File size: 68,287 Bytes
57fe0a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 |
---------------------------------------------------------------------------------------------------------------------------------
name: <unnamed>
log: C:/Users/paserman/Dropbox/Research/GenderCooperativeness/EJ/3 replication package/Log/AppendixC_simulations_May2021.
> log
log type: text
opened on: 10 May 2021, 18:23:16
.
.
. cap prog drop rd_sim
. prog def rd_sim, rclass
1. version 15.1
2. syntax [, nobs(integer 10000) beta_a(real 1.0) beta_b(real 1.0) rho_x(real 0.7) /*
> */ zbar_R(real 0.5) zbar_D(real -0.5) /*
> */ alpha_R(real 0.5) alpha_D(real 0.5) /*
> */ kappa_ksi_R(real 0.0) beta_ksi_R(real 10.0) kappa_ksi_D(real 0.0) beta_ksi_D(real 10.0) /*
> */ phi0_R(real -1.0) phi1_R(real -1.0) phi0_D(real -1.0) phi1_D(real -1.0) /*
> */ kappa_u(real 0.0) beta_u(real 1.0) /*
> */ gamma0(real 0.0) gamma1(real -5.0) gamma2(real 0.0) gamma3(real 0.0)/*
> */ tau0(real 0.3) tau1(real -1.0) tau2(real 0.0)]
3. drop _all
4. set obs `nobs'
5.
. * Overall district ideology
. gen z = 2*(rbeta(`beta_a',`beta_b')-0.5)
6. gen x = z + (sqrt((1-`rho_x'^2)/`rho_x'^2))*(2*(rbeta(`beta_a',`beta_b')-0.5))
7.
. * Ideology of R and candidates: weighted average of national party and local ideology, plus noise
. gen z_R = `alpha_R'*`zbar_R' + (1-`alpha_R')*z + `kappa_ksi_R'*(rbeta(`beta_ksi_R',`beta_ksi_R')-0.5)
8. gen z_D = `alpha_D'*`zbar_D' + (1-`alpha_D')*z + `kappa_ksi_D'*(rbeta(`beta_ksi_D',`beta_ksi_D')-0.5)
9.
. * Gender is correlated with candidate ideology
. gen byte female_D = rnormal(`phi0_D' + `phi1_D'*z_D)>0
10. gen byte female_R = rnormal(`phi0_R' + `phi1_R'*z_R)>0
11.
. * Voteshare depends on ideology of the candidates plus noise
. gen u = `kappa_u'*(rbeta(`beta_u', `beta_u')-0.5)
12. gen voteshare_D = (exp(`gamma0' + `gamma1'*(z - (z_D+z_R)/2) + `gamma2'*female_D - `gamma3'*female_R + u)/ /*
> */ (1+ exp(`gamma0' + `gamma1'*(z - (z_D+z_R)/2) + `gamma2'*female_D - `gamma3'*female_R + u )))
13.
. gen voteshare_female = voteshare_D if female_D==1 & female_R==0
14. replace voteshare_female = (1-voteshare_D) if female_D==0 & female_R==1
15.
. * Outcome: depends on who is elected
. gen y = `tau0' + `tau1'*abs(z_D) + `tau2'*female_D + rnormal() if voteshare_D>=0.5
16. replace y = `tau0' + `tau1'*abs(z_R) +`tau2'*female_R + rnormal() if voteshare_D<0.5
17.
. * Now four types of RD analyses
. * (1) Density test
. rddensity voteshare_female, c(0.5)
18. local denstest_pval_all = e(pv_q)
19.
. rddensity voteshare_female if voteshare_D>=0.5, c(0.5)
20. local denstest_pval_D = e(pv_q)
21.
. rddensity voteshare_female if voteshare_D<0.5, c(0.5)
22. local denstest_pval_R = e(pv_q)
23.
. * (2) is ideology continuous at the threshold
. rdrobust z voteshare_female, c(0.5) kernel(uniform)
24. mat b = e(b)
25. mat V = e(V)
26. local b_ideology_all = b[1,1]
27. local se_ideology_all = sqrt(V[1,1])
28.
