File size: 8,695 Bytes
b4ae6c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
function Z=solvemodel(x, targs, vers, show)
% % This function solves the model, given (1) values for the parameters that
% don't change, which are global variables, (2) values for "calibrated"
% parameters, over which the fsolve function is searching, and which are
% passed to this function as the vector 'x'.
%
% The second argument, 'targs,' gives values for the three statistics whose
% values are being targeted by fsolve as part of the calibration exercise.
% The vector of values, 'Z,' that are returned by this function are the
% squared residuals that fsolve seeks to set to zero.
%
% The variable 'vers,' determines which variables are being passed to the
% function in 'x' and which ones are fixed at the global values set in the
% main m-file (as specified below).
%
% For the variable 'show,' a value of 1 tells the function to print the
% values of the various statistics of interest.
%
%
% parameters:
global pigrdpts pigrid pigriddiv yb yg beta b gam eta pkh lam alph pi0 kh sigeps A kr
% output or results that we want to be available globally:
global pe pf u e0 e1 w0 w1 tendist probmatch probg H_pi_dist pibar theta oneqhazrate twoqhazrate threeplushazrate hiresrate jfr meanvacdur
if vers==1
localpi0=pi0;
localkh=kh;
localsigeps=x(1);
localA=x(2);
localkr=x(3);
elseif vers==2
localpi0=x(1);
localkh=kh;
localsigeps=sigeps;
localA=x(2);
localkr=x(3);
elseif vers==3
localpi0=pi0;
localkh=x(3);
localsigeps=x(1);
localA=x(2);
localkr=kr;
end
% % Compute the cumulative distribution of pi, conditional on normally
% distributed signal (z). This must be re-computed every time the values
% of sigeps or pi0 change (which is every time that this function is
% called).
% Find value of z such that pi equals a particular value of pigriddiv
for j=1:pigrdpts+1
zz(j)=fsolve(@(z) pigriddiv(j)-localpi0*exp(-(z-yg)^2/2/localsigeps^2)/(localpi0*exp(-(z-yg)^2/2/localsigeps^2)+(1-localpi0)*exp(-(z-yb)^2/2/localsigeps^2)), 0, optimoptions('fsolve','TolFun',1e-16,'Display','off'));
end
% Probabilities of getting a value of pi between two successive values of
% pigriddiv (the range surrounding a value of pigrid)
H_pi_dist(1,:)=localpi0*normcdf(zz(2:end), yg, localsigeps)+(1-localpi0)*normcdf(zz(2:end), yb, localsigeps)-(localpi0*normcdf(zz(1:end-1), yg, localsigeps)+(1-localpi0)*normcdf(zz(1:end-1), yb, localsigeps));
H_pi_dist(1,:)=H_pi_dist(1,:)/sum(H_pi_dist(1,:)); % normalize, to ensure elements sum to 1 exactly.
%% Solve Bellman equations
xx=1/2000; % adjustment factor for convergence of pe
pe=.2; % initial value for pe
% Create/initiate value functions
S0old=zeros(1,length(pigrid));
S1old=zeros(1,length(pigrid));
Je0old=zeros(1,length(pigrid));
Je1old=zeros(1,length(pigrid));
Juold=0;
Ve0old=zeros(1,length(pigrid));
Ve1old=zeros(1,length(pigrid));
Vuold=0;
Vu=0;
difpe=1;
tol=1e-8;
while abs(difpe)>tol
pf=localA^(1/(1-gam))*pe^((-gam)/(1-gam));
difs=1;
while difs>tol
S0new=max(pigrid*(yg-yb)+yb-localkh-b+beta*(1-lam)*(alph*pigrid*(pkh*S1old(end)+(1-pkh)*S0old(end))+(1-alph)*(pkh*S1old+(1-pkh)*S0old))-...
beta*pe*eta*H_pi_dist*S0old',0);
S1new=max(pigrid*(yg-yb)+yb-b+beta*(1-lam)*(alph*pigrid*S1old(end)+(1-alph)*S1old)-...
beta*pe*eta*H_pi_dist*S0old',0);
difs=max(max(abs(S1old-S1new)),max(abs(S0old-S0new)));
S1old=S1new;
S0old=S0new;
end
peold=pe;
Ju=(-localkr+beta*pf*(1-eta)*H_pi_dist*S0new')/(1-beta);
difpe=Ju;
pe=peold*(1+difpe*xx); % increase worker's finding rate if Ju>0
end
theta=pe/pf;
w0=b+eta*(pigrid*yg+(1-pigrid)*yb-localkh-b+localkr*theta);
w1=b+eta*(pigrid*yg+(1-pigrid)*yb-b+localkr*theta);
pibar=pigrid(sum(S0new==0));
%% Calculate statistics of interest, given the equilibrium pe, pf, and pibar from above
probmatch=H_pi_dist*(pigrid>pibar)'; % fraction of meetings with high enought pi to form/continue match
probg=(H_pi_dist/sum(H_pi_dist(pigrid>pibar)))*(pigrid.*(pigrid>pibar))'; % probability that matches are actually good (conditional on having been formed)
trans=zeros(3,3); % three states: unemployed, unknown type, known good matches
trans=[1-pe*probmatch lam+(1-lam)*alph*(1-probg) lam;...
pe*probmatch (1-lam)*(1-alph) 0;...
