Toi uu hoa
(
1. Lựa chọn thứ tự tên bảng hiệu suất nhất

ORACLE dựa vào trật tự từ phải sang trái để xử lý tên bảng trong mệnh đề FROM. Vì thế trong mệnh đề FROM bảng đứng sau cùng sẽ được xử lý trước. Trong mệnh đề FROM bao hàm có nhiều bảng, bạn phải chọn những bảng nào có số record ít nhất để làm bảng cơ sở. Khi ORACLE xử lý nhiều bảng, sẽ vận dụng phương thức sort và combine để link các bảng. Trước tiên Oracle sẽ quét bảng 1 (bảng sau cùng trong mệnh đề FROM) và tiến hành sắp xếp có thứ tự, sau đó quét bảng 2 (bảng đứng thứ hai sau cùng trong mệnh đề FROM), sau cùng lấy tất cả các dòng tìm kiếm từ trong bảng 2 cùng với những dòng phù hợp trong bảng 1 tíên hành combine.
EMP: 102090 records, DEPT 250 RECORDS

Ex: hieu suat cao

SELECT *
 FROM EMP, DEPT

Hieu suat thap
 SELECT *

 FROM DEPT,EMP

 Nếu có 3 bảng trở lên liên kết với nhau, như thế cần chọn bảng intersection table làm bảng cơ sở để liên kết các bảng khác
Vd: EMP, DEPT, LOCATION
EMP: ket voi DEPT

EMP : ket voi LOCATION

SELECT *

FROM DEPT,LOCATION, EMP

WHEREMP.DEPTNO=DEPT.DEPTNO

 AND EMP.LOC=LOCATION.LOC

2. Thứ tự link trong mệnh đề WHERE
ORACLE áp dụng tuần tự từ dưới lên để phân tích mệnh đề WHERE, dựa vào nguyên lý này,link (liên kết) giữa các bảng phải viết trước điều kiện WHERE khác , chúng có thể lọc mất đi điều kiện ghi chép số lượng lớn phải viết ở cuối mệnh đề WHERE.

Ex: HIEU SUAT THAP
 SELECT *
FROM EMP E
WHERE SAL > 50000
AND JOB = ‘MANAGER’
AND 5 < (SELECT COUNT(*) FROM EMP
 WHERE MGR=E.EMPNO);
HIEU SUAT CAO:

SELECT *
FROM EMP E
WHERE 5 < (SELECT COUNT(*) FROM EMP

WHERE MGR=E.EMPNO)
AND SAL > 50000
AND JOB = ‘MANAGER’;
3. Giảm số lần truy xuất cơ sở dữ liệu
 Khi thực hiện mỗi câu lệnh SQL, ORACLE phải thực hiện rất nhiều việc: phân tích câu SQL, ước tính tỉ suất sử dụng có hiệu quả của index, bind variables, đọc các cột dữ liệu,…Do đó có thể thấy, giảm số lần truy xuất cơ sở dữ liệu , thì trên thực tế có thể giảm lượng công việc của ORACLE

 Ex: Tim ra thong tin nhan vien co ma so: xxx or xxx (4 cach viet)
Phương pháp 1 (hiệu suất thấp nhất)
 SELECT EMP_NAME , SALARY , GRADE
 FROM EMP

 WHERE EMP_NO = 342;
 SELECT EMP_NAME , SALARY , GRADE
 FROM EMP

 WHERE EMP_NO = 291;
 Phương pháp 2 (hiệu suất thấp kế tiếp)

 DECLARE

 CURSOR C1 (E_NO NUMBER) IS

 SELECT EMP_NAME,SALARY,GRADE
 FROM EMP

 WHERE EMP_NO = E_NO;
 BEGIN

 OPEN C1(342);
 FETCH C1 INTO …,..,.. ;
 …..
 OPEN C1(291);
 FETCH C1 INTO …,..,.. ;
 CLOSE C1;
 END;
 Phương pháp 3 (Hiệu suất cao)
 SELECT A.EMP_NAME , A.SALARY , A.GRADE,
 B.EMP_NAME , B.SALARY , B.GRADE
 FROM EMP A,EMP B
 WHERE A.EMP_NO = 342
 AND B.EMP_NO = 291;
 Phương pháp 4 (Hiệu suất cao)
 SELECT EMP_NAME , SALARY , GRADE
 FROM EMP
 WHERE EMP_NO in (342,291);
5. Sử dụng hàm DECODE để giảm thời gian xử lý
Sử dụng hàm DECODE có thể tránh scan trùng ghi chép giống nhau hoặc trùng những bảng liên tiếp giống nhau.
Ex:

 SELECT COUNT(*),SUM(SAL)
 FROM　EMP
 WHERE DEPT_NO = 0020
 AND ENAME LIKE　‘SMITH%’;

 SELECT COUNT(*),SUM(SAL)
 FROM　EMP
 WHERE DEPT_NO = 0030
 AND ENAME LIKE　‘SMITH%’;
Có thể dùng hàm DECODE kết quả tương đồng đạt được hiệu suất cao.
SELECT COUNT(DECODE(DEPT_NO,0020,’X’,NULL)) D0020_COUNT,
 COUNT(DECODE(DEPT_NO,0030,’X’,NULL)) D0030_COUNT,
 SUM(DECODE(DEPT_NO,0020,SAL,NULL)) D0020_SAL,
 SUM(DECODE(DEPT_NO,0030,SAL,NULL)) D0030_SAL
FROM EMP WHERE ENAME LIKE ‘SMITH%’;
 Luu y: hàm DECODE cũng có thể vận dụng trong mệnh đề GROUP BY và ORDER BY.