. rdrobust z voteshare_female if voteshare_D>=0.5, c(0.5) kernel(uniform)
29. mat b = e(b)
30. mat V = e(V)
31. local b_ideology_D = b[1,1]
32. local se_ideology_D = sqrt(V[1,1])
33.
. rdrobust z voteshare_female if voteshare_D<0.5, c(0.5) kernel(uniform)
34. mat b = e(b)
35. mat V = e(V)
36. local b_ideology_R = b[1,1]
37. local se_ideology_R = sqrt(V[1,1])
38.
. * (3) Estimate treatment effect with simple RD
. rdrobust y voteshare_female, c(0.5) kernel(uniform)
39. mat b = e(b)
40. mat V = e(V)
41. local b_rd_all = b[1,1]
42. local se_rd_all = sqrt(V[1,1])
43. local band_all = e(h_l)
44.
. rdrobust y voteshare_female if voteshare_D>=0.5, c(0.5) kernel(uniform)
45. mat b = e(b)
46. mat V = e(V)
47. local b_rd_D = b[1,1]
48. local se_rd_D = sqrt(V[1,1])
49. local band_D = e(h_l)
50.
. rdrobust y voteshare_female if voteshare_D<0.5, c(0.5) kernel(uniform)
51. mat b = e(b)
52. mat V = e(V)
53. local b_rd_R = b[1,1]
54. local se_rd_R = sqrt(V[1,1])
55. local band_R = e(h_l)
56.
. * (4-5) Estimate the treatment effect with weighted RD
. gen byte female = female_D if voteshare_D>=0.5
57. replace female = female_R if voteshare_D<0.5
58. gen voteshare_female_adj = voteshare_female-0.5
59.
. * (4) using x
. probit female x if abs(voteshare_female_adj)<=`band_all'
60. predict pscore if e(sample)==1
61. gen wt =1/pscore if female==1
62. replace wt = 1/(1-pscore) if female==0
63. reg y female voteshare_female_adj i.female#c.voteshare_female_adj [aw=wt] if abs(voteshare_female_adj)<=`band_all'
64. local b_rdwt_all = _b[female]
65. local se_rdwt_all = _se[female]
66. drop pscore wt
67.
. probit female x if voteshare_D>=0.5 & abs(voteshare_female_adj)<=`band_D'
68. predict pscore if e(sample)==1
69. gen wt =1/pscore if female==1
70. replace wt = 1/(1-pscore) if female==0
71. reg y female voteshare_female_adj i.female#c.voteshare_female_adj [aw=wt] if voteshare_D>=0.5 & abs(voteshare_female_adj
> )<=`band_D'
72. local b_rdwt_D = _b[female]
73. local se_rdwt_D = _se[female]
74. drop pscore wt
75.
. probit female x if voteshare_D<0.5 & abs(voteshare_female_adj)<=`band_R'
76. predict pscore if e(sample)==1
77. gen wt =1/pscore if female==1
78. replace wt = 1/(1-pscore) if female==0
79. reg y female voteshare_female_adj i.female#c.voteshare_female_adj [aw=wt] if voteshare_D<0.5 & abs(voteshare_female_adj)
> <=`band_R'
80. local b_rdwt_R = _b[female]
81. local se_rdwt_R = _se[female]
82. drop pscore wt
83.
.
.
. * (5a) using ideology of the district
. probit female z if abs(voteshare_female_adj)<=`band_all'
84. predict pscore if e(sample)==1
85. gen wt =1/pscore if female==1
86. replace wt = 1/(1-pscore) if female==0
87. reg y female voteshare_female_adj i.female#c.voteshare_female_adj [aw=wt] if abs(voteshare_female_adj)<=`band_all'
88. local b_rdwtideodistrict_all = _b[female]
89. local se_rdwtideodistrict_all = _se[female]
90. drop pscore wt
91.
