PURPOSE

To compare LOBS with LONG and LONG Raw datatypes and list the restrictions
for using LOBS.

Differences

LOBS(Large Objects) are almost similar to the LONG and LONG raw types
but they have some differences

1. Multiple LOBS can be stored in a single row whereas only one single
LONG or LONG raw cane be stored per row.

2. A LOBs can be attributes of a user-defined datatype whereas a LONG or
LONG RAW cannot be.

3. In the case of a LONG or LONG RAW the entire value is stored in the
table column whereas for LOBS, only the LOB locator is stored in the
table column.BLOB and CLOB(Internal LOBS) data can be stored in separate
tablespaces and BFILE(External LOB) data is stored as an external file.
So when we access a LOB, only the locator is returned but when we access
a LONG or Long Raw, the entire value is returned.

4. A LOB can be up to 4 gigabytes in size. The BFILE maximum is operating
system dependent, but cannot exceed 4 gigabytes. The valid accessible
range is 1 to (232-1)whereas the limit si only 2 Gigabytes for LONG
or LONG raw datatypes.

5. There is greater flexibility in manipulating data in a random, piece-wise
manner with LOBs than there is with LONG or LONG RAW data.

6. LOBs can be accessed at random offsets while LONGs must be accessed from
the beginning to the desired location.

7. You can replicate LOBs in both local and distributed environments wheresas
with LONG and LONG raw, this cannot be done.

8. Existing LONG columns can be converted to LOBs using the TO_LOB() function
whereas conversion of LOBS to LONG or LONG Raw is not supported.

However, there are some restrictions on using LOBS.

1. LOBs are not allowed in clustered tables and thus cannot be a cluster key.

2. LOBs are not allowed in GROUP BY, ORDER BY, SELECT DISTINCT, aggregates and
JOINS. However, UNION ALL is allowed on tables with LOBs. UNION, MINUS,
and SELECT DISTINCT are allowed on LOB attributes if the object type has
a MAP or ORDER function.

3. LOBS are not analyzed in ANALYZE... COMPUTE/ESTIMATE STATISTICS statements.

4. LOBs are not allowed in partitioned index organized tables but are allowed
non-partitioned index organized tables.

5. LOBs are not allowed in VARRAYs.

6. NCLOBs are not allowed as attributes in object types but NCLOB parameters
are allowed in methods.

RELATED DOCUMENTS

Oracle 8i Application Developer's Guide

--

From: Oracle, krishna kumar sivasubramanian 20-Dec-00 08:43
Subject: Re : BLOB vs. CLOB vs. NCLOB

Hello

CLOB is similar to the oracle 7 long type, a clob can hold single-byte character data.

NCLOB stores fixed-width multibyte national character set data.

BLOB is similar to oracle & lon raw type, a BLOB can hold unstructred binary data.You can store and retrieve the data piecewise.

BFIlEs allow read-only access to large binary files stored outside the oracle database.Unlike other three LOB types, BFile data is stored in a seperate file that is not maintained by oracle.Manipulations to BFILE data do not participate in oracle transactions.They can not be committed or rolled back.

store text as an image-use BLOB
store text- use CLOB

Regards
S.Krishna Kumar

	
	
	[image: image1.png]

	Bookmark
Fixed font
Go to End
Doc ID:
Note:107441.1
Subject:
Comparison between LOBS and LONG & LONG Raw datatype
Type:
BULLETIN
Status:
REVIEWED
Content Type:
TEXT/PLAIN
Creation Date:
03-MAY-2000
Last Revision Date:
01-JUN-2001

This article is being delivered in Draft form and may contain

errors. Please use the MetaLink "Feedback" button to advise

Oracle of any issues related to this article.

PURPOSE

Compare LOBS with LONG and LONG Raw datatypes and list the restrictions

for using LOBS.

Differences

LOBS(Large Objects) are almost similar to the LONG and LONG raw types

but they have some differences

1. Multiple LOBS can be stored in a single row whereas only one single

 LONG or LONG raw cane be stored per row.

2. A LOB can be an attribute of a user-defined datatype whereas a LONG or

 LONG RAW cannot be.

3. In the case of a LONG or LONG RAW the entire value is stored in the

 table column whereas for LOBS, only the LOB locator is stored in the

 table column.BLOB and CLOB(Internal LOBS) data can be stored in separate

 tablespaces and BFILE(External LOB) data is stored as an external file.

