sorted_mask_sort_in - prev_rot - sort_uniq - eq_in_sorted - perm_sort - perm_iota_sort - sorted_uniq - sorted_sort_in - mono_sorted_in - ucycle_cycle - pairwise_sorted - subseq_sort - sortedP - map_sort - merge_sorted - mem2r - path_pairwise - size_sort - cycle_catC - sub_path - path_filter - undup_path - pairwise_sort - rot_cycle - splitP - cat_sorted2 - prev_rev - prev_next - merge_map - fpath_traject - traject_iteri - eq_path - sort_sorted - count_merge - mono_cycle - sorted_ltn_index - mem2_splice1 - size_merge - sort_sorted_in - path_sortedE - prev_map - path_map - subseq_path_in - sorted_filter_in - sorted_uniq_in - path_sorted_inE - size_merge_sort_push - sorted_relI - sorted_merge - fpathE - sorted_leq_nth_in - eq_fcycle - sorted_subseq_sort - mask_sort_in - merge_stable_path - cycle_all2rel - irr_sorted_eq_in - next_cycle - subseq_sorted_in - mem2_sort - mem2lf - mono_path_in - sorted_pairwise_in - eq_count_merge - next_rev - sorted_leq_index_in - next_rotr - mem2_cons - mem2l_cat - last_traject - prefix_path - mask_sort - trajectSr - trajectP - path_pairwise_in - fpathP - sub_cycle - left_arc - sorted_leq_index - mergeA - path_mask - splitPl - sort_iota_stable - sorted_ltn_nth - cycle_all2rel_in - next_rot - mem2l - sorted_eq - eq_sorted - sortE - iota_ltn_sorted - mem2_splice - sub_sorted - rot_ucycle - sorted_pairwise - cycle_next - order_path_min - next_map - sorted_mask_sort - ltn_sorted_uniq_leq - filter_sort_in - sorted_mask - push_stable - rev_cycle - trajectD - mem2_sort_in - prev_cycle - path: mathcomp/field/finfield.v theorems: - finDomain_mulrC - card_finField_unit - order_primeChar - card_finCharP - finField_galois_generator - primeChar_scaleDl - natrFp - Fermat's_little_theorem - finField_galois - primeChar_dimf - lregR - ffT_splitting_subproof - galLgen - expf_card - finRing_gt1 - card_primeChar - card_vspacef - card_vspace - primeChar_scaleDr - finField_is_abelem - primeChar_pgroup - pr_p - FinSplittingFieldFor - card_vspace1 - finField_genPoly - primeChar_vectAxiom - PrimePowerField - galL - primeChar_scaleAr - primeChar_scaleA - finDomain_field - finCharP - path: mathcomp/solvable/gseries.v theorems: - quotient_subnormal - subnormalP - quotient_simple - normal_subnormal - subnormalEsupport - setI_subnormal - cosetpre_maximal - isog_simple - invariant_subnormal - maximal_exists - maxnormal_minnormal - maximalJ - mulg_normal_maximal - subnormal_refl - subnormal_trans - central_central_factor - cosetpre_maximal_eq - injm_maxnormal - maxnormal_normal - simple_maxnormal - chief_series_exists - maxnormal_sub - quotient_maximal_eq - injm_minnormal - subnormal_sub - path_setIgr - morphim_subnormal - injm_maximal_eq - maximal_eqP - subnormalEl - chief_factor_minnormal - maxnormalM - central_factor_central - injm_maximal - ex_maxnormal_ntrivg - maxnormal_proper - acts_irrQ - path: mathcomp/algebra/zmodp.v theorems: - Fp_nat_mod - add_1_Zp - char_Fp_0 - Zp_addC - unitZpE - Fp_fieldMixin - add_N1_Zp - Zp_nat - Zp1_expgz - rshift1 - card_Fp - card_Zp - Zp_nontrivial - Zp_mul1z - val_Fp_nat - valZpK - split1 - order_Zp1 - Zp_inv_out - Zp_addA - Zp_intro_unit - natr_Zp - Zp_cycle - char_Zp - Zp_mulA - Zp_mul_addl - Zp_mul_addr - modZp - unitFpE - Zp_mulz1 - card_units_Zp - unit_Zp_expg - Zp_expg - units_Zp_abelian - Zp_add0z - Zp_mulgC - add_Zp_1 - Zp_mulrn - Zp_mulC - lshift0 - Zp_nat_mod - val_Zp_nat - char_Fp - Zp_cast - Zp_mulzV - mem_Zp - ord1 - Zp_addNz - natr_negZp - path: mathcomp/character/integral_char.v theorems: - mxZn_inj - Burnside_p_a_q_b - group_num_field_exists - faithful_degree_p_part - gring_class_sum_central - gring_classM_coef_sum_eq - nonlinear_irr_vanish - gring_mode_class_sum_eq - Aint_char - mx_irr_gring_op_center_scalar - index_support_dvd_degree - dvd_irr1_index_center - Aint_irr - gring_classM_expansion - Aint_gring_mode_class_sum - coprime_degree_support_cfcenter - sum_norm2_char_generators - set_gring_classM_coef - cfRepr_gring_center - gring_irr_modeM - Aint_class_div_irr1 - dvd_irr1_cardG - primes_class_simple_gt1 - path: mathcomp/ssreflect/prime.v theorems: - mem_primes - logn_gt0 - primeNsig - pfactorKpdiv - sub_in_partn - up_log_gt0 - partnC - prime_nt_dvdP - primePns - pdiv_gt0 - partn_lcm - dvdn_partP - ltn_log0 - primeP - up_logMp - ltn_logl - Euclid_dvdM - pfactor_gt0 - max_pdiv_dvd - partn1 - elogn2P - pdiv_leq - trunc_log_eq - Euclid_dvdX - p_natP - up_log_min - totient_pfactor - partn0 - p'natEpi - Euclid_dvd1 - trunc_log1 - pi_pnat - partn_biggcd - pi_pdiv - logn_count_dvd - primes_part - p_part_eq1 - logn_lcm - pi_p'nat - pnat_div - eq_partn_from_log - up_log_eq0 - up_log_bounds - odd_prime_gt2 - part_p'nat - pnat_pi - sub_pnat_coprime - pi_of_dvd - pnatX - sorted_divisors_ltn - ifnzP - sorted_primes - p'natE - prime_oddPn - p'nat_coprime - prime_decompE - logn_prime - primes_prime - pnatI - filter_pi_of - up_log_trunc_log - prime_gt0 - coprime_has_primes - pfactorK - eq_in_pnat - divisors_uniq - widen_partn - mem_prime_decomp - logn_coprime - part_pnat_id - part_gt0 - eq_partn - trunc_expnK - trunc_log1n - all_prime_primes - primesM - trunc_logMp - eq_negn - pi'_p'nat - pi_max_pdiv - coprime_pi' - pdiv_dvd - divisors_correct - trunc_lognn - dvdn_pfactor - totientE - pi_of_exp - leq_trunc_log - up_expnK - up_log0 - prime_coprime - up_log2S - logn0 - trunc_log_gt0 - logn_part - dvdn_sum - p_part_gt1 - partnM - coprime_partC - pnat_1 - pfactor_dvdn - logn_gcd - primePn - modn_partP - max_pdiv_prime - pnatPpi - logn1 - max_pdiv_gt0 - pnat_dvd - p_part - up_lognn - prime_above - max_pdiv_max - negnK - lognE - trunc_log_eq0 - prime_gt1 - pnatNK - partn_eq1 - pi_ofM - trunc_log0n - partnNK - pnatE - prime_decomp_correct - up_log_gtn - trunc_log2_double - partn_gcd - up_log_eq - trunc_log0 - trunc_log2S - dvdn_part - edivn2P - divisor1 - odd_2'nat - pnat_coprime - pdivP - primes_eq0 - primes_uniq - trunc_log_bounds - even_prime - eqn_from_log - leq_up_log - eq_pnat - pnatP - partn_dvd - pi_of_part - lognX - pnat_id - eq_piP - pdiv_prime - divisors_id - pfactor_coprime - partnT - ltn_pdiv2_prime - up_log1 - pi_of_prime - sub_in_pnat - totient_coprime - up_logP - eq_primes - sorted_divisors - partn_pi - partnI - partn_biglcm - totient_gt1 - dvdn_leq_log - trunc_log_max - prod_prime_decomp - logn_Gauss - totient_gt0 - pdiv_min_dvd - pfactor_dvdnn - part_pnat - dvdn_divisors - path: mathcomp/character/mxabelem.v theorems: - rVabelemN - GLmx_faithful - mx_group_homocyclic - rowg_mxS - faithful_repr_extraspecial - abelem_mx_faithful - GL_mx_repr - abelem_rV_S - abelem_rV_X - rstabs_abelem - pcore_faithful_mx_irr - comp_reprGLm - rowg_mx1 - im_abelem_rV - rfix_pgroup_char - scale_actE - abelian_type_mx_group - card_rowg - rVabelem_minj - astab_rowg_repr - rVabelemD - mxsimple_abelemP - mxrank_rowg - sub_rVabelem - abelem_rV_V - exponent_mx_group - mx_repr_is_groupAction - abelem_rV_injm - rowg_mx_eq0 - pcore_sub_rstab_mxsimple - eq_rowg - card_rVabelem - abelem_mx_irrP - val_reprGLm - rowgS - rker_abelem - rVabelem_injm - im_rVabelem - rfix_abelem - rVabelem0 - mxmodule_abelem_subg - rowg0 - rowg_stable - afix_repr - astab_setT_repr - scale_is_groupAction - abelem_rV_isom - mxsimple_abelem_subg - p_pr - gacent_repr - mx_repr_is_action - abelem_rV_K - dim_abelemE - extraspecial_repr_structure - rowgI - eq_abelem_subg_repr - rVabelemK - mx_Fp_stable - abelem_rV_inj - dprod_rowg - astab1_scale_act - mx_Fp_abelem - stable_rowg_mxK - card_abelem_rV - rowgK - abelem_rV_M - mx_repr_actE - rowg_mxSK - rVabelem_inj - abelem_rV_1 - abelem_rowgJ - reprGLmM - sub_abelem_rV_im - bigdprod_rowg - mxmodule_abelemG - abelem_mx_linear_proof - rVabelem_mK - rVabelemS - sub_rVabelem_im - cprod_rowg - rowgD - mem_rowg - rsim_abelem_subg - mxmodule_abelem - mxsimple_abelemGP - trivg_rowg - abelem_rV_J - sub_im_abelem_rV - isog_abelem_rV - modIp' - abelem_mx_repr - ker_reprGLm - abelem_rV_mK - bigcprod_rowg - pcore_sub_rker_mx_irr - rstab_abelem - acts_rowg - mem_rVabelem - rstabs_abelemG - rank_mx_group - rVabelemJ - mem_im_abelem_rV - rowg_mxK - scale_is_action - rV_abelem_sJ - rVabelemZ - path: mathcomp/character/vcharacter.v theorems: - zchar_split - zchar_onS - dirr_constt_oppr - dirr_dchi - dirr_norm1 - cfnorm_map_orthonormal - irr_constt_to_dirr - Aint_vchar - cfdot_sum_orthonormal - Z_S - ndirr_inj - Zisometry_of_cfnorm - dirr_opp - cfdot_dirr_eq1 - mul_vchar - char_vchar - isometry_in_zchar - vchar_mulr_closed - zchar_trans - zchar_small_norm - notS0 - cfdot_add_dirr_eq1 - cfdot_dirr - ndirrK - dchi_ndirrE - cfnorm_orthonormal - sub_aut_zchar - dirr_dIirrE - cnorm_dconstt - dirr_constt_oppl - zcharW - dIrrP - cfInd_vchar - Cnat_cfnorm_vchar - dirrP - cfdot_sum_orthogonal - zchar_on - cfproj_sum_orthonormal - zcharD1 - Zchar_zmod - cfnorm_sum_orthogonal - dchi_vchar - cfnorm_sum_orthonormal - zchar_tuple_expansion - zchar_nth_expansion - map_pairwise_orthogonal - cfdot_dchi - dirr_constt_oppI - zchar_filter - zchar_span - orthonormal_span - Cnat_dirr - dirr_small_norm - dirrE - cfAut_vchar - cfRes_vchar - scale_zchar - vchar_norm1P - Zisometry_inj - vchar_aut - cfdot_sum_dchi - conjC_vcharAut - zchar_subseq - cfproj_sum_orthogonal - dirr_aut - support_zchar - dirr_consttE - zchar_onG - dirr_sign - Zisometry_of_iso - dirr_dIirrPE - cfdot_vchar_r - mem_zchar_on - cfun0_zchar - irr_dirr - sub_conjC_vchar - Frobenius_kernel_exists - dchi1 - map_orthonormal - vchar_orthonormalP - dirr_oppr_closed - ndirr_diff - irr_vchar - cfun_sum_dconstt - cfRes_vchar_on - cfAut_zchar - zchar_trans_on - cfdot_todirrE - Cint_cfdot_vchar_irr - of_irrK - to_dirrK - cfdot_aut_vchar - Cint_cfdot_vchar - nS1 - Cint_vchar1 - zchar_sub_irr - zchar_expansion - cfnorm_orthogonal - irr_vchar_on - path: mathcomp/solvable/burnside_app.v theorems: - R50_inj - F_Sv - F_r034 - Fid3 - is_isoP - r41_inv - F_r32 - dir_s0p - burnside_app_iso_2_4col - card_Fid - F_s6 - r14_inv - act_f_morph - F_r012 - act_g_morph - group_set_iso3 - F_r013 - card_n4 - iso_eq_F0_F1_F2 - R021_inj - rot_eq_c0 - s14 - sd2_inv - iso0_1 - R32_inj - Lcorrect - card_n - burnside_app_rot - prod_t_correct - ecubes_def - r3_inv - S2_inv - F_r021 - rot_is_rot - F_Sh - card_Fid3 - isometries_iso - r2_inv - F_r05 - burnside_app_iso - sd1_inv - act_g_1 - s23_inv - R043_inj - R042_inj - R1_inj - group_set_diso3 - R14_inj - R013_inj - Sh_inj - F_r3 - card_n3s - S5_inv - R2_inj - R024_inj - Sv_inj - card_n2 - group_set_iso - r1_inv - r50_inv - F_s05 - eqperm - S0_inv - S14_inj - sop_inj - R012_inj - group_set_rot - sop_spec - Sd2_inj - burnside_app2 - F_r14 - R031_inj - card_n2_3 - sv_inv - F_r042 - iso3_ndir - seqs1 - F_r41 - rotations_is_rot - group_set_iso2 - F_r23 - F_Sd2 - F_Sd1 - iso_eq_F0_F1 - act_f_1 - F_s1 - F_s2 - F_r2 - F_s5 - card_n3_3 - L_iso - stable - group_set_rotations - F_r024 - dir_iso_iso3 - R23_inj - S4_inv - uniq4_uniq6 - R41_inj - S6_inv - R3_inj - R05_inj - F_r031 - card_n3 - burnside_app_iso_3_3col - F_s4 - eqperm_map - F_r043 - F_s3 - F_r1 - R034_inj - Fid - gen_diso3 - ndir_s0p - is_iso3P - burnside_app_iso3 - card_rot - F_r50 - card_iso2 - diff_id_sh - F_s14 - ord_enum4 - burnside_formula - sop_morph - path: mathcomp/algebra/finalg.v theorems: - unit_is_groupAction - mulrV - unit_actE - zmod_mulgC - val_unitV - zmodXgE - zmodVgE - invr_out - mulVr - unit_mul_proof - unit_mul1u - unit_muluA - decidable - card_finRing_gt1 - card_finField_unit - zmod1gE - val_unit1 - intro_unit - val_unitX - val_unitM - unit_mulVu - zmodMgE - path: mathcomp/ssreflect/binomial.v theorems: - bin2_sum - binS - fermat_little - card_partial_ord_partitions - ffact_small - cards_draws - bin_gt0 - bin0 - bin_sub - binSn - ffactnS - bin2 - bin_ffact - bin1 - prime_modn_expSn - leq_bin2l - bin_small - mul_bin_left - prime_dvd_bin - ffact_factd - binn - modn_summ - predn_exp - bin2odd - Wilson - dvdn_pred_predX - card_uniq_tuples - mul_bin_down - subn_exp - ffactE - ffact_fact - bin_ffactd - card_ltn_sorted_tuples - expnDn - logn_fact - card_sorted_tuples - card_ord_partitions - ffactn1 - ffact0n - ffactnn - Vandermonde - binE - bin0n - card_inj_ffuns - ffact_prod - ffactn0 - bin_fact - card_inj_ffuns_on - card_draws - fact_prod - mul_bin_diag - path: mathcomp/ssreflect/div.v theorems: - dvdn_lcm - divnMA - lcmnAC - gcdnMDl - lcmn_gt0 - divn1 - divn0 - edivnB - modn1 - divnK - chinese_modr - divnn - modnMDl - dvdn1 - modnDmr - coprime_dvdl - gcdn_gt0 - modn0 - dvdnn - gcdnMr - dvdnP - modnDml - divn2 - coprimen1 - leq_div2r - divnDl - modn_small - dvd1n - gcdnC - divnAC - dvdn_add_eq - dvdn_addr - edivn_pred - leq_mod - gcdn_idPl - modnD - egcd0n - edivn_eq - gcdnDl - divn_gt0 - Bezoutl - gcdnAC - ltn_ceil - Gauss_dvdl - modn_pred - dvdn_mull - lcmnMl - dvdn_exp2r - dvdn_gcd - leq_div - coprimeXl - gcdnDr - gcdn_modr - Gauss_dvd - gcdnA - dvdn_exp - modnMl - dvdn_gcdr - gcdn0 - divn_eq - chinese_modl - ltn_divRL - divnDMl - coprimeXr - modnDl - gcdnCA - divnB - dvdn_addl - coprime_pexpr - coprimen2 - mulKn - modn2 - dvdn_pexp2r - gcdnACA - dvdn_gcdl - gcd1n - coprime_modr - lcmn_idPr - Gauss_gcdl - ltn_Pdiv - modnS - lcmn_idPl - leq_divDl - dvdn_add - gcdn_idPr - leqDmod - dvd0n - expnB - dvdn_pmul2l - divnMBl - lcmnCA - dvdn_Pexp2l - mod0n - dvdn_subl - geq_divBl - eqn_modDr - muln_lcm_gcd - coprimeP - coprime_dvdr - modn_mod - divn_modl - coprimenS - edivnS - modn_def - dvdn_mul - dvdn_fact - modnMml - coprimeMl - gcdn_def - dvdn_odd - divnMr - coprimeMr - expn_max - muln_gcdr - coprimeSn - divn_pred - dvdn_double_leq - muln_divCA - lcmnA - modn_coprime - muln_modr - dvdn_exp2l - lcmnACA - coprime1n - gcdnE - modnMr - edivn_def - divn_small - dvdn_pmul2r - lcmn1 - divnA - leq_divLR - dvdn_div - dvdn_divRL - muln_divA - edivnD - egcdnP - eqn_mul - coprimenP - modnDr - dvdn_gt0 - modnMm - gcd0n - gcdn_modl - leq_div2l - coprime_modl - coprime2n - odd_mod - divnDr - modnn - dvdn_double_ltn - lcmnMr - divnMl - divnD - lcm0n - muln_divCA_gcd - ltn_pmod - muln_lcmr - Gauss_gcdr - divn_mulAC - muln_gcdl - muln_modl - Bezoutr - divnBMl - lcmn0 - gtnNdvd - expn_min - dvdn_leq - gcdnMl - eqn_dvd - lcm1n - chinese_mod - dvdn2 - chinese_remainder - modnDm - dvdn_trans - modn_divl - ltn_divLR - div0n - muln_lcml - coprimePn - coprime_egcdn - ltn_mod - dvdn_divLR - Gauss_dvdr - dvdn_mulr - divnBl - mulnK - gcdnn - divnS - gcdn1 - divnMDl - path: mathcomp/algebra/interval.v theorems: - mem0_itvoo_xNx - mid_in_itvcc - BInfty_leE - le_bound_refl - itv_bound_can - BRight_BLeft_leE - itv_splitI - oppr_itvcc - subset_itv - itv_meetA - bound_lex1 - subitvPl - subitvP - BLeft_ltE - BInfty_le_eqE - miditv_ge_right - itv_splitU - BLeft_BRight_ltE - BInfty_BInfty_ltE - itv_meetUl - bound_meetA - subset_itv_oo_cc - itv_le0x - in_segmentDgt0Pr - in_segmentDgt0Pl - miditv_le_left - bound_lexx - subitvPr - bound_joinA - mid_in_itv - itv_ge - itv_dec - BInfty_geE - mem_miditv - subset_itv_co_cc - ge_pinfty - BInfty_gtF - itv_meetKU - itv_total_meet3E - bound_leEmeet - itvxx - in_itv - itvP - oppr_itvoo - bound_meetC - bound_meetKU - leBRight_ltBLeft - lteif_in_itv - subitv_trans - BInfty_ltF - boundr_in_itv - lt_ninfty - ltBSide - subitvE - predC_itv - bound_le0x - boundl_in_itv - gt_pinfty - bound_joinKI - BLeft_BSide_leE - BInfty_ltE - predC_itvr - itv_joinA - ltBRight_leBLeft - bound_ltxx - itv_bound_total - itv_splitU1 - BSide_ltE - lt_in_itv - oppr_itvoc - itv_bound_display - in_itvI - bound_joinC - oppr_itv - BInfty_gtE - itv_splitUeq - mid_in_itvoo - BSide_leE - subitv_anti - itv_boundlr - subset_itv_oo_oc - itvxxP - predC_itvl - subset_itv_oc_cc - lt_bound_def - itv_lex1 - BInfty_ge_eqE - subset_itv_oo_co - le_bound_anti - itv_meetC - interval_can - itv_total_join3E - itv_joinC - BRight_leE - BRight_BSide_ltE - mem0_itvcc_xNx - itv_xx - subitv_refl - interval_display - path: mathcomp/solvable/center.v theorems: - center_class_formula - xcprodmI - xcprodmEl - cprod_by_uniq - subcentP - ker_cprod_by_central - subcent1_cycle_sub - subcent1_id - injm_cpairg1 - xcprodm_cent - im_cpair_cprod - ncprod1 - xcprodP - center_bigdprod - injm_cpair1g - sub_center_normal - injm_xcprodm - xcprodmE - cprod_center_id - im_cpair_cent - subcent1C - cpairg1_dom - center_bigcprod - center_cprod - ncprodS - cpair1g_dom - xcprod_subproof - subcent_norm - injgz - subcent_sub - cpair1g_center - isog_xcprod - center_normal - Aut_cprod_by_full - cpairg1_center - ker_cprod_by_is_group - gzZchar - im_xcprodm - center_char - center_idP - isog_cprod_by - Aut_cprod_full - subcent1_cycle_normal - center_ncprod0 - centerP - cprod_by_key - morphim_center - subcent_normal - center_abelian - center1 - subcent1_cycle_norm - in_cprodM - subcent1_sub - xcprodmEr - cyclic_center_factor_abelian - cpair_center_id - im_cpair - isog_center - eq_cpairZ - gzZ_lone - ncprod0 - injm_center - ker_in_cprod - im_xcprodml - centerC - subcent1P - subcent_char - ncprod_key - cyclic_factor_abelian - Aut_ncprod_full - setI_im_cpair - gzZ - im_xcprodmr - path: mathcomp/solvable/jordanholder.v theorems: - maxainv_norm - qacts_coset - maxainvM - asimpleP - section_reprP - asimpleI - StrongJordanHolderUniqueness - simple_compsP - maxainvS - maxainv_exists - trivg_acomps - asimple_acompsP - qacts_cosetpre - maxainv_ainvar - section_repr_isog - gactsM - compsP - exists_comps - qact_dom_doms - maxainv_sub - asimple_quo_maxainv - acomps_cons - trivg_comps - acts_qact_doms - exists_acomps - comps_cons - path: mathcomp/solvable/commutator.v theorems: - derJ - commXg - quotient_cents2 - sub_der1_abelian - commg_subr - dergS - commgV - normsRr - commXXg - commgMJ - commg_normal - normsRl - commMgR - der_normalS - derg1 - commg_normr - der_abelian - commgAC - Hall_Witt_identity - quotient_der - sub_der1_norm - commg_sub - commG1 - commg_norm - commg_normSr - commg_norml - sub_der1_normal - der1_min - der_sub - commg_normSl - comm1G - commMGr - commVg - charR - der_normal - expMg_Rmul - commgMR - der_cont - morphim_der - der_norm - comm_norm_cent_cent - der_group_set - commMgJ - dergSn - conjg_mulR - commg_subl - commg_subI - three_subgroup - der1_joing_cycles - derG1P - conjg_Rmul - path: mathcomp/ssreflect/finfun.v theorems: - card_pfamily - tnth_fgraph - ffunK - card_ffun - ffunE - eq_dffun - supportP - FinfunK - tuple_of_finfunK - nth_fgraph_ord - tfgraph_inj - ffunP - codom_ffun - fgraphK - tagged_tfgraph - fgraph_codom - familyP - pffun_onP - card_dep_ffun - finfun_of_tupleK - pfamilyP - ffun_onP - card_ffun_on - card_family - card_pffun_on - eq_ffun - codom_tffun - fgraph_ffun0 - tfgraphK - ffun0 - path: mathcomp/ssreflect/ssrfun.v theorems: - eq_omap - inj_omap - omapK - omap_id - path: mathcomp/ssreflect/choice.v