6. Xóa bỏ ghi chép trùng

 Phương pháp xoá bỏ ghi chép trùng có hiệu suất cao nhất (vì sử dụng ROWID)
SELECT * FROM EMP E
WHERE E.ROWID > (SELECT MIN(X.ROWID)

 FROM EMP X
 WHERE X.EMP_NO = E.EMP_NO);

DELETE FROM EMP E
WHERE E.ROWID > (SELECT MIN(X.ROWID)

 FROM EMP X
 WHERE X.EMP_NO = E.EMP_NO);
7. Tim dong thu k trong m record.
 SELECT *

 FROM (SELECT *
 FROM dbtest.EMP
 WHERE ROWNUM<=k ORDER BY EMPNO desc) A

 WHERE ROWNUM=1

8. Dùng TRUNCATE thay thế DELETE

Khi xoá ghi chép trong bảng, trường hợp bình thường, rollback segments dùng để lưu những thông tin có thể được khôi phục. Nếu bạn không có COMMIT, ORACLE sẽ lấy dữ liệu khôi phục trước trạng thái xoá (nói chuẩn xác là khôi phục đến trước trường hợp thực hiện câu lệnh xoá)

Khi vận dụng TRUNCATE, rollback segments không được lưu bất kỳ thông tin nào có thể được khôi phục. Sau khi vận hành câu lệnh, dữ liệu không thể được khôi phục. Vì thế nguồn tài nguyên rất ít được điều phối sử dụng, thời gian thực hiện cũng sẽ được rút ngắn.

 Ex: DELETE FROM EMP; (DML): XOA 1000 RECORDS. Neu chua commit thi co the dung
Lenh rollback de khoi phuc lai.

CREATE TABLE EMP1 AS SELECT * FROM EMP WHERE TUY DK

TRUNCATE EMP;

RENAME EMP1 TO EMP;

TRUNCATE TABLE EMP; (DDL): xoa luon trong data dictionary.

9. Dùng mệnh đề WHERE thay thế mệnh đề HAVING

 Tránh sử dụng mệnh đề HAVING, HAVING chỉ sau khi tìm kiếm được các ghi chép mớI tập trung kết quả tiên hành lọc. Xử lý này cần phảI sort, tính tổng. Nếu có thể thông qua mệnh đề WHERE để giớI hạn số mục ghi chép, như thế có thể giảm được khoản tiền trả phần này.

 Ex:
 Hiệu suất thấp:
 SELECT REGION,AVG(LOG_SIZE)
 FROM LOCATION
 GROUP BY REGION
 HAVING REGION REGION != ‘SYDNEY’
 AND REGION != ‘PERTH’
 Hiệu suất cao:
 SELECT REGION,AVG(LOG_SIZE)
 FROM LOCATION
 WHERE REGION REGION != ‘SYDNEY’
 AND REGION != ‘PERTH’
 GROUP BY REGION
10. Giảm tra cứu đối với bảng

 Trong câu SQL có tra cứu con, phải đặc biệt chú ý giảm tra cứu đối với bảng.

Ví dụ:

 Hiệu suất thấp
 SELECT TAB_NAME
 FROM TABLES
 WHERE TAB_NAME = (SELECT TAB_NAME

 FROM TAB_COLUMNS
 WHERE VERSION = 604)
 AND　DB_VER= (SELECT DB_VER

 FROM TAB_COLUMNS
 WHERE VERSION = 604)
 Hiệu suất CAO
 SELECT TAB_NAME
 FROM TABLES
 WHERE TAB_NAME,DB_VER = (SELECT TAB_NAME ,DB_VER

 FROM TAB_COLUMNS
 WHERE VERSION = 604
)
 Update nhiều Column
 UPDATE EMP
 SET EMP_CAT = (SELECT MAX(CATEGORY) FROM EMP_CATEGORIES),
 SAL_RANGE = (SELECT MAX(SAL_RANGE) FROM EMP_CATEGORIES)
 WHERE EMP_DEPT = 0020;
 UPDATE EMP
 SET EMP_CAT,SAL_RANGE = (SELECT MAX(CATEGORY),

MAX(SAL_RANGE)
FROM EMP_CATEGORIES),
 WHERE EMP_DEPT = 0020;
11. Tránh sử dụng tính toán trên phần index.
 Trong mệnh đề WHERE, nếu liệt kê index là một phần của hàm số. Tính ưu hoá không sử dụng index mà sử dụng scan toàn bảng.

 Ví dụ:
Hiệu suất thấp:
SELECT *

FROM EMP
WHERE SAL * 12 > 25000;
SELECT *
FROM XESYS.EMP
WHERE SUBSTR(EMP_VNAME,1,6)=‘NGUYEN’
Hieu suat cao

SELECT *…
FROM EMP
WHERE SAL > 25000/12;
SELECT *
FROM XESYS.EMP

 WHERE EMP_VNAME LIKE 'NGUYEN%‘
11. Rebuilt table trong truong hop du lieu trong table qua nhieu, extent bi phan manh.

 Sắp xếp lại các extent để

· giảm kích thước các table trong CSDL.
· Tăng thời gian truy cập CSDL

· Tăng tốc độ backup do kích thước file backup sẽ được giảm xuống.

Xem kích thước từng bảng trong hệ thống.

Vd: sqlplus scott/tiger

Exec:

SELECT /*+ choose */

 segment_name table_name,

 ROUND (SUM (bytes) / 1024 / 1024, 2) mb,

 SUM (DECODE (extent_id, 0, bytes, 0)) initial_ex,

 SUM (DECODE (extent_id, 1, bytes, 0)) next_ex,

 MAX (extent_id)

 + 1 extents, SUM (bytes) ttlsize

 FROM USER_EXTENTS

 WHERE segment_type IN ('TABLE', 'TABLE PARTITION')

 GROUP BY segment_name

 ORDER BY mb DESC
Cách REBUILD:

 Vào TOAD: chọn nút phải chuột trên table cần rebuilt. chon tiếp Rebuilt tables:

 Vao tab SQL: copy script ra cử sổ SQL để thực thi:
Vd: rebuilt bảng EMLOYEES. Script như sau:

-- **
-- Note: This rebuild script is not meant to be used when a possibility *
-- exists that someone might try to access the table while it is *
-- being rebuilt! *
-- *
-- Locks are released when the first DDL, COMMIT or ROLLBACK is *
-- performed, so adding a "Lock table" command at the top of this *
-- script will not prevent others from accessing the table for *
-- the duration of the script. *
-- **
-- Table Rebuild script generated by TOAD
--
-- Original table: EMPLOYEES
-- Backup of table: EMPLOYEES_X
-- Date: 2005/4/1
W

 08:00:35
--
SET LINESIZE 200
--
-- Make backup copy of original table
ALTER TABLE HR.EMPLOYEES RENAME TO EMPLOYEES_X ;

-- Drop FKey constraint from HR.DEPARTMENTS
ALTER TABLE HR.DEPARTMENTS DROP CONSTRAINT DEPT_MGR_FK ;

-- Drop FKey constraint from HR.JOB_HISTORY
ALTER TABLE HR.JOB_HISTORY DROP CONSTRAINT JHIST_EMP_FK ;