0 (1-lam)*alph*probg 1-lam];
% steady state
mtr=eye(3)-trans;
mtr(3,1:3)=1;
invmtr=inv(mtr);
erg=invmtr(:,3);
u=erg(1); % unemployment
e0=erg(2); % matches of unknown type
e1=erg(3); % matches known to be good
% % Calculate the job tenure distribution
% --Allow mass of one unit to enter and the trace the realized tenure
% distribution of that cohort
% --This is equivalent to looking at the point-in-time distribution if one
% unit is allowed to enter each period. The whole distribution would simply
% scale up or down with the size of the mass of entrants.
tendist=[0;1;0];
trans1=trans;
trans1(:,1)=0; % don't allow any exits from unemployment after first period, so this just tracks the initial mass of entrants
for i=2:2000 % 2000 periods is 2000/52 (roughly 40) years
tendist(:,i)=trans1*tendist(:,i-1) ;
end
% fqseps: All separations among jobs newly created in the quarter=(start in first week of quarter and separate within 12
% periods)+(start in second week of quarter and separate within 11
% periods)+(start in third week of quarter and separate within 10)+...etc
fqseps=13*sum(tendist(2:3,1))-sum(tendist(2:3,14))-sum(tendist(2:3,13))-...
sum(tendist(2:3,12))-sum(tendist(2:3,11))-sum(tendist(2:3,10))-...
sum(tendist(2:3,9))-sum(tendist(2:3,8))-sum(tendist(2:3,7))-...
sum(tendist(2:3,6))-sum(tendist(2:3,5))-sum(tendist(2:3,4))-...
sum(tendist(2:3,3))-sum(tendist(2:3,2));
% empspells: (Employment among all tenure categories at start of
% quarter)+(new starts in 2nd week)+(new starts in third week)+...+(new
% starts in 13th week)
empspells=sum(sum(tendist(2:3,:)))+12*sum(tendist(2:3,1));
sqrate=fqseps/empspells; % incidence rate of one-quarter spells (q_1 in paper)
hires=13*sum(tendist(2:3,1));
% % First quarter hazard rate: among those who enter a job in a given
% quarter, what fraction have separated by the start of the next quarter?
oneqhazrate=fqseps/hires;
% Note: we could have used either tendist or scaledtendist in the above
% calculations for sqrate and fqhazrate. Whether they are scaled or not
% doesn't matter much so long as the numerators and denominators are scaled
% equivalently.
% 2 quarter hazard rate
twoqseps=sum(sum(tendist(2:3,2:14)))-sum(sum(tendist(2:3,15:27)));
twoqhazrate=twoqseps/sum(sum(tendist(2:3,2:14)));
% 3+ quarters separation rate
threeplusseps=sum(sum(tendist(2:3,15:end)))-sum(sum(tendist(2:3,28:end)));
threeplushazrate=threeplusseps/sum(sum(tendist(2:3,15:end)));
% Quarterly hires rate (# hires in quarter divided by total employment spells)
hiresrate=hires/empspells;
% Monthly job-finding rate
jfr=pe*probmatch+(1-pe*probmatch)*pe*probmatch +(1-pe*probmatch)^2*pe*probmatch+(1-pe*probmatch)^3*pe*probmatch; % weekly frequency: "month"==4 weeks
% % Mean vacancy duration in days
% meanvacdur=7*(1/pf/probmatch);
% Mean vacancy duration in weeks
meanvacdur=(1/pf/probmatch);
% print output
if show==1
% fid=fopen('results.txt','w');
% fprintf(fid,'Unemployment rate: \t\t\t\t %g\r', u);
% fprintf(fid,'Monthly job-finding rate:\t\t %g\r', jfr);
% fprintf(fid,'Ave. vacancy duration (weeks):\t %g\r', 1/pf/probmatch);
% fprintf(fid,'Prob(good|match):\t\t\t\t %g\r', probg);
% fprintf(fid,'1-H(pi^n):\t\t\t\t\t\t %g\r', probmatch);
% fprintf(fid,'Worker meeting rate:\t\t\t\t %g\r', pe);
% fprintf(fid,'First quarter hazard rate:\t\t %g\r',oneqhazrate);
% fprintf(fid,'Second quarter hazard rate:\t\t %g\r',twoqhazrate);
% fprintf(fid,'3+ quarter hazard rate:\t\t\t %g\r',threeplushazrate);
% fprintf(fid,'Hires rate:\t\t\t\t\t\t %g\r',hiresrate);
% fclose(fid);
% type results.txt
% print results to be cut-and-pasted into tables in Latex
fid=fopen('results2.txt','w');
fprintf(fid,'& %.3f & %.3f & %.3f & %.3f & %.3f & %.2f & %.3f', oneqhazrate, twoqhazrate, threeplushazrate, hiresrate, jfr, meanvacdur, u);
fclose(fid);
type results2.txt
end
Z=[(log(targs(1))-log(probg))^2; (log(targs(2))-log(jfr))^2; (log(targs(3))-log(meanvacdur))^2];
|