|
|
function [fv,p,mx,Cx,Cy,b]=CWM(y,x,Nc,iter,optim,Sigmax) |
|
|
|
|
|
|
|
|
|
|
|
Dy=size(y,1); |
|
|
Nf=size(x,1); |
|
|
Nt=size(x,2); |
|
|
|
|
|
f1=figure; |
|
|
|
|
|
Lk=0; |
|
|
|
|
|
Lopt=10^100; |
|
|
for opt=1:optim |
|
|
p=ones(Nc,1)/Nc; |
|
|
|
|
|
gx=zeros(Nt,1); |
|
|
h=zeros(Nt,Nc); |
|
|
b=zeros(Dy,Nf+1,Nc); |
|
|
|
|
|
sigmay=cov(y'); |
|
|
sigmax=cov(x'); |
|
|
max(sigmax(:)) |
|
|
|
|
|
MAXy=max(y(1,:)); MINy=min(y(1,:)); |
|
|
|
|
|
|
|
|
mc=linspace(MINy,MAXy,Nc); |
|
|
b(1,1,:)=mc+0*(rand(size(mc))-.5)*(MAXy-MINy)/Nc/2; |
|
|
|
|
|
|
|
|
|
|
|
k=fix(rand(1,Nc)*Nt)+1; |
|
|
|
|
|
for i=1:Nc |
|
|
mx(:,i)=x(:,k(i)); |
|
|
b(:,1,i)=y(:,k(i)); |
|
|
Cx(:,:,i)=.5*diag(diag(sigmax))/Nc^(1/Nf)+.5*eye(Nf,Nf)*max(sigmax(:))/Nc; |
|
|
Cy(:,:,i)=1*sigmay/Nc; |
|
|
end |
|
|
|
|
|
|
|
|
ss=0; |
|
|
|
|
|
|
|
|
for j=1:Nc |
|
|
|
|
|
|
|
|
xmx=x-repmat(mx(:,j),1,Nt); |
|
|
iXa=inv(Cx(:,:,j)); |
|
|
xmX=iXa'*xmx; |
|
|
dxm=sum(xmX.*xmx)'; |
|
|
|
|
|
ym=y-b(:,:,j)*[ones(1,Nt); xmx]; |
|
|
if Dy>1 |
|
|
iXa=inv(Cy(:,:,j)); |
|
|
ymY=ym'*iXa; |
|
|
dym=dot(ymY',ym)'; |
|
|
else |
|
|
dym=ym'.^2/Cy(:,:,j); |
|
|
end |
|
|
|
|
|
gxy=exp(-0.5*(dym+dxm))/sqrt(det(Cy(:,:,j)))/(2*pi)^(Dy/2)/sqrt(det(Cx(:,:,j)))/(2*pi)^(Nf/2); |
|
|
gx(:,j)=exp(-0.5*(dxm))/sqrt(det(Cx(:,:,j)))/(2*pi)^(Nf/2); |
|
|
|
|
|
h(:,j)=real(p(j)*gxy); |
|
|
ss=ss+h(:,j); |
|
|
end |
|
|
|
|
|
|
|
|
for k=1:iter |
|
|
|
|
|
disp(k) |
|
|
figure(f1) |
|
|
subplot(121) |
|
|
cla |
|
|
plot(x(1,:),x(2,:),'y.') |
|
|
hold on |
|
|
plot(mx(1,:),mx(2,:),'+') |
|
|
axis('square') |
|
|
axis([min(x(1,:)) max(x(1,:)) min(x(2,:)) max(x(2,:))]) |
|
|
drawnow |
|
|
subplot(122) |
|
|
cla |
|
|
hold on |
|
|
my=b(:,1,:); |
|
|
plot(my(1,:),mx(1,:),'+') |
|
|
axis('square') |
|
|
title('output') |
|
|
axis([min(y(1,:)) max(y(1,:)) min(x(1,:)) max(x(1,:))]) |
|
|
drawnow |
|
|
|
|
|
for j=1:Nc |
|
|
h(:,j)=h(:,j)./ss; |
|
|
end |
|
|
tic |
|
|
|
|
|
|
|
|
ss=0; |
|
|
SUMtot=sum(h(:)); |
|
|
shj=sum(h); |
|
|
Cxm=0; |
|
|
for j=1:Nc |
|
|
sh=shj(j); |
|
|
p(j)=sh/SUMtot; |
|
|
Cxm=Cxm+Cx(:,:,j)*p(j); |
|
|
end |
|
|
for j=1:Nc |
|
|
|
|
|
sh=shj(j); |
|
|
p(j)=sh/SUMtot; |
|
|
|
|
|
hDy=repmat(h(:,j)',Dy,1); |
|
|
hNf=repmat(h(:,j)',Nf,1); |
|
|
mx(:,j)=sum(hNf.*x,2)/sh; |
|
|
|
|
|
my=sum(hDy.*y,2)/sh; |
|
|
xmx=x-repmat(mx(:,j),1,Nt); |
|
|
xmxp=xmx'; |
|
|
X=(hNf.*xmx)*xmxp/sh; |
|
|
Cx(:,:,j)=X+Sigmax*eye(Nf,Nf)/Nc^(1/Nf)*mean(diag(sigmax)); |
|
|
iXa=pinv(Cx(:,:,j)); |
|
|
|
|
|
% Calculo de b |
|
|
Bm=zeros(Nf+1,Nf+1); Bm(1,1)=1; |
|
|
Bm(2:Nf+1,2:Nf+1)=iXa; |
|
|
yxm=(hDy.*y)*xmxp/sh; |
|
|
Am=[my yxm]; |
|
|
b(:,:,j)=Am*Bm'; |
|
|
|
|
|
|
|
|
ym=y-b(:,:,j)*[ones(1,Nt); xmx]; |
|
|
|
|
|
if Dy>1 |
|
|
Cy(:,:,j)=(hDy.*ym)*ym'/sh+0.4*diag([10000/1 100/6].^2); |
|
|
else |
|
|
Cy(:,:,j)=(hDy.*ym)*ym'/sh+.1; |
|
|
end |
|
|
|
|
|
|
|
|
iXa=pinv(Cxm); |
|
|
xmX=iXa'*xmx; |
|
|
dxm=sum(xmX.*xmx); |
|
|
% P(y|x,Cj): |
|
|
if Dy>1 |
|
|
iXa=inv(Cy(:,:,j)); |
|
|
ymY=iXa'*ym; |
|
|
dym=dot(ymY,ym); |
|
|
else |
|
|
dym=ym.*ym/Cy(:,:,j); |
|
|
end |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
h(:,j)=p(j)*(exp(-0.5*dym)/sqrt(det(Cy(:,:,j)))/(2*pi)^(Dy/2)).*exp(-0.5*(dxm))*sqrt(det(iXa))/(2*pi)^(Nf/2); |
|
|
ss=ss+h(:,j); |
|
|
end |
|
|
toc |
|
|
|
|
|
L=-sum(log(ss)); |
|
|
Lk(k,opt)=L; |
|
|
end |
|
|
|
|
|
p_opt=p; |
|
|
mx_opt=mx; |
|
|
Cx_opt=Cx; |
|
|
Cy_opt=Cy; |
|
|
b_opt=b; |
|
|
Lopt=L; |
|
|
end |
|
|
p=p_opt; |
|
|
mx=mx_opt; |
|
|
Cx=Cx_opt; |
|
|
Cy=Cy_opt; |
|
|
b=b_opt; |
|
|
|
|
|
|
|
|
fv=Lopt; |
|
|
|
|
|
close |
|
|
|
|
|
|