 So when we access a LOB, only the locator is returned but when we access

 a LONG or Long Raw, the entire value is returned.

4. A LOB can be up to 4 gigabytes in size. The BFILE maximum is operating

 system dependent, but cannot exceed 4 gigabytes. The valid accessible

 range is 1 to (232-1)whereas the limit si only 2 Gigabytes for LONG

 or LONG raw datatypes.

5. There is greater flexibility in manipulating data in a random, piece-wise

 manner with LOBs than there is with LONG or LONG RAW data.

6. LOBs can be accessed at random offsets while LONGs must be accessed from

 the beginning to the desired location.

7. You can replicate LOBs in both local and distributed environments wheresas

 with LONG and LONG raw, this cannot be done.

8. Existing LONG columns can be converted to LOBs using the TO_LOB() function

 whereas conversion of LOBS to LONG or LONG Raw is not supported.

However, there are some restrictions on using LOBS.

1. LOBs are not allowed in clustered tables and thus cannot be a cluster key.

2. LOBs are not allowed in GROUP BY, ORDER BY, SELECT DISTINCT, aggregates and

 JOINS. However, UNION ALL is allowed on tables with LOBs. UNION, MINUS,

 and SELECT DISTINCT are allowed on LOB attributes if the object type has

 a MAP or ORDER function.

3. LOBS are not analyzed in ANALYZE... COMPUTE/ESTIMATE STATISTICS statements.

4. LOBs are not allowed in partitioned index organized tables but are allowed

 non-partitioned index organized tables.

5. LOBs are not allowed in VARRAYs.

6. NCLOBs are not allowed as attributes in object types but NCLOB parameters

 are allowed in methods.

RELATED DOCUMENTS

Oracle 8i Application Developer's Guide

.

	

	[image: image2.png]

	Copyright (c) 1995,2000 Oracle Corporation. All Rights Reserved. Legal Notices and Terms of Use.
	[image: image3.png]

	[image: image4.png]

	
	[image: image5.png]

	Bookmark
Fixed font
Go to End
Doc ID:
Note:66431.1
Subject:
LOBS - Storage, Redo and Performance Issues
Type:
BULLETIN
Status:
PUBLISHED
Content Type:
TEXT/PLAIN
Creation Date:
05-NOV-1998
Last Revision Date:
25-MAR-2001
Introduction

~~~~~~~~~~~~

  This is a short note on the internal storage of LOBs. The information

  here is intended to supplement the documentation and other notes

  which describe how to use LOBS. The focus is on the storage characteristics

  and configuration issues which can affect performance.

  There are 4 types of LOB:


   CLOB, BLOB, NCLOB
stored internally to Oracle


   BFILE

stored externally 

  The note mainly discusses the first 3 types of LOB which as stored INTERNALLY

  within the Oracle DBMS. BFILE's are pointers to external files and

  are only mentioned briefly.  

  Examples of handling LOBs can be found in [NOTE:47740.1]
Attributes

~~~~~~~~~~

 There are many attributes associated with LOB columns. The aim here

 is to cover the fundamental points about each of the main attributes.

 The attributes for each LOB column are specified using the

 "LOB (lobcolname) STORE AS ..." syntax.

 A table containing LOBs (CLOB, NCLOB and BLOB) creates 2 additional

 disk segments per LOB column - a LOBINDEX and a LOBSEGMENT. These

 can be viewed, along with the LOB attributes, using the dictionary views:

DBA_LOBS, ALL_LOBS or USER_LOBS

 which give the columns:

OWNER Table Owner

TABLE_NAME Table name

COLUMN_NAME Column name in the table

SEGMENT_NAME Segment name of the LOBSEGMENT

INDEX_NAME Segment name of the LOBINDEX

CHUNK Chunk size (bytes)

PCTVERSION PctVersion

CACHE Cache option of the LOB Segment
(yes/no)

LOGGING Logging mode of the LOB segment
(yes/no)

IN_ROW Whether storage in row is allowed
(yes/no)