. probit female z if voteshare_D>=0.5 & abs(voteshare_female_adj)<=`band_D'
92. predict pscore if e(sample)==1
93. gen wt =1/pscore if female==1
94. replace wt = 1/(1-pscore) if female==0
95. reg y female voteshare_female_adj i.female#c.voteshare_female_adj [aw=wt] if voteshare_D>=0.5 & abs(voteshare_female_adj
> )<=`band_D'
96. local b_rdwtideodistrict_D = _b[female]
97. local se_rdwtideodistrict_D = _se[female]
98. drop pscore wt
99.
. probit female z if voteshare_D<0.5 & abs(voteshare_female_adj)<=`band_R'
100. predict pscore if e(sample)==1
101. gen wt =1/pscore if female==1
102. replace wt = 1/(1-pscore) if female==0
103. reg y female voteshare_female_adj i.female#c.voteshare_female_adj [aw=wt] if voteshare_D<0.5 & abs(voteshare_female_adj)
> <=`band_R'
104. local b_rdwtideodistrict_R = _b[female]
105. local se_rdwtideodistrict_R = _se[female]
106. drop pscore wt
107.
. * (5b) using ideology of the elected representative
. gen z_elected = z_D if voteshare_D>=0.5
108. replace z_elected = z_R if voteshare_D<0.5
109.
. probit female z_elected if abs(voteshare_female_adj)<=`band_all'
110. predict pscore if e(sample)==1
111. gen wt =1/pscore if female==1
112. replace wt = 1/(1-pscore) if female==0
113. reg y female voteshare_female_adj i.female#c.voteshare_female_adj [aw=wt] if abs(voteshare_female_adj)<=`band_all'
114. local b_rdwtideoelected_all = _b[female]
115. local se_rdwtideoelected_all = _se[female]
116. drop pscore wt
117.
. probit female z_elected if voteshare_D>=0.5 & abs(voteshare_female_adj)<=`band_D'
118. predict pscore if e(sample)==1
119. gen wt =1/pscore if female==1
120. replace wt = 1/(1-pscore) if female==0
121. reg y female voteshare_female_adj i.female#c.voteshare_female_adj [aw=wt] if voteshare_D>=0.5 & abs(voteshare_female_adj
> )<=`band_D'
122. local b_rdwtideoelected_D = _b[female]
123. local se_rdwtideoelected_D = _se[female]
124. drop pscore wt
125.
. probit female z_elected if voteshare_D<0.5 & abs(voteshare_female_adj)<=`band_R'
126. predict pscore if e(sample)==1
127. gen wt =1/pscore if female==1
128. replace wt = 1/(1-pscore) if female==0
129. reg y female voteshare_female_adj i.female#c.voteshare_female_adj [aw=wt] if voteshare_D<0.5 & abs(voteshare_female_adj)
> <=`band_R'
130. local b_rdwtideoelected_R = _b[female]
131. local se_rdwtideoelected_R = _se[female]
132. drop pscore wt
133.
. * (6-7) Propensity score methods
. gen absMV = abs(voteshare_D-0.5)
134.
. * (6a) pscore - x
. cap teffects ipw (y) (female x absMV, probit), pstolerance(1e-6) osample(osample)
135. teffects ipw (y) (female x absMV, probit) if osample==0, pstolerance(1e-6)
136. drop osample
137. mat b = e(b)
138. mat V = e(V)
139. local b_pscorex_all = b[1,1]
140. local se_pscorex_all = sqrt(V[1,1])
141.
. cap teffects ipw (y) (female x absMV, probit) if voteshare_D>=0.5, pstolerance(1e-6) osample(osample)
142. teffects ipw (y) (female x absMV, probit) if voteshare_D>=0.5 & osample==0, pstolerance(1e-6)
143. drop osample
144. mat b = e(b)
145. mat V = e(V)
146. local b_pscorex_D = b[1,1]
147. local se_pscorex_D = sqrt(V[1,1])
148.
. cap teffects ipw (y) (female x absMV, probit) if voteshare_D<0.5, pstolerance(1e-6) osample(osample)
149. teffects ipw (y) (female x absMV, probit) if voteshare_D<0.5 & osample==0, pstolerance(1e-6)
150. drop osample
151. mat b = e(b)
152. mat V = e(V)
153. local b_pscorex_R = b[1,1]
154. local se_pscorex_R = sqrt(V[1,1])
155.
