function [VW, sptHist] = LMdenseVisualWords(D, HOMEIMAGES, VWparam) % % Compute dense visual words and spatial pyramid histogram. % % The SIFT grid + visual words will be defined by the parameters VWparam: % VWparam.imagesize = 256; % normalized image size (images will be scaled so that the maximal axis has this dimension before computing the sift features) % VWparam.grid_spacing = 1; % distance between grid centers % VWparam.patch_size = 16; % size of patch from which to compute SIFT descriptor (it has to be a factor of 4) % VWparam.NumVisualWords = 200; % number of visual words % VWparam.Mw = 2; % number of spatial scales for spatial pyramid histogram % % Run demoVisualWords.m to see an example of how it works. % % The SIFT descriptor at each location has 128 dimensions and is vector quantized. % % This function can be called as: % % [VW, sptHist] = LMdenseVisualWords(img, HOMEIMAGES, param); % [VW, sptHist] = LMdenseVisualWords(D(n), HOMEIMAGES, param); % [VW, sptHist] = LMdenseVisualWords(filename, HOMEIMAGES, param); % % % Antonio Torralba, 2008 if nargin==4 precomputed = 1; % get list of folders and create non-existing ones %listoffolders = {D(:).annotation.folder}; else precomputed = 0; HOMESIFT = ''; end if nargin<3 % Default parameters VWparam.grid_spacing = 1; % distance between grid centers VWparam.patch_size = 16; % size of patch from which to compute SIFT descriptor (it has to be a factor of 4) end Nfeatures = 128; if isstruct(D) % [gist, param] = LMdenseVisualWords(D, HOMEIMAGES, param); Nscenes = length(D); typeD = 1; end if iscell(D) % [gist, param] = LMdenseVisualWords(filename, HOMEIMAGES, param); Nscenes = length(D); typeD = 2; end if isnumeric(D) % [gist, param] = LMdenseVisualWords(img, HOMEIMAGES, param); Nscenes = size(D,4); typeD = 3; end if Nscenes >1 fig = figure; end % Loop: Compute visual words for all scenes if isfield(VWparam, 'imagesize') n = VWparam.imagesize-VWparam.patch_size+2; m = n; else % read one image to check size. This will only work if all the images % have the same size switch typeD case 1 img = LMimread(D, 1, HOMEIMAGES); case 2 img = imread(fullfile(HOMEIMAGES, D{1})); case 3 img = D(:,:,:,1); end n = size(img,1)-VWparam.patch_size+2; m = size(img,2)-VWparam.patch_size+2; end VW = zeros([n m Nscenes], 'uint16'); sptHist = zeros([VWparam.NumVisualWords*((4^VWparam.Mw-1)/3) Nscenes], 'single'); for n = 1:Nscenes g = []; todo = 1; % otherwise compute gist if todo==1 disp([n Nscenes]) % load image try switch typeD case 1 img = LMimread(D, n, HOMEIMAGES); case 2 img = imread(fullfile(HOMEIMAGES, D{n})); case 3 img = D(:,:,:,n); end catch disp(D(n).annotation.folder) disp(D(n).annotation.filename) rethrow(lasterror) end % Reshape image to standard format if isfield(VWparam, 'imagesize') img = imresizecrop(img, VWparam.imagesize, 'bilinear'); end %M = max(size(img,1), size(img,2)); %if M~=VWparam.imagesize % img = imresize(img, VWparam.imagesize/M, 'bilinear'); %end % get SIFT descriptors sift = single(LMdenseSift(img, HOMEIMAGES, VWparam)); [nrows ncols nf] = size(sift); sift = reshape(sift, [size(sift,1)*size(sift,2) Nfeatures]); % vector quantization [fitd, w] = min(distMat(single(VWparam.visualwordcenters), sift)); VW(:,:,n) = uint16(reshape(w, [nrows ncols])); % Compute spatial histogram sptHist(:,n) = spatialHistogram(VW(:,:,n), VWparam.Mw, VWparam.NumVisualWords); if Nscenes >1 figure(fig); subplot(121) imshow(uint8(img)) subplot(122) imagesc(VW(:,:,n)) axis('equal') axis('off') end end drawnow end % % function [sift_arr, grid_x, grid_y] = dense_sift(I, SIFTparam) % % Svetlana Lazebnick % % Antonio Torralba: modified using convolutions to speed up the % % computations. % % grid_spacing = SIFTparam.grid_spacing; % patch_size = SIFTparam.patch_size; % % I = double(I); % I = mean(I,3); % I = I /max(I(:)); % % % parameters % num_angles = 8; % num_bins = 4; % num_samples = num_bins * num_bins; % alpha = 9; %% parameter for attenuation of angles (must be odd) % % if nargin < 5 % sigma_edge = 1; % end % % angle_step = 2 * pi / num_angles; % angles = 0:angle_step:2*pi; % angles(num_angles+1) = []; % bin centers % % [hgt wid] = size(I); % % [G_X,G_Y]=gen_dgauss(sigma_edge); % % % add boundary: % I = [I(2:-1:1,:,:); I; I(end:-1:end-1,:,:)]; % I = [I(:,2:-1:1,:) I I(:,end:-1:end-1,:)]; % % I = I-mean(I(:)); % I_X = filter2(G_X, I, 'same'); % vertical edges % I_Y = filter2(G_Y, I, 'same'); % horizontal edges % % I_X = I_X(3:end-2,3:end-2,:); % I_Y = I_Y(3:end-2,3:end-2,:); % % I_mag = sqrt(I_X.