 Storage Parameters

 ~~~~~~~~~~~~~~~~~~

  By default LOB segments are created in the same tablespace as the

  base table using the tablespaces default storage details. You can 

  specify the storage attributes of the LOB segments thus:

  Eg: Create table DemoLob ( A number, B clob )

       LOB(b) 


STORE AS lobsegname ( 


  TABLESPACE lobsegts 


  STORAGE (lobsegment storage clause) 


  INDEX lobindexname (



TABLESPACE lobidxts



STORAGE ( lobindex storage clause ) 


  ) 


)


TABLESPACE tables_ts


STORAGE( tables storage clause )

     ;

   In 8.0 the LOB INDEX can be stored separately from the lob segment.

   If a tablespace is specified for the LOB SEGMENT then the LOB INDEX

   will be placed in the same tablespace UNLESS a different tablespace

   is explicitly specified.

  Unless you specify names for the LOB segments system generated names

  are used.

 In ROW Versus Out of ROW

 ~~~~~~~~~~~~~~~~~~~~~~~~

 LOB columns can be allowed to store data within the row or not as detailed

 below. Whether in-line storage is allowed or not can ONLY be specified

 at creation time.

 "STORE AS (enable storage in row)"

Allows LOB data to be stored in the TABLE segment provided

it is less than about 4000 bytes.

The actual maximum in-line LOB is 3964 bytes.

If the lob value is greater than 3964 bytes then the LOB data is

stored in the LOB SEGMENT (ie: out of line). An out of line

LOB behaves as described under 'disable storage in row' except that

if its size shrinks to 3964 or less the LOB can again be stored

inline.

When a LOB is stored out-of-line in an 'enable storage in row'

LOB column between 36 and 84 bytes of control data remain in-line

in the row piece.

In-line LOBS are subject to normal chaining and row migration

rules within Oracle. Ie: If you store a 3900 byte LOB in a row

with a 2K block size then the row piece will be chained across

two or more blocks.

Both REDO and UNDO are written for in-line LOBS as they are part

of the normal row data.

 "STORE AS (disable storage in row)"

This option prevents any size of LOB from being stored in-line.

Instead a 20 byte LOB locator is stored in the ROW which gives

a unique identifier for a LOB in the LOB segment for this column.

The Lob Locator actually gives a key into the LOB INDEX which

contains a list of all blocks (or pages) that make up the LOB.

The minimum storage allocation for an out of line LOB is 1 Database

BLOCK per LOB ITEM and may be more if CHUNK is larger than a

single block.

UNDO is only written for the column locator and LOB INDEX changes.

No UNDO is generated for pages in the LOB SEGMENT.

Consistent Read is achieved by using page versions.

Ie: When you update a page of a LOB the OLD page remains and a

 new page is created. This can appear to waste space but

 old pages can be reclaimed and reused.

 CHUNK size

 ~~~~~~~~~~

  "STORE AS ( CHUNK bytes ) "


Can ONLY be specified at creation time.


In 8.0 values of CHUNK are in bytes and are rounded to the next 


highest multiple of DB_BLOCK_SIZE without erroring. 


Eg: If you specify a CHUNK of 3000 with a block size of 2K then


    CHUNK is set to 4096 bytes.


"bytes" / DB_BLOCK_SIZE determines the unit of allocation of


blocks to an 'out of line' LOB in the LOB segment. 


Eg: if CHUNK is 32K and the LOB is 'disable storage in row'  


    then even if the LOB is only 10 bytes long 32K will be 


    allocated in the LOB SEGMENT.


CHUNK does NOT affect in-line LOBS.

 PCTVERSION

 ~~~~~~~~~~

 "STORE AS (PCTVERSION n)"

PCTVERSION can be changed after creation using:

 ALTER TABLE tabname MODIFY LOB (lobname) (PCTVERSION n);

PCTVERSION affects the reclamation of old copies of LOB data.

This affects the ability to perform consistent read.

If a session is attempting to use an OLD version of a LOB

and that version gets overwritten (because PCTVERSION is too small)

then the user will typically see the errors:

ORA-01555: snapshot too old:

rollback segment number with name "" too small

ORA-22924: snapshot too old

PCTVERSION can prevent OLD pages being used and force the segment

to extend instead.

Do not expect PCTVERSION to be an exact percentage of space as there

is an internal fudge factor applied.

