function [sift, SIFTparam] = LMdenseSift(D, HOMEIMAGES, SIFTparam, HOMESIFT) % % Computes dense SIFT features. % The SIFT grid will be defined by the parameters: % SIFTparam.grid_spacing = 1; % distance between grid centers % SIFTparam.patch_size = 16; % size of patch from which to compute SIFT % descriptor (it has to be a factor of 4) % % Run demoSIFT.m to see an example of how it works. % % The SIFT descriptor at each location has 128 dimensions. % % This function can be called as: % % [sift, param] = LMdenseSift(D(n), HOMEIMAGES, param); % [sift, param] = LMdenseSift(filename, HOMEIMAGES, param); % [sift, param] = LMdenseSift(filename, HOMEIMAGES, param, HOMESIFT); % LMdenseSift(D, HOMEIMAGES, param, HOMESIFT); % % 'sift' corresponds to the features of the last image. So, call it passing % just one image. But you can precompute the SIFT features for a set of % images: When calling LMdenseSift with a fourth argument it will store the sift descriptors in a % new folder structure mirroring the folder structure of the images. Then, % when called again, if the sift files already exist, it will just read % them without recomputing them. % % Antonio Torralba, 2008 if nargin==4 precomputed = 1; % get list of folders and create non-existing ones %listoffolders = {D(:).annotation.folder}; else precomputed = 0; HOMESIFT = ''; end if nargin<3 % Default parameters SIFTparam.grid_spacing = 1; % distance between grid centers SIFTparam.patch_size = 16; % size of patch from which to compute SIFT descriptor (it has to be a factor of 4) end SIFTparam.w = SIFTparam.patch_size/2; % boundary Nfeatures = 128; if isstruct(D) % [gist, param] = LMdenseSift(D, HOMEIMAGES, param); Nscenes = length(D); typeD = 1; end if iscell(D) % [gist, param] = LMdenseSift(filename, HOMEIMAGES, param); Nscenes = length(D); typeD = 2; end if isnumeric(D) % [gist, param] = LMdenseSift(img, HOMEIMAGES, param); Nscenes = size(D,4); typeD = 3; end if Nscenes >1 fig = figure; end % Loop: Compute SIFT features for all scenes sift = zeros([Nscenes Nfeatures], 'single'); for n = 1:Nscenes g = []; todo = 1; % if SIFT has already been computed, just read the file if precomputed==1 filesift = fullfile(HOMESIFT, D(n).annotation.folder, [D(n).annotation.filename(1:end-4) '.mat']); if exist(filesift, 'file') load(filesift, 'sift', 'SIFTparam'); todo = 0; end end % otherwise compute SIFT if todo==1 disp([n Nscenes]) % load image try switch typeD case 1 img = LMimread(D, n, HOMEIMAGES); case 2 img = imread(fullfile(HOMEIMAGES, D{n})); case 3 img = D(:,:,:,n); end catch disp(D(n).annotation.folder) disp(D(n).annotation.filename) rethrow(lasterror) end % get SIFT descriptors [sift, SIFTparam.grid_x, SIFTparam.grid_y] = dense_sift(img, SIFTparam); if isfield(SIFTparam, 'edges') % 'dont-compute': default if field not present % 'siftrepeat' w = SIFTparam.w-1; switch lower(SIFTparam.edges) case 'siftrepeat' sift = [repmat(sift(1,:,:),[w 1 1]); sift; repmat(sift(end,:,:),[w 1 1])]; sift = [repmat(sift(:,1,:),[1 w 1]), sift, repmat(sift(:,end,:),[1 w 1])]; otherwise error('Unknown edges method') end end % save SIFT if a HOMESIFT file is provided if precomputed mkdir(fullfile(HOMESIFT, D(n).annotation.folder)) save (filesift, 'sift', 'SIFTparam') end if Nscenes >1 figure(fig); subplot(121) imshow(uint8(img)) subplot(122) showColorSIFT(sift) end end drawnow end function [sift_arr, grid_x, grid_y] = dense_sift(I, SIFTparam) % Original script by Svetlana Lazebnick % Antonio Torralba: modified