^2 + I_Y.^2); % gradient magnitude % I_theta = atan2(I_Y,I_X); % I_theta(find(isnan(I_theta))) = 0; % necessary???? % % % grid % grid_x = patch_size/2:grid_spacing:wid-patch_size/2+1; % grid_y = patch_size/2:grid_spacing:hgt-patch_size/2+1; % % % make orientation images % I_orientation = zeros([hgt, wid, num_angles], 'single'); % % % for each histogram angle % cosI = cos(I_theta); % sinI = sin(I_theta); % for a=1:num_angles % % compute each orientation channel % tmp = (cosI*cos(angles(a))+sinI*sin(angles(a))).^alpha; % tmp = tmp .* (tmp > 0); % % % weight by magnitude % I_orientation(:,:,a) = tmp .* I_mag; % end % % % Convolution formulation: % weight_kernel = zeros(patch_size,patch_size); % r = patch_size/2; % cx = r - 0.5; % sample_res = patch_size/num_bins; % weight_x = abs((1:patch_size) - cx)/sample_res; % weight_x = (1 - weight_x) .* (weight_x <= 1); % % for a = 1:num_angles % %I_orientation(:,:,a) = conv2(I_orientation(:,:,a), weight_kernel, 'same'); % I_orientation(:,:,a) = conv2(weight_x, weight_x', I_orientation(:,:,a), 'same'); % end % % % Sample SIFT bins at valid locations (without boundary artifacts) % % find coordinates of sample points (bin centers) % [sample_x, sample_y] = meshgrid(linspace(1,patch_size+1,num_bins+1)); % sample_x = sample_x(1:num_bins,1:num_bins); sample_x = sample_x(:)-patch_size/2; % sample_y = sample_y(1:num_bins,1:num_bins); sample_y = sample_y(:)-patch_size/2; % % sift_arr = zeros([length(grid_y) length(grid_x) num_angles*num_bins*num_bins], 'single'); % b = 0; % for n = 1:num_bins*num_bins % sift_arr(:,:,b+1:b+num_angles) = I_orientation(grid_y+sample_y(n), grid_x+sample_x(n), :); % b = b+num_angles; % end % clear I_orientation % % % % Outputs: % [grid_x,grid_y] = meshgrid(grid_x, grid_y); % [nrows, ncols, cols] = size(sift_arr); % % % normalize SIFT descriptors % % %sift_arr = reshape(sift_arr, [nrows*ncols num_angles*num_bins*num_bins]); % %sift_arr = normalize_sift(sift_arr); % %sift_arr = reshape(sift_arr, [nrows ncols num_angles*num_bins*num_bins]); % % % ct = .1; % sift_arr = sift_arr + ct; % tmp = sqrt(sum(sift_arr.^2, 3)); % sift_arr = sift_arr ./ repmat(tmp, [1 1 size(sift_arr,3)]); % % function [GX,GY]=gen_dgauss(sigma) % % % laplacian of size sigma % %f_wid = 4 * floor(sigma); % %G = normpdf(-f_wid:f_wid,0,sigma); % %G = G' * G; % G = gen_gauss(sigma); % [GX,GY] = gradient(G); % % GX = GX * 2 ./ sum(sum(abs(GX))); % GY = GY * 2 ./ sum(sum(abs(GY))); % % % function G=gen_gauss(sigma) % % if all(size(sigma)==[1, 1]) % % isotropic gaussian % f_wid = 4 * ceil(sigma) + 1; % G = fspecial('gaussian', f_wid, sigma); % % G = normpdf(-f_wid:f_wid,0,sigma); % % G = G' * G; % else % % anisotropic gaussian % f_wid_x = 2 * ceil(sigma(1)) + 1; % f_wid_y = 2 * ceil(sigma(2)) + 1; % G_x = normpdf(-f_wid_x:f_wid_x,0,sigma(1)); % G_y = normpdf(-f_wid_y:f_wid_y,0,sigma(2)); % G = G_y' * G_x; % end function D=distMat(P1, P2) % % Euclidian distances between vectors if nargin == 2 X1=repmat(single(sum(P1.^2,2)),[1 size(P2,1)]); X2=repmat(single(sum(P2.^2,2)),[1 size(P1,1)]); R=P1*P2'; D=X1+X2'-2*R; else % each vector is one column X1=repmat(sum(P1.^2,1),[size(P1,2) 1]); R=P1'*P1; D=X1+X1'-2*R; D = sqrt(D); end function h = spatialHistogram(W, Mw, Nwords) % Mw = number of spatial windows for computing histograms coef = 1./[2^(Mw-1) 2.^(Mw-(1:(Mw-1)))]; h = []; for M = 1:Mw lx = round(linspace(1, size(W,2)-1, 2^(M-1)+1)); ly = round(linspace(1, size(W,1)-1, 2^(M-1)+1)); for x = 1:2^(M-1) for y = 1:2^(M-1) ww = W(ly(y)+1:ly(y+1), lx(x)+1:lx(x+1)); hh = hist(ww(:), 1:Nwords); h = [h coef(M)*hh]; end end end % store words h = h /sum(h);