/** @file mathop.h ** @brief Math operations ** @author Andrea Vedaldi **/ /* AUTORIGHTS Copyright (C) 2007-09 Andrea Vedaldi and Brian Fulkerson This file is part of VLFeat, available in the terms of the GNU General Public License version 2. */ #ifndef VL_MATHOP_H #define VL_MATHOP_H #include "generic.h" #include /** @brief Logarithm of 2 (math constant)*/ #define VL_LOG_OF_2 0.693147180559945 /** @brief Pi (math constant) */ #define VL_PI 3.141592653589793 /** @brief IEEE single precision epsilon (math constant) ** ** 1.0F + VL_EPSILON_F is the smallest representable ** single precision number greater than @c 1.0F. Numerically, ** ::VL_EPSILON_F is equal to @f$ 2^{-23} @f$. ** **/ #define VL_EPSILON_F 1.19209290E-07F /** @brief IEEE double precision epsilon (math constant) ** ** 1.0 + VL_EPSILON_D is the smallest representable ** double precision number greater than @c 1.0. Numerically, ** ::VL_EPSILON_D is equal to @f$ 2^{-52} @f$. **/ #define VL_EPSILON_D 2.220446049250313e-16 /* For the code below: An ANSI C compiler takes the two expressions, LONG_VAR and CHAR_VAR, and implicitly casts them to the type of the first member of the union. Refer to K&R Second Edition Page 148, last paragraph. */ /** @brief IEEE single precision quiet NaN constant */ static union { vl_uint32 raw ; float value ; } const vl_nan_f = { 0x7FC00000UL } ; /** @brief IEEE single precision infinity constant */ static union { vl_uint32 raw ; float value ; } const vl_infinity_f = { 0x7F800000UL } ; /** @brief IEEE double precision quiet NaN constant */ static union { vl_uint64 raw ; double value ; } const vl_nan_d = #ifdef VL_COMPILER_MSC { 0x7FF8000000000000ui64 } ; #else { 0x7FF8000000000000ULL } ; #endif /** @brief IEEE double precision infinity constant */ static union { vl_uint64 raw ; double value ; } const vl_infinity_d = #ifdef VL_COMPILER_MSC { 0x7FF0000000000000ui64 } ; #else { 0x7FF0000000000000ULL } ; #endif /** @brief IEEE single precision NaN (not signaling) */ #define VL_NAN_F (vl_nan_f.value) /** @brief IEEE single precision positive infinity (not signaling) */ #define VL_INFINITY_F (vl_infinity_f.value) /** @brief IEEE double precision NaN (not signaling) */ #define VL_NAN_D (vl_nan_d.value) /** @brief IEEE double precision positive infinity (not signaling) */ #define VL_INFINITY_D (vl_infinity_d.value) /** ------------------------------------------------------------------ ** @{ ** @brief Fast mod(x, 2 * VL_PI) ** ** @param x input value. ** ** The function is optimized for small absolute values of @a x. ** ** The result is guaranteed to be not smaller than 0. However, due to ** finite numerical precision and rounding errors, the result can be ** equal to 2 * VL_PI (for instance, if @c x is a very small negative ** number). ** ** @return mod(x, 2 * VL_PI) **/ VL_INLINE float vl_mod_2pi_f (float x) { while (x > 2 * VL_PI) x -= (float) (2 * VL_PI) ; while (x < 0.0F ) x += (float) (2 * VL_PI); return x ; } VL_INLINE double vl_mod_2pi_d (double x) { while (x > 2 * VL_PI) x -= 2 * VL_PI ; while (x < 0.0 ) x += 2 * VL_PI ; return x ; } /** @} */ /** ------------------------------------------------------------------ ** @{ ** @brief Fast (int) floor(x) ** ** @param x argument. ** @return @c (int) floor(x) **/ VL_INLINE int vl_floor_f (float x) { int xi = (int) x ; if (x >= 0 || (float) xi == x) return xi ; else return xi - 1 ; } VL_INLINE int vl_floor_d (double x) { int xi = (int) x ; if (x >= 0 || (double) xi == x) return xi ; else return xi - 1 ; } /* @} */ /** ------------------------------------------------------------------ ** @{ ** @brief Fast @c abs(x) ** @param x argument. ** @return @c abs(x) **/ VL_INLINE float vl_abs_f (float x) { #ifdef VL_COMPILER_GNU return __builtin_fabsf (x) ; #else return fabsf(x) ; #endif } VL_INLINE double vl_abs_d (double x) { #ifdef VL_COMPILER_GNU return __builtin_fabs (x) ; #else return fabs(x) ; #endif } /** @} */ /** ------------------------------------------------------------------ ** @{ ** @brief Fast @c atan2 approximation ** @param y argument. ** @param x argument. ** ** The function computes a relatively rough but fast approximation of ** @c atan2(y,x). ** ** @par Algorithm ** ** The algorithm approximates the function @f$ f(r)=atan((1-r)/(1+r)) ** @f$, @f$ r \in [-1,1] @f$ with a third order polynomial @f$ ** f(r)=c_0 + c_1 r + c_2 r^2 + c_3 r^3 @f$. To fit the polynomial ** we impose the constraints ** ** @f{eqnarray*} ** f(+1) &=& c_0 + c_1 + c_2 + c_3 = atan(0) = 0,\\ ** f(-1) &=& c_0 - c_1 + c_2 - c_3 = atan(\infty) = \pi/2,\\ ** f(0) &=& c_0 = atan(1) = \pi/4. ** @f} ** ** The last degree of freedom is fixed by minimizing the @f$ ** l^{\infty} @f$ error, which yields ** ** @f[ ** c_0=\pi/4, \quad ** c_1=-0.9675, \quad ** c_2=0, \quad ** c_3=0.1821, ** @f] ** ** with maximum error of 0.0061 radians at 0.35 degrees. ** ** @return Approximation of @c atan2(y,x). **/ VL_INLINE float vl_fast_atan2_f (float y, float x) { float angle, r ; float const c3 = 0.1821F ; float const c1 = 0.9675F ; float abs_y = vl_abs_f (y) + VL_EPSILON_F ; if (x >= 0) { r = (x - abs_y) / (x + abs_y) ; angle = (float) (VL_PI / 4) ; } else { r = (x + abs_y) / (abs_y - x) ; angle = (float) (3 * VL_PI / 4) ; } angle += (c3*r*r - c1) * r ; return (y < 0) ? - angle : angle ; } VL_INLINE double vl_fast_atan2_d (double y, double x) { double angle, r ; double const c3 = 0.1821 ; double const c1 = 0.9675 ; double abs_y = vl_abs_d (y) + VL_EPSILON_D ; if (x >= 0) { r = (x - abs_y) / (x + abs_y) ; angle = VL_PI / 4 ; } else { r = (x + abs_y) / (abs_y - x) ; angle = 3 * VL_PI / 4 ; } angle += (c3*r*r - c1) * r ; return (y < 0) ? - angle : angle ; } /** @} */ /** ------------------------------------------------------------------ ** @{ ** @brief Fast @c resqrt approximation ** @param x argument. ** ** The function quickly computes an approximation of @f$ x^{-1/2} ** @f$. ** ** @par Algorithm ** ** The goal is to compute @f$ y = x^{-1/2} @f$, which we do by ** finding the solution of @f$ 0 = f(y) = y^{-2} - x@f$ by two Newton ** steps. Each Newton iteration is given by ** ** @f[ ** y \leftarrow ** y - \frac{f(y)}{\dot f(y)} = ** y + \frac{1}{2} (y-xy^3) = ** \frac{y}{2} \left( 3 - xy^2 \right) ** @f] ** ** which yields a simple polynomial update rule. ** ** The clever bit (attributed to either J. Carmack or G. Tarolli) is ** the way an initial guess @f$ y \approx x^{-1/2} @f$ is chosen. ** ** @see Inverse Sqare Root. ** ** @return Approximation of @c resqrt(x). **/ VL_INLINE float vl_fast_resqrt_f (float x) { /* 32-bit version */ union { float x ; vl_int32 i ; } u ; float xhalf = (float) 0.5 * x ; /* convert floating point value in RAW integer */ u.x = x ; /* gives initial guess y0 */ u.i = 0x5f3759df - (u.i >> 1); /*u.i = 0xdf59375f - (u.i>>1);*/ /* two Newton steps */ u.x = u.x * ( (float) 1.5 - xhalf*u.x*u.x) ; u.x = u.x * ( (float) 1.5 - xhalf*u.x*u.x) ; return u.x ; } VL_INLINE double vl_fast_resqrt_d (double x) { /* 64-bit version */ union { double x ; vl_int64 i ; } u ; double xhalf = (double) 0.5 * x ; /* convert floating point value in RAW integer */ u.x = x ; /* gives initial guess y0 */ #ifdef VL_COMPILER_MSC u.i = 0x5fe6ec85e7de30dai64 - (u.i >> 1) ; #else u.i = 0x5fe6ec85e7de30daLL - (u.i >> 1) ; #endif /* two Newton steps */ u.x = u.x * ( (double) 1.5 - xhalf*u.x*u.x) ; u.x = u.x * ( (double) 1.5 - xhalf*u.x*u.x) ; return u.x ; } /** @} */ /** ------------------------------------------------------------------ ** @{ ** @brief Fast @c sqrt approximation ** @param x argument. ** @return Approximation