using convolutions to speed up the % computations. grid_spacing = SIFTparam.grid_spacing; patch_size = SIFTparam.patch_size; I = double(I); I = mean(I,3); I = I /max(I(:)); % parameters num_angles = 8; num_bins = 4; num_samples = num_bins * num_bins; alpha = 9; %% parameter for attenuation of angles (must be odd) if nargin < 5 sigma_edge = 1; end angle_step = 2 * pi / num_angles; angles = 0:angle_step:2*pi; angles(num_angles+1) = []; % bin centers [hgt wid] = size(I); [G_X,G_Y]=gen_dgauss(sigma_edge); % add boundary: I = [I(2:-1:1,:,:); I; I(end:-1:end-1,:,:)]; I = [I(:,2:-1:1,:) I I(:,end:-1:end-1,:)]; I = I-mean(I(:)); I_X = filter2(G_X, I, 'same'); % vertical edges I_Y = filter2(G_Y, I, 'same'); % horizontal edges I_X = I_X(3:end-2,3:end-2,:); I_Y = I_Y(3:end-2,3:end-2,:); I_mag = sqrt(I_X.^2 + I_Y.^2); % gradient magnitude I_theta = atan2(I_Y,I_X); I_theta(find(isnan(I_theta))) = 0; % necessary???? % grid grid_x = patch_size/2:grid_spacing:wid-patch_size/2+1; grid_y = patch_size/2:grid_spacing:hgt-patch_size/2+1; % make orientation images I_orientation = zeros([hgt, wid, num_angles], 'single'); % for each histogram angle cosI = cos(I_theta); sinI = sin(I_theta); for a=1:num_angles % compute each orientation channel tmp = (cosI*cos(angles(a))+sinI*sin(angles(a))).^alpha; tmp = tmp .* (tmp > 0); % weight by magnitude I_orientation(:,:,a) = tmp .* I_mag; end % Convolution formulation: weight_kernel = zeros(patch_size,patch_size); r = patch_size/2; cx = r - 0.5; sample_res = patch_size/num_bins; weight_x = abs((1:patch_size) - cx)/sample_res; weight_x = (1 - weight_x) .* (weight_x <= 1); for a = 1:num_angles %I_orientation(:,:,a) = conv2(I_orientation(:,:,a), weight_kernel, 'same'); I_orientation(:,:,a) = conv2(weight_x, weight_x', I_orientation(:,:,a), 'same'); end % Sample SIFT bins at valid locations (without boundary artifacts) % find coordinates of sample points (bin centers) [sample_x, sample_y] = meshgrid(linspace(1,patch_size+1,num_bins+1)); sample_x = sample_x(1:num_bins,1:num_bins); sample_x = sample_x(:)-patch_size/2; sample_y = sample_y(1:num_bins,1:num_bins); sample_y = sample_y(:)-patch_size/2; sift_arr = zeros([length(grid_y) length(grid_x) num_angles*num_bins*num_bins], 'single'); b = 0; for n = 1:num_bins*num_bins sift_arr(:,:,b+1:b+num_angles) = I_orientation(grid_y+sample_y(n), grid_x+sample_x(n), :); b = b+num_angles; end clear I_orientation % Outputs: [grid_x,grid_y] = meshgrid(grid_x, grid_y); [nrows, ncols, cols] = size(sift_arr); % normalize SIFT descriptors %sift_arr = reshape(sift_arr, [nrows*ncols num_angles*num_bins*num_bins]); %sift_arr = normalize_sift(sift_arr); %sift_arr = reshape(sift_arr, [nrows ncols num_angles*num_bins*num_bins]); ct = .1; sift_arr = sift_arr + ct; tmp = sqrt(sum(sift_arr.^2, 3)); sift_arr = sift_arr ./ repmat(tmp, [1 1 size(sift_arr,3)]); function [GX,GY]=gen_dgauss(sigma) % laplacian of size sigma %f_wid = 4 * floor(sigma); %G = normpdf(-f_wid:f_wid,0,sigma); %G = G' * G; G = gen_gauss(sigma); [GX,GY] = gradient(G); GX = GX * 2 ./ sum(sum(abs(GX))); GY = GY * 2 ./ sum(sum(abs(GY))); function G=gen_gauss(sigma) if all(size(sigma)==[1, 1]) % isotropic gaussian f_wid = 4 * ceil(sigma) + 1; G = fspecial('gaussian', f_wid, sigma); % G = normpdf(-f_wid:f_wid,0,sigma); % G = G' * G; else % anisotropic gaussian f_wid_x = 2 * ceil(sigma(1)) + 1; f_wid_y = 2 * ceil(sigma(2)) + 1; G_x = normpdf(-f_wid_x:f_wid_x,0,sigma(1)); G_y = normpdf(-f_wid_y:f_wid_y,0,sigma(2)); G = G_y' * G_x; end