-- Drop all user named constraints
ALTER TABLE HR.EMPLOYEES_X DROP CONSTRAINT EMP_EMAIL_NN ;
ALTER TABLE HR.EMPLOYEES_X DROP CONSTRAINT EMP_HIRE_DATE_NN ;
ALTER TABLE HR.EMPLOYEES_X DROP CONSTRAINT EMP_JOB_NN ;
ALTER TABLE HR.EMPLOYEES_X DROP CONSTRAINT EMP_LAST_NAME_NN ;
ALTER TABLE HR.EMPLOYEES_X DROP CONSTRAINT EMP_SALARY_MIN ;
ALTER TABLE HR.EMPLOYEES_X DROP CONSTRAINT EMP_EMP_ID_PK ;
ALTER TABLE HR.EMPLOYEES_X DROP CONSTRAINT EMP_EMAIL_UK ;
ALTER TABLE HR.EMPLOYEES_X DROP CONSTRAINT EMP_DEPT_FK ;
ALTER TABLE HR.EMPLOYEES_X DROP CONSTRAINT EMP_JOB_FK ;
ALTER TABLE HR.EMPLOYEES_X DROP CONSTRAINT EMP_MANAGER_FK ;
-- Recreate original table
CREATE TABLE HR.EMPLOYEES
(
 EMPLOYEE_ID NUMBER(6),
 FIRST_NAME VARCHAR2(20 BYTE),
 LAST_NAME VARCHAR2(25 BYTE) CONSTRAINT EMP_LAST_NAME_NN NOT NULL,
 EMAIL VARCHAR2(25 BYTE) CONSTRAINT EMP_EMAIL_NN NOT NULL,
 PHONE_NUMBER VARCHAR2(20 BYTE),
 HIRE_DATE DATE CONSTRAINT EMP_HIRE_DATE_NN NOT NULL,
 JOB_ID VARCHAR2(10 BYTE) CONSTRAINT EMP_JOB_NN NOT NULL,
 SALARY NUMBER(8,2),
 COMMISSION_PCT NUMBER(2,2),
 MANAGER_ID NUMBER(6),
 DEPARTMENT_ID NUMBER(4),
 MARK CHAR(1 BYTE)
)
TABLESPACE EXAMPLE

PCTUSED 0
PCTFREE 10
INITRANS 1
MAXTRANS 255
STORAGE (
 INITIAL 64K

 MINEXTENTS 1
 MAXEXTENTS 2147483645
 PCTINCREASE 0
 BUFFER_POOL DEFAULT
)
LOGGING

NOCACHE
NOPARALLEL;
COMMENT ON TABLE HR.EMPLOYEES IS 'employees table. Contains 107 rows. References with departments,
JOBS, JOB_HISTORY TABLES. Contains a self reference.';
COMMENT ON COLUMN HR.EMPLOYEES.EMPLOYEE_ID IS 'Primary key of employees table.';
COMMENT ON COLUMN HR.EMPLOYEES.FIRST_NAME IS 'First name of the employee. A not null column.';
COMMENT ON COLUMN HR.EMPLOYEES.LAST_NAME IS 'Last name of the employee. A not null column.';
COMMENT ON COLUMN HR.EMPLOYEES.EMAIL IS 'Email id of the employee';
COMMENT ON COLUMN HR.EMPLOYEES.PHONE_NUMBER IS 'Phone number of the employee; includes country code and area code';
COMMENT ON COLUMN HR.EMPLOYEES.HIRE_DATE IS 'Date when the employee started on this job. A not null column.';
COMMENT ON COLUMN HR.EMPLOYEES.JOB_ID IS 'Current job of the employee; foreign key to job_id column of the
JOBS TABLE. A NOT NULL COLUMN.';
COMMENT ON COLUMN HR.EMPLOYEES.SALARY IS 'Monthly salary of the employee. Must be greater
THAN zero (enforced BY CONSTRAINT emp_salary_min)';
COMMENT ON COLUMN HR.EMPLOYEES.COMMISSION_PCT IS 'Commission percentage of the employee; Only employees in sales
department elgible FOR commission percentage';
COMMENT ON COLUMN HR.EMPLOYEES.MANAGER_ID IS 'Manager id of the employee; has same domain as manager_id in
DEPARTMENTS TABLE. FOREIGN KEY TO employee_id COLUMN OF EMPLOYEES TABLE.

(useful FOR reflexive joins AND CONNECT BY query)';
COMMENT ON COLUMN HR.EMPLOYEES.DEPARTMENT_ID IS 'Department id where employee works; foreign key to department_id
COLUMN OF the DEPARTMENTS TABLE';
-- Copy the data from the renamed table
INSERT /*+ APPEND */
INTO HR.EMPLOYEES INS_TBL

(EMPLOYEE_ID, FIRST_NAME, LAST_NAME, EMAIL,

PHONE_NUMBER, HIRE_DATE, JOB_ID, SALARY,

COMMISSION_PCT, MANAGER_ID, DEPARTMENT_ID, MARK)
SELECT

EMPLOYEE_ID, FIRST_NAME, LAST_NAME, EMAIL,

PHONE_NUMBER, HIRE_DATE, JOB_ID, SALARY,

COMMISSION_PCT, MANAGER_ID, DEPARTMENT_ID, MARK

FROM HR.EMPLOYEES_X SEL_TBL ;

COMMIT ;

-- Drop all FKeys on this table.
ALTER TABLE HR.EMPLOYEES_X DROP CONSTRAINT EMP_DEPT_FK ;
ALTER TABLE HR.EMPLOYEES_X DROP CONSTRAINT EMP_JOB_FK ;
ALTER TABLE HR.EMPLOYEES_X DROP CONSTRAINT EMP_MANAGER_FK ;
-- Drop all other user named indexes
DROP INDEX HR.EMP_DEPARTMENT_IX ;
DROP INDEX HR.EMP_JOB_IX ;
DROP INDEX HR.EMP_MANAGER_IX ;
DROP INDEX HR.EMP_NAME_IX ;
-- Recreate Indexes, Constraints, and Grants
CREATE INDEX HR.EMP_DEPARTMENT_IX ON HR.EMPLOYEES
(DEPARTMENT_ID)
NOLOGGING
TABLESPACE EXAMPLE

