temp_backup / MAPLS /common.py
benzlxs's picture
Upload folder using huggingface_hub
9e56db5 verified
# Common Utils in Target Label Shift Estimation
import numpy as np
from typing import List
# Post hoc Label Shift Correction--------------------------------------#
def lsc(probs: np.ndarray, w: List):
r"""
Implementation of Label Shift Compensation (LSC) with known target label distribution.
Given source domain P(Y_s=i) and P(Y_s=i|X_s=x), target domain P(Y_t=i),
estimate target predicted probability q(y|x) on test set.
Args:
probs: Softmax probability P(Y_s=i|X_s=x) predicted by the classifier,
for all samples in validation set (N x C).
w: Ratio of Target over Source domain label distribution $ w = P(Y_t=i) / P(Y_s=i) $,
Not necessarily normalized to 1.
Shapes:
* Input:
probs: N x C (No. of samples) x (No. of classes),
w: C (No. of classes),
* Output:
pc_probs: N x C (No. of samples) x (No. of classes)
For more information see original paper:
[2002] "Adjusting the Outputs of a Classifier to New a Priori Probabilities: A Simple Procedure"
"""
assert len(w) == probs.shape[-1]
probs = probs.detach().numpy()
pc_probs = normalized(probs * w, axis=-1, order=1)
return pc_probs
# Estimation of Source Label Distribution P(Y_s=i) or p(\hat{y}=c_i)----------#
def get_py(probs: np.ndarray, cls_num_list: List[int] = None, mode='soft'):
r"""
Estimation of source label distribution (normalized)
Given source domain P(Y_s=i|X_s=x)=f(x) and No. of sample per-class,
estimate P(Y_s=i) or p(\hat{y}=c_i)
Args:
probs: Softmax probability p(\hat{y}|x) predicted by classifier,
over all samples on train set (N x C).
cls_num_list: No. of samples in each class (C)
mode: Method used to estimate p(\hat{y}=c_i),
'soft' will estimate p(\hat{y}=c_i) \approx \sum^N_j p(\hat{y}=c_i|x_j),
'hard' will estimate p(\hat{y}=c_i) \approx \sum^N_j \mathds{1}(\arg\max_c p(y=c|x_j)=c_i)
'gt' will estimate p(\hat{y}=c_i) \approx P(Y_s=i), which is given by cls_num_list
Shapes:
* Input:
probs: N x C (No. of samples) x (No. of classes),
cls_num_list: C (No. of classes),
* Output:
py: C (No. of classes)
Examples:
>>> import numpy as np
>>> from numpy.linalg import norm
>>> class_num = 5; val_set_sample_num = 10
>>> prob = norm(np.random.normal(size=(val_set_sample_num, class_num)), ord=1, axis=-1)
>>> num_list = list(range(class_num))
>>> py = get_py(prob, num_list)
"""
cls_num = probs.shape[-1]
if mode == "soft":
py = np.mean(probs, axis=tuple(range(len(np.shape(probs)) - 1)))
elif mode == "hard":
py = np.bincount(np.argmax(probs, axis=-1), minlength=cls_num)
py = py / py.sum()
elif mode == 'gt' and cls_num_list is not None:
py = np.array(cls_num_list) / cls_num
else:
raise ValueError("'mode' only support options: 'soft', 'hard', 'gt'")
return py / py.sum()
def get_marginal(probs: np.ndarray, cls_num: int, mode: str = 'soft'):
r"""
Get Marginal Distribution $P(Y=.)$ given $P(Y=.|X=x)$ by summing over x
"""
assert (mode in ['soft', 'hard']) and probs.shape[-1] == cls_num
if mode == 'hard':
qz = np.zeros(cls_num)
for i in np.argmax(probs, axis=-1):
qz[i] += 1.
qz = qz / qz.sum()
elif mode == 'soft':
qz = np.mean(probs, axis=0)
return qz
def get_confusion_matrix(probs: np.ndarray,
labels: List,
cls_num: int,
mode: str = 'soft'):
r"""
Get Confusion Matrix of prediction given prediction $P(Y=.|X=x)$ and ground truth label $Y=.$
"""
assert (mode in ['soft', 'hard']) and probs.shape[-1] == cls_num
cm = np.zeros((cls_num, cls_num))
if mode == 'soft':
for i, j in zip(labels, probs):
cm[i, :] += j
elif mode == 'hard':
labels_pred = np.argmax(probs, axis=-1)
for i, j in zip(labels, labels_pred):
cm[i, j] += 1
return cm
def normalized(a, axis=-1, order=2):
r"""
Prediction Normalization
"""
l2 = np.atleast_1d(np.linalg.norm(a, order, axis))
l2[l2 == 0] = 1
return a / np.expand_dims(l2, axis)
def Topk_qy(probs: np.ndarray, cls_num, topk_ratio=0.8, head=0, normalize=True):
r"""
Get Marginal Distribution $P(Y=.)$ given Topk of $P(Y=.|X=x)$ by summing over x
"""
assert probs.shape[-1] == cls_num
k = np.clip(int(cls_num * topk_ratio) + head, head + 1, cls_num)
qy = np.zeros(cls_num)
for x in probs:
idx = np.argsort(x)[::-1]
idx = idx[head:k]
qy[idx] += x[idx]
if normalize:
qy = qy / probs.shape[0]
return qy