theorems: - chooseP - pair_of_tagK - ltn_code - seq_of_optK - nat_pickleK - gtn_decode - codeK - bool_of_unitK - pickle_invK - xchooseP - pickleK_inv - sigW - eq_xchoose - pickle_seqK - sig_eqW - PCanHasChoice - nat_hasChoice - opair_of_sumK - codeK - eq_choose - tag_of_pairK - sig2_eqW - decodeK - pcan_pickleK - xchoose_subproof - path: mathcomp/algebra/polyXY.v theorems: - map_div_annihilantP - swapXYK - swapXY_is_multiplicative - size_poly_XaY - max_size_lead_coefXY - swapXY_comp_poly - horner_polyC - swapXY_poly_XaY - swapXY_map - horner_poly_XaY - max_size_evalC - div_annihilant_in_ideal - lead_coef_poly_XaY - sizeY_mulX - poly_XaY_eq0 - swapXY_key - root_annihilant - max_size_evalX - poly_XmY0 - coef_swapXY - swapXY_map_polyC - swapXY_polyC - horner2_swapXY - swapXY_eq0 - sizeY_eq0 - algebraic_root_polyXY - horner_swapXY - div_annihilant_neq0 - size_poly_XmY - swapXY_Y - swapXY_poly_XmY - map_sub_annihilantP - poly_XmY_eq0 - horner_poly_XmY - sub_annihilant_neq0 - div_annihilantP - sub_annihilantP - swapXY_is_additive - sub_annihilant_in_ideal - path: mathcomp/algebra/ring_quotient.v theorems: - rquot_IdomainAxiom - nonzero1q - idealMr - mulqC - idealr_closed_nontrivial - idealr1 - pi_is_multiplicative - idealrDE - addqC - addNq - idealr_closedB - pi_is_additive - pi_opp - addqA - mul1q - idealrBE - equivE - pi_mul - idealr0 - mulq_addl - add0q - pi_add - path: mathcomp/solvable/hall.v theorems: - strongest_coprime_quotient_cent - coprime_Hall_trans - ext_coprime_quotient_cent - quotient_TI_subcent - coprime_cent_mulG - Hall_exists_subJ - SchurZassenhaus_trans_actsol - Hall_superset - sol_coprime_Sylow_subset - external_action_im_coprime - ext_norm_conj_cent - Hall_subJ - SchurZassenhaus_split - Hall_exists - coprime_norm_cent - ext_coprime_Hall_exists - coprime_Hall_subset - Hall_Frattini_arg - sol_coprime_Sylow_trans - norm_conj_cent - coprime_norm_quotient_cent - sol_coprime_Sylow_exists - SchurZassenhaus_trans_sol - ext_coprime_Hall_subset - Hall_trans - ext_coprime_Hall_trans - coprime_Hall_exists - path: mathcomp/ssreflect/ssrAC.v theorems: - serial_Op - set_pos_trecE - cforallP - pos_set_pos - proof - path: mathcomp/field/cyclotomic.v theorems: - prod_cyclotomic - size_cyclotomic - Cintr_Cyclotomic - root_cyclotomic - Cyclotomic_monic - C_prim_root_exists - minCpoly_cyclotomic - prod_Cyclotomic - cyclotomic_monic - separable_Xn_sub_1 - size_Cyclotomic - Cyclotomic0 - path: mathcomp/solvable/primitive_action.v theorems: - n_act0 - stab_ntransitive - dtuple_on_add_D1 - ntransitive_weak - ntransitive1 - n_act_add - ntransitive_primitive - trans_prim_astab - ntransitive0 - n_act_dtuple - dtuple_on_add - stab_ntransitiveI - prim_trans_norm - dtuple_on_subset - dtuple_onP - card_uniq_tuple - path: mathcomp/ssreflect/ssrbool.v theorems: - if_add - classic_ex - classic_sigW - if_or - if_implybC - if_and - relpre_trans - homo_mono1 - path: mathcomp/field/algebraics_fundamentals.v theorems: - rat_algebraic_archimedean - minPoly_decidable_closure - rat_algebraic_decidable - Fundamental_Theorem_of_Algebraics - alg_integral