|
|
|
|
|
import numpy as np |
|
|
from typing import List |
|
|
|
|
|
|
|
|
|
|
|
def lsc(probs: np.ndarray, w: List): |
|
|
r""" |
|
|
Implementation of Label Shift Compensation (LSC) with known target label distribution. |
|
|
Given source domain P(Y_s=i) and P(Y_s=i|X_s=x), target domain P(Y_t=i), |
|
|
estimate target predicted probability q(y|x) on test set. |
|
|
|
|
|
Args: |
|
|
probs: Softmax probability P(Y_s=i|X_s=x) predicted by the classifier, |
|
|
for all samples in validation set (N x C). |
|
|
w: Ratio of Target over Source domain label distribution $ w = P(Y_t=i) / P(Y_s=i) $, |
|
|
Not necessarily normalized to 1. |
|
|
|
|
|
Shapes: |
|
|
* Input: |
|
|
probs: N x C (No. of samples) x (No. of classes), |
|
|
w: C (No. of classes), |
|
|
* Output: |
|
|
pc_probs: N x C (No. of samples) x (No. of classes) |
|
|
|
|
|
|
|
|
For more information see original paper: |
|
|
[2002] "Adjusting the Outputs of a Classifier to New a Priori Probabilities: A Simple Procedure" |
|
|
""" |
|
|
assert len(w) == probs.shape[-1] |
|
|
probs = probs.detach().numpy() |
|
|
pc_probs = normalized(probs * w, axis=-1, order=1) |
|
|
|
|
|
return pc_probs |
|
|
|
|
|
|
|
|
|
|
|
def get_py(probs: np.ndarray, cls_num_list: List[int] = None, mode='soft'): |
|
|
r""" |
|
|
Estimation of source label distribution (normalized) |
|
|
Given source domain P(Y_s=i|X_s=x)=f(x) and No. of sample per-class, |
|
|
estimate P(Y_s=i) or p(\hat{y}=c_i) |
|
|
|
|
|
Args: |
|
|
probs: Softmax probability p(\hat{y}|x) predicted by classifier, |
|
|
over all samples on train set (N x C). |
|
|
cls_num_list: No. of samples in each class (C) |
|
|
mode: Method used to estimate p(\hat{y}=c_i), |
|
|
'soft' will estimate p(\hat{y}=c_i) \approx \sum^N_j p(\hat{y}=c_i|x_j), |
|
|
'hard' will estimate p(\hat{y}=c_i) \approx \sum^N_j \mathds{1}(\arg\max_c p(y=c|x_j)=c_i) |
|
|
'gt' will estimate p(\hat{y}=c_i) \approx P(Y_s=i), which is given by cls_num_list |
|
|
|
|
|
Shapes: |
|
|
* Input: |
|
|
probs: N x C (No. of samples) x (No. of classes), |
|
|
cls_num_list: C (No. of classes), |
|
|
* Output: |
|
|
py: C (No. of classes) |
|
|
|
|
|
Examples: |
|
|
|
|
|
>>> import numpy as np |
|
|
>>> from numpy.linalg import norm |
|
|
>>> class_num = 5; val_set_sample_num = 10 |
|
|
>>> prob = norm(np.random.normal(size=(val_set_sample_num, class_num)), ord=1, axis=-1) |
|
|
>>> num_list = list(range(class_num)) |
|
|
>>> py = get_py(prob, num_list) |
|
|
""" |
|
|
cls_num = probs.shape[-1] |
|
|
|
|
|
if mode == "soft": |
|
|
py = np.mean(probs, axis=tuple(range(len(np.shape(probs)) - 1))) |
|
|
elif mode == "hard": |
|
|
py = np.bincount(np.argmax(probs, axis=-1), minlength=cls_num) |
|
|
py = py / py.sum() |
|
|
elif mode == 'gt' and cls_num_list is not None: |
|
|
py = np.array(cls_num_list) / cls_num |
|
|
else: |
|
|
raise ValueError("'mode' only support options: 'soft', 'hard', 'gt'") |
|
|
|
|
|
return py / py.sum() |
|
|
|
|
|
|
|
|
|
|
|
def get_marginal(probs: np.ndarray, cls_num: int, mode: str = 'soft'): |
|
|
r""" |
|
|
Get Marginal Distribution $P(Y=.)$ given $P(Y=.|X=x)$ by summing over x |
|
|
""" |
|
|
assert (mode in ['soft', 'hard']) and probs.shape[-1] == cls_num |
|
|
if mode == 'hard': |
|
|
qz = np.zeros(cls_num) |
|
|
for i in np.argmax(probs, axis=-1): |
|
|
qz[i] += 1. |
|
|
qz = qz / qz.sum() |
|
|
elif mode == 'soft': |
|
|
qz = np.mean(probs, axis=0) |
|
|
|
|
|
return qz |
|
|
|
|
|
|
|
|
def get_confusion_matrix(probs: np.ndarray, |
|
|
labels: List, |
|
|
cls_num: int, |
|
|
mode: str = 'soft'): |
|
|
r""" |
|
|
Get Confusion Matrix of prediction given prediction $P(Y=.|X=x)$ and ground truth label $Y=.$ |
|
|
""" |
|
|
assert (mode in ['soft', 'hard']) and probs.shape[-1] == cls_num |
|
|
cm = np.zeros((cls_num, cls_num)) |
|
|
if mode == 'soft': |
|
|
for i, j in zip(labels, probs): |
|
|
cm[i, :] += j |
|
|
elif mode == 'hard': |
|
|
labels_pred = np.argmax(probs, axis=-1) |
|
|
for i, j in zip(labels, labels_pred): |
|
|
cm[i, j] += 1 |
|
|
|
|
|
return cm |
|
|
|
|
|
|
|
|
def normalized(a, axis=-1, order=2): |
|
|
r""" |
|
|
Prediction Normalization |
|
|
""" |
|
|
l2 = np.atleast_1d(np.linalg.norm(a, order, axis)) |
|
|
l2[l2 == 0] = 1 |
|
|
return a / np.expand_dims(l2, axis) |
|
|
|
|
|
|
|
|
def Topk_qy(probs: np.ndarray, cls_num, topk_ratio=0.8, head=0, normalize=True): |
|
|
r""" |
|
|
Get Marginal Distribution $P(Y=.)$ given Topk of $P(Y=.|X=x)$ by summing over x |
|
|
""" |
|
|
assert probs.shape[-1] == cls_num |
|
|
|
|
|
k = np.clip(int(cls_num * topk_ratio) + head, head + 1, cls_num) |
|
|
qy = np.zeros(cls_num) |
|
|
for x in probs: |
|
|
idx = np.argsort(x)[::-1] |
|
|
idx = idx[head:k] |
|
|
qy[idx] += x[idx] |
|
|
|
|
|
if normalize: |
|
|
qy = qy / probs.shape[0] |
|
|
|
|
|
return qy |
|
|
|