.
. * (7a) pscore - district ideology
. cap teffects ipw (y) (female z absMV, probit), pstolerance(1e-6) osample(osample)
156. teffects ipw (y) (female z absMV, probit) if osample==0, pstolerance(1e-6)
157. drop osample
158. mat b = e(b)
159. mat V = e(V)
160. local b_pscoreideodistrict_all = b[1,1]
161. local se_pscoreideodistrict_all = sqrt(V[1,1])
162.
. cap teffects ipw (y) (female z absMV, probit) if voteshare_D>=0.5, pstolerance(1e-6) osample(osample)
163. teffects ipw (y) (female z absMV, probit) if voteshare_D>=0.5 & osample==0, pstolerance(1e-6)
164. drop osample
165. mat b = e(b)
166. mat V = e(V)
167. local b_pscoreideodistrict_D = b[1,1]
168. local se_pscoreideodistrict_D = sqrt(V[1,1])
169.
. cap teffects ipw (y) (female z absMV, probit) if voteshare_D<0.5, pstolerance(1e-6) osample(osample)
170. teffects ipw (y) (female z absMV, probit) if voteshare_D<0.5 & osample==0, pstolerance(1e-6)
171. drop osample
172. mat b = e(b)
173. mat V = e(V)
174. local b_pscoreideodistrict_R = b[1,1]
175. local se_pscoreideodistrict_R = sqrt(V[1,1])
176.
.
. * (7b) pscore - elected representative ideology
. cap teffects ipw (y) (female z_elected absMV, probit), pstolerance(1e-6) osample(osample)
177. teffects ipw (y) (female z_elected absMV, probit) if osample==0, pstolerance(1e-6)
178. drop osample
179. mat b = e(b)
180. mat V = e(V)
181. local b_pscoreideoelected_all = b[1,1]
182. local se_pscoreideoelected_all = sqrt(V[1,1])
183.
. cap teffects ipw (y) (female z_elected absMV, probit) if voteshare_D>=0.5, pstolerance(1e-6) osample(osample)
184. teffects ipw (y) (female z_elected absMV, probit) if voteshare_D>=0.5 & osample==0, pstolerance(1e-6)
185. drop osample
186. mat b = e(b)
187. mat V = e(V)
188. local b_pscoreideoelected_D = b[1,1]
189. local se_pscoreideoelected_D = sqrt(V[1,1])
190.
. cap teffects ipw (y) (female z_elected absMV, probit) if voteshare_D<0.5, pstolerance(1e-6) osample(osample)
191. teffects ipw (y) (female z_elected absMV, probit) if voteshare_D<0.5 & osample==0, pstolerance(1e-6)
192. drop osample
193. mat b = e(b)
194. mat V = e(V)
195. local b_pscoreideoelected_R = b[1,1]
196. local se_pscoreideoelected_R = sqrt(V[1,1])
197.
.
. * (8) OLS
. reg y female
198. local b_ols_all =_b[female]
199. local se_ols_all = _se[female]
200.
. reg y female if voteshare_D>=0.5
201. local b_ols_D = _b[female]
202. local se_ols_D = _se[female]
203.
. reg y female if voteshare_D<0.5
204. local b_ols_R = _b[female]
205. local se_ols_R = _se[female]
206.
. * (9) Return
. return scalar denstest_pval_all = `denstest_pval_all'
207. return scalar denstest_pval_D = `denstest_pval_D'
208. return scalar denstest_pval_R = `denstest_pval_R'
209.
. return scalar b_ideology_all = `b_ideology_all'
210. return scalar se_ideology_all = `se_ideology_all'
211. return scalar b_ideology_D = `b_ideology_D'
212. return scalar se_ideology_D = `se_ideology_D'
213. return scalar b_ideology_R = `b_ideology_R'
214. return scalar se_ideology_R = `se_ideology_R'
215.