of @c sqrt(x). ** ** The function computes a fast approximation of @c sqrt(x). ** ** @par Floating-point algorithm ** ** For the floating point cases, the function uses ::vl_fast_resqrt_f ** (or ::vl_fast_resqrt_d) to compute x * ** vl_fast_resqrt_f(x). ** ** @par Integer algorithm ** ** We seek for the largest integer @e y such that @f$ y^2 \leq x @f$. ** Write @f$ y = w + b_k 2^k + z @f$ where the binary expansion of the ** various variable is ** ** @f[ ** x = \sum_{i=0}^{n-1} 2^i a_i, \qquad ** w = \sum_{i=k+1}^{m-1} 2^i b_i, \qquad ** z = \sum_{i=0}^{k-1} 2^i b_i. ** @f] ** ** Assume @e w known. Expanding the square and using the fact that ** @f$ b_k^2=b_k @f$, we obtain the following constraint for @f$ b_k ** @f$ and @e z: ** ** @f[ ** x - w^2 \geq 2^k ( 2 w + 2^k ) b_k + z (z + 2wz + 2^{k+1}z b_k) ** @f] ** ** A necessary condition for @f$ b_k = 1 @f$ is that this equation is ** satisfied for @f$ z = 0 @f$ (as the second term is always ** non-negative). In fact, this condition is also sufficient, since ** we are looking for the @e largest solution @e y. ** ** This yields the following iterative algorithm. First, note that if ** @e x is stored in @e n bits, where @e n is even, then the integer ** square root does not require more than @f$ m = n / 2 @f$ bit to be ** stored. Thus initially, @f$ w = 0 @f$ and @f$ k = m - 1 = n/2 - 1 ** @f$. Then, at each iteration the equation is tested, determining ** @f$ b_{m-1}, b_{m-2}, ... @f$ in this order. **/ VL_INLINE float vl_fast_sqrt_f (float x) { return (x < 1e-8) ? 0 : x * vl_fast_resqrt_f (x) ; } VL_INLINE double vl_fast_sqrt_d (float x) { return (x < 1e-8) ? 0 : x * vl_fast_resqrt_d (x) ; } VL_INLINE vl_uint32 vl_fast_sqrt_ui32 (vl_uint32 x) ; VL_INLINE vl_uint16 vl_fast_sqrt_ui16 (vl_uint16 x) ; VL_INLINE vl_uint8 vl_fast_sqrt_ui8 (vl_uint8 x) ; /** @} */ #define VL_FAST_SQRT_UI(T, SFX) \ T \ vl_fast_sqrt_ ## SFX (T x) \ { \ T y = 0 ; /* w / 2^k */ \ T tmp = 0 ; \ int twok ; \ \ for (twok = 8 * sizeof(T) - 2 ; \ twok >= 0 ; twok -= 2) { \ y <<= 1 ; /* y = 2 * y */ \ tmp = (2*y + 1) << twok ; \ if (x >= tmp) { \ x -= tmp ; \ y += 1 ; \ } \ } \ return y ; \ } #ifdef __DOXYGEN__ #undef VL_FAST_SQRT_UI #define VL_FAST_SQRT_UI(T,SFX) #endif VL_FAST_SQRT_UI(vl_uint32, ui32) VL_FAST_SQRT_UI(vl_uint16, ui16) VL_FAST_SQRT_UI(vl_uint8, ui8 ) /** @} */ /* ---------------------------------------------------------------- */ #ifndef __DOXYGEN__ typedef float (*VlFloatVectorComparisonFunction)(vl_size dimension, float const * X, float const * Y) ; typedef double (*VlDoubleVectorComparisonFunction)(vl_size dimension, double const * X, double const * Y) ; #else typedef void VlFloatVectorComparisonFunction ; typedef void VlDoubleVectorComparisonFunction ; #endif /** @brief Vector comparison types */ enum _VlVectorComparisonType { VlDistanceL1, /**< l1 distance */ VlDistanceL2, /**< l2 distance */ VlDistanceChi2, /**< Chi2 distance */ VlKernelL1, /**< l1 kernel */ VlKernelL2, /**< l2 kernel */ VlKernelChi2 /**< Chi2 kernel */ } ; /** @brief Vector comparison types */ typedef enum _VlVectorComparisonType VlVectorComparisonType ; VL_EXPORT VlFloatVectorComparisonFunction vl_get_vector_comparison_function_f (VlVectorComparisonType type) ; VL_EXPORT VlDoubleVectorComparisonFunction vl_get_vector_comparison_function_d (VlVectorComparisonType type) ; VL_EXPORT void vl_eval_vector_comparison_on_all_pairs_f (float * result, vl_size dimension, float const * X, vl_size numDataX, float const * Y, vl_size numDataY, VlFloatVectorComparisonFunction function) ; VL_EXPORT void vl_eval_vector_comparison_on_all_pairs_d (double * result, vl_size dimension, double const * X, vl_size numDataX, double const * Y, vl_size numDataY, VlDoubleVectorComparisonFunction) ; /* VL_MATHOP_H */ #endif