PCTFREE 10
INITRANS 2
MAXTRANS 255
STORAGE (
 INITIAL 64K

 MINEXTENTS 1
 MAXEXTENTS 2147483645
 PCTINCREASE 0
 BUFFER_POOL DEFAULT
)
NOPARALLEL;
CREATE UNIQUE INDEX HR.EMP_EMAIL_UK ON HR.EMPLOYEES
(EMAIL)
NOLOGGING
TABLESPACE EXAMPLE

PCTFREE 10
INITRANS 2
MAXTRANS 255
STORAGE (
 INITIAL 64K

 MINEXTENTS 1
 MAXEXTENTS 2147483645
 PCTINCREASE 0
 BUFFER_POOL DEFAULT
)
NOPARALLEL;
CREATE UNIQUE INDEX HR.EMP_EMP_ID_PK ON HR.EMPLOYEES
(EMPLOYEE_ID)
NOLOGGING
TABLESPACE EXAMPLE

PCTFREE 10
INITRANS 2
MAXTRANS 255
STORAGE (
 INITIAL 64K

 MINEXTENTS 1
 MAXEXTENTS 2147483645
 PCTINCREASE 0
 BUFFER_POOL DEFAULT
)
NOPARALLEL;
CREATE INDEX HR.EMP_JOB_IX ON HR.EMPLOYEES
(JOB_ID)
NOLOGGING
TABLESPACE EXAMPLE

PCTFREE 10
INITRANS 2
MAXTRANS 255
STORAGE (
 INITIAL 64K

 MINEXTENTS 1
 MAXEXTENTS 2147483645
 PCTINCREASE 0
 BUFFER_POOL DEFAULT
)
NOPARALLEL;
CREATE INDEX HR.EMP_MANAGER_IX ON HR.EMPLOYEES
(MANAGER_ID)
NOLOGGING
TABLESPACE EXAMPLE

PCTFREE 10
INITRANS 2
MAXTRANS 255
STORAGE (
 INITIAL 64K

 MINEXTENTS 1
 MAXEXTENTS 2147483645
 PCTINCREASE 0
 BUFFER_POOL DEFAULT
)
NOPARALLEL;
CREATE INDEX HR.EMP_NAME_IX ON HR.EMPLOYEES
(LAST_NAME, FIRST_NAME)
NOLOGGING
TABLESPACE EXAMPLE

PCTFREE 10
INITRANS 2
MAXTRANS 255
STORAGE (
 INITIAL 64K

 MINEXTENTS 1
 MAXEXTENTS 2147483645
 PCTINCREASE 0
 BUFFER_POOL DEFAULT
)
NOPARALLEL;
ALTER TABLE HR.EMPLOYEES ADD (
 CONSTRAINT EMP_SALARY_MIN CHECK (salary > 0));
ALTER TABLE HR.EMPLOYEES ADD (
 CONSTRAINT EMP_EMP_ID_PK PRIMARY KEY (EMPLOYEE_ID)
 USING INDEX

 TABLESPACE EXAMPLE

 PCTFREE 10
 INITRANS 2
 MAXTRANS 255
 STORAGE (
 INITIAL 64K

 MINEXTENTS 1
 MAXEXTENTS 2147483645
 PCTINCREASE 0
));
ALTER TABLE HR.EMPLOYEES ADD (
 CONSTRAINT EMP_EMAIL_UK UNIQUE (EMAIL)
 USING INDEX

 TABLESPACE EXAMPLE

 PCTFREE 10
 INITRANS 2
 MAXTRANS 255
 STORAGE (
 INITIAL 64K

 MINEXTENTS 1
 MAXEXTENTS 2147483645
 PCTINCREASE 0
));
ALTER TABLE HR.EMPLOYEES ADD (
 CONSTRAINT EMP_DEPT_FK FOREIGN KEY (DEPARTMENT_ID)

 REFERENCES HR.DEPARTMENTS (DEPARTMENT_ID));
ALTER TABLE HR.EMPLOYEES ADD (
 CONSTRAINT EMP_JOB_FK FOREIGN KEY (JOB_ID)

 REFERENCES HR.JOBS (JOB_ID));
ALTER TABLE HR.EMPLOYEES ADD (
 CONSTRAINT EMP_MANAGER_FK FOREIGN KEY (MANAGER_ID)

 REFERENCES HR.EMPLOYEES (EMPLOYEE_ID));
GRANT REFERENCES, SELECT ON HR.EMPLOYEES TO OE;
-- Recreate the FKeys that reference the NEW table
ALTER TABLE HR.DEPARTMENTS ADD

 CONSTRAINT DEPT_MGR_FK

 FOREIGN KEY (MANAGER_ID)

 REFERENCES HR.EMPLOYEES (EMPLOYEE_ID) ;

ALTER TABLE HR.JOB_HISTORY ADD

 CONSTRAINT JHIST_EMP_FK

 FOREIGN KEY (EMPLOYEE_ID)

 REFERENCES HR.EMPLOYEES (EMPLOYEE_ID) ;

-- Recompile any dependent objects
ALTER FUNCTION "HR"."GET_SERVICE_YRS" COMPILE ;

ALTER PROCEDURE "HR"."PRO_SEND_MAIL" COMPILE ;

ALTER VIEW "HR"."VIE_EMP_DETAILS" COMPILE ;

-- Rebuild triggers for the new table.
DROP TRIGGER HR.SECURE_EMPLOYEES;
DROP TRIGGER HR.TRI_EMP;
DROP TRIGGER HR.UPDATE_JOB_HISTORY;
CREATE OR REPLACE TRIGGER HR.SECURE_EMPLOYEES

 BEFORE INSERT OR UPDATE OR DELETE ON HR.EMPLOYEES

BEGIN
 secure_dml;
END secure_employees;
/
SHOW ERRORS;
ALTER TRIGGER HR.SECURE_EMPLOYEES DISABLE;
CREATE OR REPLACE TRIGGER HR.TRI_EMP

BEFORE DELETE OR INSERT OR UPDATE
ON HR.EMPLOYEES

REFERENCING NEW AS NEW OLD AS OLD
FOR EACH ROW
DECLARE
tmpVar NUMBER;
/**

 NAME:

 PURPOSE:

 REVISIONS:

 Ver Date Author Description

 --------- ---------- --------------- ------------------------------------

 1.0 2005/3/21 1. Created this trigger.