. return scalar b_rd_all = `b_rd_all'
216. return scalar se_rd_all = `se_rd_all'
217. return scalar b_rd_D = `b_rd_D'
218. return scalar se_rd_D = `se_rd_D'
219. return scalar b_rd_R = `b_rd_R'
220. return scalar se_rd_R = `se_rd_R'
221.
. return scalar b_rdwt_all = `b_rdwt_all'
222. return scalar se_rdwt_all = `se_rdwt_all'
223. return scalar b_rdwt_D = `b_rdwt_D'
224. return scalar se_rdwt_D = `se_rdwt_D'
225. return scalar b_rdwt_R = `b_rdwt_R'
226. return scalar se_rdwt_R = `se_rdwt_R'
227.
. return scalar b_rdwtideodistrict_all = `b_rdwtideodistrict_all'
228. return scalar se_rdwtideodistrict_all = `se_rdwtideodistrict_all'
229. return scalar b_rdwtideodistrict_D = `b_rdwtideodistrict_D'
230. return scalar se_rdwtideodistrict_D = `se_rdwtideodistrict_D'
231. return scalar b_rdwtideodistrict_R = `b_rdwtideodistrict_R'
232. return scalar se_rdwtideodistrict_R = `se_rdwtideodistrict_R'
233.
. return scalar b_rdwtideoelected_all = `b_rdwtideoelected_all'
234. return scalar se_rdwtideoelected_all = `se_rdwtideoelected_all'
235. return scalar b_rdwtideoelected_D = `b_rdwtideoelected_D'
236. return scalar se_rdwtideoelected_D = `se_rdwtideoelected_D'
237. return scalar b_rdwtideoelected_R = `b_rdwtideoelected_R'
238. return scalar se_rdwtideoelected_R = `se_rdwtideoelected_R'
239.
. return scalar b_pscorex_all = `b_pscorex_all'
240. return scalar se_pscorex_all = `se_pscorex_all'
241. return scalar b_pscorex_D = `b_pscorex_D'
242. return scalar se_pscorex_D = `se_pscorex_D'
243. return scalar b_pscorex_R = `b_pscorex_R'
244. return scalar se_pscorex_R = `se_pscorex_R'
245.
. return scalar b_pscoreideodistrict_all = `b_pscoreideodistrict_all'
246. return scalar se_pscoreideodistrict_all = `se_pscoreideodistrict_all'
247. return scalar b_pscoreideodistrict_D = `b_pscoreideodistrict_D'
248. return scalar se_pscoreideodistrict_D = `se_pscoreideodistrict_D'
249. return scalar b_pscoreideodistrict_R = `b_pscoreideodistrict_R'
250. return scalar se_pscoreideodistrict_R = `se_pscoreideodistrict_R'
251.
. return scalar b_pscoreideoelected_all = `b_pscoreideoelected_all'
252. return scalar se_pscoreideoelected_all = `se_pscoreideoelected_all'
253. return scalar b_pscoreideoelected_D = `b_pscoreideoelected_D'
254. return scalar se_pscoreideoelected_D = `se_pscoreideoelected_D'
255. return scalar b_pscoreideoelected_R = `b_pscoreideoelected_R'
256. return scalar se_pscoreideoelected_R = `se_pscoreideoelected_R'
257.
. return scalar b_ols_all = `b_ols_all'
258. return scalar se_ols_all = `se_ols_all'
259. return scalar b_ols_D = `b_ols_D'
260. return scalar se_ols_D = `se_ols_D'
261. return scalar b_ols_R = `b_ols_R'
262. return scalar se_ols_R = `se_ols_R'
263.
. end
.
.
. ********************************************************************************
. ********************************************************************************
. ********************************************************************************
.
. * Now actually run the simulations
.
. set seed 1234567
.
. * Run one simulation as a test
. rd_sim, beta_a(5) beta_b(5) kappa_ksi_R(0.4) kappa_ksi_D(0.4) kappa_u(1) tau1(-5) rho_x(0.6) nobs(100000) /*
> */ gamma2(0.0) gamma3(0.6) phi1_D(-1) phi1_R(-1)
number of observations (_N) was 0, now 100,000
(79,715 missing values generated)
(8,263 real changes made)
(53,038 missing values generated)
(53,038 real changes made)
Computing data-driven bandwidth selectors.