 CACHE

 ~~~~~

  "STORE AS ( CACHE )" or "STORE AS ( NOCACHE )"


This option can be changed after creation using:



ALTER TABLE tabname MODIFY LOB (lobname) ( CACHE );


or



ALTER TABLE tabname MODIFY LOB (lobname) ( NOCACHE );


With NOCACHE set (the default) reads from and writes to the


LOB SEGMENT occur using direct reads and writes. This means that


the blocks are never cached in the buffer cache and the the Oracle


shadow process performs the reads/writes itself.


The reads / writes show up under the wait events "direct path read"


and "direct path write" and multiple blocks can be read/written at 


a time (provided the caller is using a large enough buffer size).


When set the CACHE option causes the LOB SEGMENT blocks to


be read / written via the buffer cache . Reads show up as 


"db file sequential read" but unlike a table scan the blocks are 


placed at the most-recently-used end of the LRU chain.


The CACHE options for LOB columns is different to the CACHE


option for tables as CACHE_SIZE_THRESHOLD does not limit the 


size of LOB read into the buffer cache. This means that extreme


caution is required otherwise the read of a long LOB can effectively


flush the cache.


In-line LOBS are not affected by the CACHE option as they reside


in the actual table block (which is typically accessed via the buffer 


cache any way).


The cache option can affect the amount of REDO generated for


out of line LOBS. With NOCACHE blocks are direct loaded and


so entire block images are written to the REDO stream. If CHUNK


is also set then enough blocks to cover CHUNK are written to REDO.


If CACHE is set then the block changes are written to REDO. 


Eg: In the extreme case  'DISABLE STORAGE IN ROW  NOCACHE  CHUNK 32K'


    would write redo for the whole 32K even if the LOB was only


    5 characters long. CACHE would write a redo record describing the


    5 byte change (taking about 100-200 bytes).

 LOGGING

 ~~~~~~~

 "STORE AS (NOCACHE LOGGING)" or "STORE AS (NOCACHE NOLOGGING)"

This option can be changed after creation but the LOGGING / NOLOGGING

attribute must be prefixed by the NOCACHE option. The CACHE option

implicitly enables LOGGING.

The default for this option is LOGGING.

If a LOB is set to NOCACHE NOLOGGING then updates to the LOB SEGMENT

are not logged to the redo logs. However, updates to in-line LOBS

are still logged as normal. As NOCACHE operations use direct

block updates then all LOB segment operations are affected.

NOLOGGING of the LOB segment means that if you have to recover the

database then sections of the LOB segment will be marked as corrupt

during recovery.

Space required for updates

~~~~~~~~~~~~~~~~~~~~~~~~~~

  If a LOB is out-of-line then updates to pages if the LOB cause new 

  versions of those pages to be created. Rollback is achieved by reverting

  back to the pre-updated page versions. This has implications on the 

  amount of space required when a LOB is being updated as the LOB SEGMENT

  needs enough space to hold both the OLD and NEW pages concurrently in case

  your transaction rolls back.

  Eg: Consider the following:


INSERT a large LOB

LOB SEGMENT extends take the new pages


COMMIT;


DELETE the above LOB

The LOB pages are not yet free as






they will be needed in case of 






rollback.


INSERT a new LOB

Hence this insert may require more 






space in the LOB SEGMENT


COMMIT;



Only after this point could the






deleted pages be used.

Performance Issues

~~~~~~~~~~~~~~~~~~~

 Working with LOBs generally requires more than one round trip to the database.

 The application first has to obtain the locator and only then can perform

 operations against that locator. This is true for inline or out of line

 LOBS.

 The buffer size used to read / write the LOB can have a significant

 impact on performance, as can the SQL*Net packet sizes.

 Eg: With OCILobRead() a buffer size is specified for handling the LOB.

 If this is small (say 2K) then there can be a round trip to the database

 for each 2K chunk of the LOB. To make the issue worse the server will

 only fetch the blocks needed to satisfy the current request so may

 perform single block reads against the LOB SEGMENT. If however a larger

 chunk size is used (say 32K) then the server can perform multiblock

 operations and pass the data back in larger chunks.

 There is a LOB buffering subsystem which can be used to help improve

 the transfer of LOBs between the client and server processes. See the

 documentation for details of this.

BFILEs

~~~~~~

  BFILEs are quite different to internal LOBS as the only real storage

  issue is the space required for the inline locator. This is about 20 bytes

  PLUS the length of the directory and filename elements of the BFILENAME.

  The performance implications of the buffer size are the same as for internal

  LOBS.

.

	


	[image: image6.png]



	Copyright (c) 1995,2000 Oracle Corporation. All Rights Reserved. Legal Notices and Terms of Use.
	[image: image7.png]