 NOTES:

 Automatically available Auto Replace Keywords:

 Object Name:

 Sysdate: 2005/3/21

 Date and Time: 2005/3/21,
U

 03:46:31, and 2005/3/21
U

 03:46:31

 Username: (set in TOAD Options, Proc Templates)

 Table Name: (set in the "New PL/SQL Object" dialog)

 Trigger Options: (set in the "New PL/SQL Object" dialog)

**/
BEGIN
 tmpVar := 0;
 SELECT MySeq.NEXTVAL INTO tmpVar FROM dual;
 :NEW.SequenceColumn := tmpVar;
 :NEW.CreatedDate := SYSDATE;
 :NEW.CreatedUser := USER;
 EXCEPTION
 WHEN OTHERS THEN
 -- Consider logging the error and then re-raise
 RAISE;
END ;
CREATE OR REPLACE TRIGGER HR.UPDATE_JOB_HISTORY

 AFTER UPDATE OF JOB_ID, DEPARTMENT_ID ON HR.EMPLOYEES FOR EACH ROW
BEGIN
 add_job_history(:OLD.employee_id, :OLD.hire_date, SYSDATE,
 :OLD.job_id, :OLD.department_id);
END;
/
SHOW ERRORS;
13. Tách dữ liệu cuả INDEX ra một tablespace khác:
Trong CSDL , có 2 object chứa dữ liệu là INDEX và TABLE.

Nên lưu dữ liệu của TABLE và INDEX trên từng TABLESPACE rieng biệt để tăng tốc độ tìm kiếm. Default dữ liệu cuả INDEX sẽ nằm chung với dữ liệu cuả TABLE vì khi tạo ràng buộc khóa Oracl sẽ tự động tạo INDEX trên table.

Script move tablespace về đúng Tablespace mong muốn:
MOVE TABLESPACE:

SELECT 'ALTER TABLE ds1sis.' || TABLE_NAME || ' MOVE TABLESPACE ADM_DAT ; ' FROM USER_TABLES;

Script rebult lại index và sắp xếp(coalesce) lại INDEX.

REBUILT INDEX
SELECT 'ALTER INDEX ds1sis.' || OBJECT_NAME || ' REBUILD TABLESPACE ADM_IDX ; ' FROM USER_OBJECTS WHERE OBJECT_TYPE ='INDEX';
COALESCE
SELECT 'ALTER INDEX ds1sis.' || OBJECT_NAME || ' COALESCE; '
 FROM USER_OBJECTS WHERE OBJECT_TYPE ='INDEX';
14. Tạo table nhanh, không có khóa kèm theo.

CREAT TABLE TABLE_NAME_TMP AS SELECT * FROM TABLE_NAME
Nếu chỉ muốn lấy cấu trúc, không lấy dữ liệu thì:

CREAT TABLE TABLE_NAME_TMP AS SELECT * FROM TABLE_NAME
WHERE ROWNUM=0;
15. Sử dụng câu SQL động(Dynamic SQL) để giảm thiểu code trong chương trình.
 Lưu ý viết code trong PLSQL viết nhiều cũng sẽ chiếm memory nhiều hơn khi nó dược compile và load lên memory

 OPEN FIND_SIZE;
 V_UPDATE := 1;
 LOOP
 FETCH FIND_SIZE INTO V_SIZE;
 EXIT WHEN FIND_SIZE%NOTFOUND;
 IF V_UPDATE = 1 THEN
 UPDATE TRADE_TMP_PL SET TRADE_TMP_PL.F01 = V_SIZE