Point estimates and standard errors have been adjusted for repeated observations.
(Use option nomasspoints to suppress this adjustment.)
RD Manipulation test using local polynomial density estimation.
c = 0.500 | Left of c Right of c Number of obs = 28548
-------------------+---------------------- Model = unrestricted
Number of obs | 11425 17123 BW method = comb
Eff. Number of obs | 4542 4450 Kernel = triangular
Order est. (p) | 2 2 VCE method = jackknife
Order bias (q) | 3 3
BW est. (h) | 0.096 0.083
Running variable: voteshare_female.
------------------------------------------
Method | T P>|T|
-------------------+----------------------
Robust | -0.2327 0.8160
------------------------------------------
P-values of binomial tests. (H0: prob = .5)
-----------------------------------------------------
Window Length / 2 | <c >=c | P>|T|
-------------------+----------------------+----------
0.000 | 5 15 | 0.0414
0.000 | 19 29 | 0.1934
0.001 | 31 40 | 0.3425
0.001 | 42 54 | 0.2615
0.001 | 51 69 | 0.1203
0.001 | 64 83 | 0.1374
0.002 | 69 97 | 0.0358
0.002 | 83 112 | 0.0447
0.002 | 100 127 | 0.0842
0.002 | 115 132 | 0.3086
-----------------------------------------------------
Computing data-driven bandwidth selectors.
Point estimates and standard errors have been adjusted for repeated observations.
(Use option nomasspoints to suppress this adjustment.)
RD Manipulation test using local polynomial density estimation.
c = 0.500 | Left of c Right of c Number of obs = 13774
-------------------+---------------------- Model = unrestricted
Number of obs | 2457 11317 BW method = comb
Eff. Number of obs | 1615 6442 Kernel = triangular
Order est. (p) | 2 2 VCE method = jackknife
Order bias (q) | 3 3
BW est. (h) | 0.141 0.173
Running variable: voteshare_female.
------------------------------------------
Method | T P>|T|
-------------------+----------------------
Robust | 9.3618 0.0000
------------------------------------------
P-values of binomial tests. (H0: prob = .5)
-----------------------------------------------------
Window Length / 2 | <c >=c | P>|T|
-------------------+----------------------+----------
0.000 | 5 15 | 0.0414
0.000 | 19 29 | 0.1934
0.001 | 31 40 | 0.3425
0.001 | 42 54 | 0.2615
0.001 | 51 69 | 0.1203
0.001 | 64 83 | 0.1374
0.002 | 69 97 | 0.0358
0.002 | 83 112 | 0.0447
0.002 | 100 127 | 0.0842
0.002 | 115 132 | 0.3086
-----------------------------------------------------
Computing data-driven bandwidth selectors.
Point estimates and standard errors have been adjusted for repeated observations.
(Use option nomasspoints to suppress this adjustment.)
RD Manipulation test using local polynomial density estimation.
c = 0.500 | Left of c Right of c Number of obs = 14774
-------------------+---------------------- Model = unrestricted
Number of obs | 8968 5806 BW method = comb
Eff. Number of obs | 6647 2312 Kernel = triangular
Order est. (p) | 2 2 VCE method = jackknife
Order bias (q) | 3 3
BW est. (h) | 0.211 0.148
Running variable: voteshare_female.
------------------------------------------
Method | T P>|T|
-------------------+----------------------
Robust | -12.2100 0.0000
------------------------------------------
P-values of binomial tests. (H0: prob = .5)
-----------------------------------------------------
Window Length / 2 | <c >=c | P>|T|
-------------------+----------------------+----------
0.000 | 5 15 | 0.0414
0.000 | 19 29 | 0.1934
0.001 | 31 40 | 0.3425
0.001 | 42 54 | 0.2615
0.001 | 51 69 | 0.1203
0.001 | 64 83 | 0.1374
0.002 | 69 97 | 0.0358
0.002 | 83 112 | 0.0447
0.002 | 100 127 | 0.0842
0.002 | 115 132 | 0.3086
-----------------------------------------------------
Sharp RD estimates using local polynomial regression.
