File size: 3,815 Bytes
d4035c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
<!DOCTYPE group PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<group>
<p><b>VLFeat</b> offers a hierarchical version of integer k-means, which
recursively applies <code>vl_ikmeans</code> to compute finer and finer
partitions. For more details see
<a href="%pathto:root;api/hikmeans_8h.html">Hierarchical Integer
k-means API reference</a> and the <a href="%pathto:tut.ikm;">Integer
k-means tutorial</a>.
</p>
<ul>
<li><a href="%pathto:tut.hikm.usage;">Usage</a></li>
<li><a href="%pathto:tut.hikm.tree;">Tree structure</a></li>
<li><a href="%pathto:tut.hikm.elkan;">Elkan</a></li>
</ul>
<!-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -->
<h1 id="tut.hikm.usage">Usage</h1>
<!-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -->
<p>First, we generate some random data to cluster in <code>[0,255]^2</code>:</p>
<pre>
data = uint8(rand(2,10000) * 255) ;
datat = uint8(rand(2,100000)* 255) ;
</pre>
<p>To cluster this data, we simply use <code>vl_hikmeans</code>:</p>
<pre>
K = 3 ;
nleaves = 100 ;
[tree,A] = vl_hikmeans(data,K,nleaves) ;
</pre>
<p>Here <code>nleaves</code> is the desired number of leaf
clusters. The algorithm terminates when there are at least
<code>nleaves</code> nodes, creating a tree with <code>depth =
floor(log(K nleaves))</code></p>
<p>To assign labels to the new data, we use <code>vl_hikmeanspush</code>:</p>
<pre>
AT = vl_hikmeanspush(tree,datat) ;
</pre>
<div class="figure">
<image src="%pathto:root;demo/hikmeans-tree.jpg"/>
<image src="%pathto:root;demo/hikmeans-clusters.jpg"/>
<div class="caption">
<span class="content">
<b>Hierarchical integer K-means.</b> Left: A depiction of the
recursive clusters. Each node is a cluster center. The root note is
not depicted (its center would be the mean of the dataset). Right:
Clusters are represented as different colors (here are more than 100
clusters, but only three colors are used).
</span>
</div>
</div>
<!-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -->
<h1 id="tut.hikm.tree">Tree structure</h1>
<!-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -->
<p>The output <code>tree</code> is a MATLAB structure representing the tree of
clusters:</p>
<pre>
> tree
tree =
K: 3
depth: 5
centers: [2x3 int32]
sub: [1x3 struct]
</pre>
<p>The field <code>centers</code> is the matrix of the cluster centers at the
root node. If the depth of the tree is larger than 1, then the field
<code>sub</code> is a structure array with one entry for each cluster. Each
element is in turn a tree:</p>
<pre>
> tree.sub
ans =
1x3 struct array with fields:
centers
sub
</pre>
<p>with a field <code>centers</code> for its clusters and a field
<code>sub</code> for its children. When there are no children, this
field is equal to the empty matrix</p>
<pre>
> tree.sub(1).sub(1).sub(1).sub(1)
ans =
centers: [2x3 int32]
sub: []
</pre>
<!-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -->
<h1 id="tut.hikm.elkan">Elkan</h1>
<!-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -->
<p>VLFeat supports two different implementations of k-means. While they
produce identical output, the Elkan method is sometimes faster.
The <code>method</code> parameters controls which method is used. Consider the case when <code>K=10</code> and our data is now 128 dimensional (e.g. SIFT descriptors):</p>
<pre>
K=10;
nleaves = 1000;
data = uint8(rand(128,10000) * 255);
tic;
[tree,A] = vl_hikmeans(data,K,nleaves,'method', 'lloyd') ; % default
t_lloyd = toc
tic;
[tree,A] = vl_hikmeans(data,K,nleaves,'method', 'elkan') ;
t_elkan = toc
t_lloyd =
8.0743
t_elkan =
3.0427
</pre>
</group>
|