 WHERE TRADE_TMP_PL.PKG_ID = V_PKG_ID;
 ELSIF V_UPDATE = 2 THEN
 UPDATE TRADE_TMP_PL SET TRADE_TMP_PL.F02 = V_SIZE

 WHERE TRADE_TMP_PL.PKG_ID = V_PKG_ID;
 ELSIF V_UPDATE = 3 THEN
 UPDATE TRADE_TMP_PL SET TRADE_TMP_PL.F03 = V_SIZE

 WHERE TRADE_TMP_PL.PKG_ID = V_PKG_ID;
 ELSIF V_UPDATE = 4 THEN
 UPDATE TRADE_TMP_PL SET TRADE_TMP_PL.F04 = V_SIZE

 WHERE TRADE_TMP_PL.PKG_ID = V_PKG_ID;
 ELSIF V_UPDATE = 5 THEN
 UPDATE TRADE_TMP_PL SET TRADE_TMP_PL.F05 = V_SIZE

 WHERE TRADE_TMP_PL.PKG_ID = V_PKG_ID;
 ELSIF V_UPDATE = 6 THEN
 UPDATE TRADE_TMP_PL SET TRADE_TMP_PL.F06 = V_SIZE

 WHERE TRADE_TMP_PL.PKG_ID = V_PKG_ID;
 ELSIF V_UPDATE = 7 THEN
 UPDATE TRADE_TMP_PL SET TRADE_TMP_PL.F07 = V_SIZE

 WHERE TRADE_TMP_PL.PKG_ID = V_PKG_ID;
 ELSIF V_UPDATE = 8 THEN
 UPDATE TRADE_TMP_PL SET TRADE_TMP_PL.F08 = V_SIZE

 WHERE TRADE_TMP_PL.PKG_ID = V_PKG_ID;
 ELSIF V_UPDATE = 9 THEN
 UPDATE TRADE_TMP_PL SET TRADE_TMP_PL.F09 = V_SIZE

 WHERE TRADE_TMP_PL.PKG_ID = V_PKG_ID;
 ELSIF V_UPDATE = 10 THEN
 UPDATE TRADE_TMP_PL SET TRADE_TMP_PL.F10 = V_SIZE

 WHERE TRADE_TMP_PL.PKG_ID = V_PKG_ID;
 ELSIF V_UPDATE = 11 THEN
 UPDATE TRADE_TMP_PL SET TRADE_TMP_PL.F11 = V_SIZE

 WHERE TRADE_TMP_PL.PKG_ID = V_PKG_ID;
 ELSIF V_UPDATE = 12 THEN
 UPDATE TRADE_TMP_PL SET TRADE_TMP_PL.F12 = V_SIZE

 WHERE TRADE_TMP_PL.PKG_ID = V_PKG_ID;
 ELSIF V_UPDATE = 13 THEN
 UPDATE TRADE_TMP_PL SET TRADE_TMP_PL.F13 = V_SIZE

 WHERE TRADE_TMP_PL.PKG_ID = V_PKG_ID;
 ELSIF V_UPDATE = 14 THEN
 UPDATE TRADE_TMP_PL SET TRADE_TMP_PL.F14 = V_SIZE

 WHERE TRADE_TMP_PL.PKG_ID = V_PKG_ID;
 ELSIF V_UPDATE = 15 THEN
 UPDATE TRADE_TMP_PL SET TRADE_TMP_PL.F15 = V_SIZE

 WHERE TRADE_TMP_PL.PKG_ID = V_PKG_ID;
 ELSIF V_UPDATE = 16 THEN
 UPDATE TRADE_TMP_PL SET TRADE_TMP_PL.F16 = V_SIZE

 WHERE TRADE_TMP_PL.PKG_ID = V_PKG_ID;
 ELSIF V_UPDATE = 17 THEN
 UPDATE TRADE_TMP_PL SET TRADE_TMP_PL.F17 = V_SIZE

 WHERE TRADE_TMP_PL.PKG_ID = V_PKG_ID;
 ELSIF V_UPDATE = 18 THEN
 UPDATE TRADE_TMP_PL SET TRADE_TMP_PL.F18 = V_SIZE

 WHERE TRADE_TMP_PL.PKG_ID = V_PKG_ID;
 ELSIF V_UPDATE = 19 THEN
 UPDATE TRADE_TMP_PL SET TRADE_TMP_PL.F19 = V_SIZE

 WHERE TRADE_TMP_PL.PKG_ID = V_PKG_ID;
 ELSIF V_UPDATE = 20 THEN
 UPDATE TRADE_TMP_PL SET TRADE_TMP_PL.F20 = V_SIZE

 WHERE TRADE_TMP_PL.PKG_ID = V_PKG_ID;
 END IF;
 COMMIT;
 V_UPDATE := V_UPDATE + 1;
 END LOOP;

 CLOSE FIND_SIZE;
 OPEN C_FIND_SIZE;
 V_UPDATE:=1;
 LOOP
 FETCH C_FIND_SIZE INTO V_SIZE;
 EXIT WHEN C_FIND_SIZE%NOTFOUND;
 V_SQL:= 'UPDATE TRADE_TMP_PL SET F'||LPAD(V_UPDATE,2,0)||' = '||CHR(39)||V_SIZE||CHR(39)||' WHERE PKG_ID = '||V_PKG_ID;

EXECUTE IMMEDIATE V_SQL;

 V_UPDATE := V_UPDATE + 1;

COMMIT;
 END LOOP;

 CLOSE C_FIND_SIZE;
16. Dùng EXISTS thay thế IN
 Trong tra cứu nhiều bảng cơ bản, để đầy một điều kiện, phải luôn luôn tiến hành liên tíêp với bảng khác. Trong trường hợp này, sử dụng EXISTS (hoặc NOT EXISTS) thông thường nâng cao hiệu suất tra cứu.

Hiệu suất thấp
SELECT *

FROM EMP (Bảng cơ sở)
WHERE EMPNO > 0
AND DEPTNO IN (SELECT DEPTNO

FROM DEPT

WHERE LOC = ‘MELB’)
 Hiệu suất cao
SELECT *

FROM EMP (Bảng cơ sở)
WHERE EMPNO > 0
AND EXISTS (SELECT NULL
FROM DEPT

WHERE DEPT.DEPNO=EMP.DEPTNO

AND LOC = ‘MELB’
)
----------------- EXISTS VS IN ----------------------
IN:
SELECT * FROM T1 WHERE X IN (SELECT Y FROM T2)

Cach thuc hien giong cau lenh sau:
SELECT *

 FROM T1, (SELECT DISTINCT Y FROM T2) T2

 WHERE T1.X = T2.Y;

EXISTS:

SELECT * FROM T1 WHERE EXISTS (SELECT NULL FROM T2 WHERE Y = X)

Cach thuc hien giong cau lenh sau:

 FOR X IN (SELECT * FROM T1)

 LOOP

 IF (EXISTS (SELECT NULL FROM T2 WHERE Y = X.X)

 THEN

 OUTPUT THE RECORD

 END IF

 END LOOP
17. Dùng NOT EXISTS thay thế NOT IN
Trong tra cứu con, mệnh đề NOT IN sẽ thực hiện sort và hợp nhất trong nội bộ. Cho dù trong trường hợp nào, NOT IN đều có hiệu suất thấp nhất (vì nó đối với bảng trong tra cứu con thực hiện qua toàn bảng). Để tránh sử dụng NOT IN, chúng ta có thể lấy chúng đổi thành liên kết ngoài (outer joins) hoặc NOT EXISTS.
Ex:

SELECT …
FROM EMP
WHERE DEPT_NO NOT IN (SELECT DEPT_NO

 FROM DEPT

 WHERE DEPT_CAT=’A’);
SELECT …
FROM EMP

WHERE NOT EXISTS (SELECT ‘X’

FROM DEPT

 WHERE DEPT.DEPTNO=EMP.DEPTNO

 AND DEPT_CAT=’A’
)

18. Dùng bảng liên kết để thay EXISTS
 Thông thường, phương pháp dùng bảng liên kết so vớI EXISTS có hiệu quả. hơn
 SELECT ENAME
 FROM EMP E
 WHERE EXISTS (SELECT ‘X’

 FROM DEPT
 WHERE DEPT_NO = E.DEPT_NO
 AND DEPT_CAT = ‘A’);
 Hieu suat cao:

SELECT ENAME

FROM EMP,DEPT

WHERE DEPT.DEPTNO=EMP.DEPTNO

 AND DEPT_CAT=’A’
19. Hạn chế sử dụng nested report, đưa các xử lý xuống mức CSDL thông qua Procedure.

Ex:

MIS172

1. .訂單材料匯總采購計划表
[image: image1.png]B172-Cs1 1R A

HRE

RHE EFEH @

= % . % L itoddses

S g Wt e e EOHHESR

IEHEE
TSSO
BEEDS
GETRIE
DRI
ERHEIBARE
HET)
Sea Mateisls Tracking Report

[image: image2.png]1233002

40006946

1233002

[A0006950

1233D03

[A0006947

1233D03

[A0006951

[image: image3.png]=181x]
=181

@ BRE MLTAR RS HHH [eseE 2

W . 8 < > Moa a B
R MM ®—H t—F T-F &FF EA L R

@nrERX [TETAERART IR (IR ATNERTEE Mol
172-CSIET RS KR RS IR

HRREEGE . S FIETE#IRERS . 200501191041 EH#: Pagelofl

VIRHRSR HtE B YRR SRR Bfi #E

| A050105KAGA002 = 0.5mm TPU R8010 EMBOSS 301 78 54" " 19
YS02227 [29201 17 YS502228 [0330]2

| A050105KAGW037 3EH H 05mm TPURS010 EMBOSS 301 B 54" " 32
YS502225 [529%0] 30 YS502226 [230 12

C030110G01 A002 2 1O T 44" " 59
8502227 [2920] 52 YS502228 33017

C030110G01 W000 B 1.0mm 77 44" " ES
YS502225 [5290] % YS502226 [230 15

C030115G02A002 2 1 5w T 44" " 38
YS502227 [2920] 33 YS502228 330715

C030115G02W 000 B L5mm i 44" " 63
YS502225 [520] €0 YSS02226 [230 13

PO3K500G03A002 2 1JA28 MESH 190z 44" CES]
YS500227 o[2920] 307 YS502228 [330] 36

[PO3K500G03W000 B LT A28 MESH 190g 44" ® 5
YS502225 [5290] 560 YS502226 [230 125

PO6D500D02A002 2 T7217 MESH 270g 36" ® 56
8502227 o[2920] 46l YS502228 [330] 35

PO6D500D02W 000 B T7217 MESH 270g 36" " 878
YS502225 [5290] 840 YS502226 [230] 3%

=l

BHiE
At @ G AR ® Y || S | Byvwo.| Rrov.. | @apr.

(@ visn..| ®)Dos...[@172- B¢ UEHUSARE TR LF 104

Report type: nested report.

Responsed time : 1 minute 20 second

----Main sql: : -----------

select a.pur_policy,a.mat_no,sum(nvl(b.pld_req_qty,a.pld_req_qty)) pld_req_qty,

 b.pur_mat_size,c.size_remark,c.matm_unit,c.mat_color,c.mat_name,

 decode(b.size_seq,'00',fun_matsize(a.fact_no,a.mat_no,b.pur_mat_size),'') size_desc,:as_user

 from purplanm a,purpland b,matm c

 where a.fact_no = b.fact_no(+)

 and a.purplan_no = b.purplan_no(+)

 and a.purplan_seq = b.purplan_seq(+)

 and a.fact_no = c.fact_no

 and a.mat_no = c.mat_no

 and a.same_part_no is null

 and b.size_seq(+) = '00'

 and a.fact_no = :as_fact_no

 and a.pur_policy like :as_policy

 and (a.fact_odr_no in (:as_no))

 group by a.pur_policy,a.mat_no,b.pur_mat_size,c.size_remark,c.matm_unit,c.mat_color,

 c.mat_name,decode(b.size_seq,'00',fun_matsize(a.fact_no,a.mat_no,b.pur_mat_size),'')

 having sum(nvl(b.pld_req_qty,a.pld_req_qty)) > 0

Nested sql:

select a.fact_odr_no,b.odr_qty,sum(c.pld_req_qty) pld_req_qty,':[' co_left,']' co_right

 from purplanm a,odrm b,purpland c,TMP_ORDER_PUR d,matm e

 where a.fact_no = b.fact_no

 and a.fact_odr_no = b.fact_odr_no

 and a.fact_no = c.fact_no

 and a.purplan_no = c.purplan_no

 and a.purplan_seq = c.purplan_seq

 and a.fact_no = d.fact_no

 and a.fact_odr_no = d.fact_odr_no

 and a.fact_no = e.fact_no

 and a.mat_no = e.mat_no

 and a.same_part_no is null

 and e.size_remark = '3'

and c.size_seq = '00'

 and a.fact_no = :as_fact_no

 and a.mat_no = :as_mat_no

 and c.pur_mat_size = :as_matsize

 and d.user_no =:as_user

 group by a.fact_odr_no,b.odr_qty

union

select a.fact_odr_no,b.odr_qty,sum(a.pld_req_qty) pld_req_qty,':[' co_left,']' co_right

 from purplanm a,odrm b,TMP_ORDER_PUR c,matm d

 where a.fact_no = b.fact_no

 and a.fact_odr_no = b.fact_odr_no

 and a.fact_no = c.fact_no

 and a.fact_odr_no = c.fact_odr_no

 and a.fact_no = d.fact_no

 and a.mat_no = d.mat_no

 and a.same_part_no is null

 and d.size_remark in('1','2')

 and :as_matsize is null

 and a.fact_no = :as_fact_no

and a.mat_no = :as_mat_no

 and c.user_no =:as_user

 group by a.fact_odr_no,b.odr_qty
After checking and modifying(no need use nested report.)

 Step 1: create 3 tables temp. TMP_TOTAL_PUR,

TMP_TOTAL_MATM,

TMP_FACT_ODR_NO

 Step 2: create procedure PRO_TMP_TOTAL_PUR(Fact_no =>0172,

Policy =>8

Fact_odr_no => YS502225,YS502226,YS502227)
CREATE OR REPLACE PROCEDURE pro_tmp_total_pur (
 p_fact_no IN purplanm.fact_no%TYPE,
 p_pur_policy IN purplanm.pur_policy%TYPE,
 p_user_no IN tmp_order_pur.user_no%TYPE
/*--

 FACT_NO: 0172

 POLICY: 8

 FACT_ODR_NO: 'YS502225,YS502226,YS502227,YS502228'

 Created: HVLong : created date: 2005/01/18

 MODIFY BY LCL DATE: 2005/01/21 NOTES; ADD P_USER_NO

 MODIFY BY LCL DATE: 2005/02/03 NOTES: REMOVE P_FACT_ODR_NO

 ---*/
) IS
-- v_fact_odr_no VARCHAR2 (3000);
 v_odr_qty tmp_order_pur.odr_qty%TYPE;
 v_pld_req_qty purplanm.pld_req_qty%TYPE;
 v_total_matm purplanm.pld_req_qty%TYPE;
 v_pur_policy matm.pur_policy%TYPE;
 CURSOR c1 IS
 SELECT a.mat_no, a.fact_odr_no, d.odr_qty,
 SUM (NVL (b.pld_req_qty, a.pld_req_qty)) AS pld_req_qty, b.pur_mat_size,
 c.size_remark, c.matm_unit, c.mat_color, c.mat_name,
 DECODE (b.size_seq,
 '00', fun_matsize (a.fact_no, a.mat_no, b.pur_mat_size),
 '') size_desc,
 d.user_no-- as_user
 FROM matm c, purpland b, purplanm a, tmp_order_pur d

 WHERE a.fact_no = b.fact_no(+)
 AND a.purplan_no = b.purplan_no(+)
 AND a.purplan_seq = b.purplan_seq(+)
 AND c.fact_no = a.fact_no

 AND c.mat_no = a.mat_no

 AND d.fact_no = a.fact_no

 AND a.same_part_no IS NULL
 AND d.fact_odr_no = a.fact_odr_no

 AND b.size_seq(+) = '00'
 AND a.fact_no = p_fact_no

 AND d.user_no = p_user_no

 AND a.pur_policy LIKE p_pur_policy || '%'
 AND a.fact_odr_no IN (SELECT fact_odr_no

 FROM tmp_fact_odr_no)
 GROUP BY a.mat_no, a.fact_odr_no, d.odr_qty, b.pur_mat_size, c.size_remark, c.matm_unit,
 c.mat_color, c.mat_name,
 DECODE (b.size_seq, '00', fun_matsize (a.fact_no, a.mat_no, b.pur_mat_size), ''),
 d.user_no

 HAVING SUM (NVL (b.pld_req_qty, a.pld_req_qty)) > 0;
 c_ret c1%ROWTYPE;

-- PROCEDURE pro_div_fact_odr_no (p_str VARCHAR2) IS
-- v_str VARCHAR2 (3000);
-- -- V_RET VARCHAR2(1000);
-- v_tmp VARCHAR2 (20);
-- i BINARY_INTEGER;
-- BEGIN
-- v_str := p_str;
-- --V_RET:='';
-- DELETE FROM tmp_fact_odr_no;
-- COMMIT;
-- WHILE INSTR (v_str, ',') != 0 LOOP
-- i := INSTR (v_str, ',');
-- v_tmp := TRIM (SUBSTR (v_str, 1, i - 1));
-- --V_RET:=V_RET||V_TMP||',';
-- INSERT INTO tmp_fact_odr_no
-- VALUES (v_tmp);
-- v_str := SUBSTR (v_str, i + 1);
-- END LOOP;
-- INSERT INTO tmp_fact_odr_no
-- VALUES (v_str);
-- COMMIT;
-- END;
BEGIN
 DELETE FROM tmp_total_pur WHERE user_no = p_user_no;
 DELETE FROM tmp_total_matm WHERE user_no = p_user_no;
 COMMIT;
-- pro_div_fact_odr_no (p_fact_odr_no);
 OPEN c1;
 LOOP
 FETCH c1

 INTO c_ret;
 EXIT WHEN c1%NOTFOUND;
 --xy ly main sql
 INSERT INTO tmp_total_pur

 (mat_no, fact_odr_no, pur_mat_size,
 pld_req_qty, odr_qty,user_no)
 VALUES (c_ret.mat_no, c_ret.fact_odr_no, NVL (c_ret.pur_mat_size, ' '),
 c_ret.pld_req_qty, c_ret.odr_qty,p_user_no);

 v_total_matm := c_ret.pld_req_qty;
 UPDATE tmp_total_matm

 SET pld_req_qty = NVL (pld_req_qty, 0) + NVL (v_total_matm, 0)
 WHERE mat_no = c_ret.mat_no AND pur_mat_size = NVL (c_ret.pur_mat_size, ' ')

 AND user_no = p_user_no;
 IF SQL%ROWCOUNT = 0 THEN
 SELECT pur_policy

 INTO v_pur_policy

 FROM matm

 WHERE mat_no = c_ret.mat_no;
 INSERT INTO tmp_total_matm

 VALUES (c_ret.mat_no, NVL (c_ret.pur_mat_size, ' '), c_ret.mat_color,
 c_ret.mat_name, c_ret.matm_unit, c_ret.pld_req_qty, v_pur_policy,p_user_no);
 END IF;
 COMMIT;
 END LOOP;
 CLOSE c1;
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RAISE_APPLICATION_ERROR (-20001, 'NO DATA FOUND!');
 WHEN OTHERS THEN
 RAISE_APPLICATION_ERROR (-20002, SUBSTR (SQLERRM, 1, 250));
END;
/
Execute procedure succesfully with responsed time: 1 second.

[image: image4.png]=181x]
=181

@ BRE MLTAR RS HHH [eseE 2

W . 8 < > Moa a B
R MM ®—H t—F T-F &FF EA L R

@nrERX [TETAERART IR (IR ATNERTEE Mol
172-CSIET RS KR RS IR

HRREEGE . S FIETE#IRERS . 200501191041 EH#: Pagelofl

VIRHRSR HtE B YRR SRR Bfi #E

| A050105KAGA002 = 0.5mm TPU R8010 EMBOSS 301 78 54" " 19
YS02227 [29201 17 YS502228 [0330]2

| A050105KAGW037 3EH H 05mm TPURS010 EMBOSS 301 B 54" " 32
YS502225 [529%0] 30 YS502226 [230 12

C030110G01 A002 2 1O T 44" " 59
8502227 [2920] 52 YS502228 33017

C030110G01 W000 B 1.0mm 77 44" " ES
YS502225 [5290] % YS502226 [230 15

C030115G02A002 2 1 5w T 44" " 38
YS502227 [2920] 33 YS502228 330715

C030115G02W 000 B L5mm i 44" " 63
YS502225 [520] €0 YSS02226 [230 13

PO3K500G03A002 2 1JA28 MESH 190z 44" CES]
YS500227 o[2920] 307 YS502228 [330] 36

[PO3K500G03W000 B LT A28 MESH 190g 44" ® 5
YS502225 [5290] 560 YS502226 [230 125

PO6D500D02A002 2 T7217 MESH 270g 36" ® 56
8502227 o[2920] 46l YS502228 [330] 35

PO6D500D02W 000 B T7217 MESH 270g 36" " 878
YS502225 [5290] 840 YS502226 [230] 3%

=l

BHiE
At @ G AR ® Y || S | Byvwo.| Rrov.. | @apr.

(@ visn..| ®)Dos...[@172- B¢ UEHUSARE TR LF 104