Cutoff c = .5 | Left of c Right of c Number of obs = 28548
-------------------+---------------------- BW type = mserd
Number of obs | 11425 17123 Kernel = Uniform
Eff. Number of obs | 2282 2410 VCE method = NN
Order est. (p) | 1 1
Order bias (q) | 2 2
BW est. (h) | 0.046 0.046
BW bias (b) | 0.092 0.092
rho (h/b) | 0.497 0.497
Outcome: z. Running variable: voteshare_female.
--------------------------------------------------------------------------------
Method | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------------+------------------------------------------------------------
Conventional | .01855 .00924 2.0073 0.045 .000437 .036665
Robust | - - 2.0807 0.037 .001262 .042242
--------------------------------------------------------------------------------
Sharp RD estimates using local polynomial regression.
Cutoff c = .5 | Left of c Right of c Number of obs = 13774
-------------------+---------------------- BW type = mserd
Number of obs | 2457 11317 Kernel = Uniform
Eff. Number of obs | 882 2485 VCE method = NN
Order est. (p) | 1 1
Order bias (q) | 2 2
BW est. (h) | 0.065 0.065
BW bias (b) | 0.118 0.118
rho (h/b) | 0.552 0.552
Outcome: z. Running variable: voteshare_female.
--------------------------------------------------------------------------------
Method | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------------+------------------------------------------------------------
Conventional | .2107 .00961 21.9190 0.000 .191862 .229544
Robust | - - 18.9995 0.000 .191055 .235007
--------------------------------------------------------------------------------
Sharp RD estimates using local polynomial regression.
Cutoff c = .5 | Left of c Right of c Number of obs = 14774
-------------------+---------------------- BW type = mserd
Number of obs | 8968 5806 Kernel = Uniform
Eff. Number of obs | 2933 1286 VCE method = NN
Order est. (p) | 1 1
Order bias (q) | 2 2
BW est. (h) | 0.083 0.083
BW bias (b) | 0.151 0.151
rho (h/b) | 0.551 0.551
Outcome: z. Running variable: voteshare_female.
--------------------------------------------------------------------------------
Method | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------------+------------------------------------------------------------
Conventional | -.19744 .0082 -24.0813 0.000 -.213511 -.181372
Robust | - - -20.4594 0.000 -.214516 -.177009
--------------------------------------------------------------------------------
Sharp RD estimates using local polynomial regression.
Cutoff c = .5 | Left of c Right of c Number of obs = 28548
-------------------+---------------------- BW type = mserd
Number of obs | 11425 17123 Kernel = Uniform
Eff. Number of obs | 4751 5448 VCE method = NN
Order est. (p) | 1 1
Order bias (q) | 2 2
BW est. (h) | 0.101 0.101
BW bias (b) | 0.190 0.190
rho (h/b) | 0.530 0.530
Outcome: y. Running variable: voteshare_female.
--------------------------------------------------------------------------------
Method | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------------+------------------------------------------------------------
Conventional | .17272 .04322 3.9964 0.000 .088013 .257427
Robust | - - 3.2304 0.001 .063486 .25937
--------------------------------------------------------------------------------
Sharp RD estimates using local polynomial regression.
Cutoff c = .5 | Left of c Right of c Number of obs = 13774
-------------------+---------------------- BW type = mserd
Number of obs | 2457 11317 Kernel = Uniform
Eff. Number of obs | 880 2484 VCE method = NN
Order est. (p) | 1 1
Order bias (q) | 2 2
BW est. (h) | 0.065 0.065
BW bias (b) | 0.117 0.117
rho (h/b) | 0.555 0.555
Outcome: y. Running variable: voteshare_female.
--------------------------------------------------------------------------------
Method | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------------+------------------------------------------------------------
Conventional | .31188 .07973 3.9117 0.000 .15561 .468147
Robust | - - 3.3740 0.001 .131626 .496528
--------------------------------------------------------------------------------
Sharp RD estimates using local polynomial regression.
Cutoff c = .5 | Left of c Right of c Number of obs = 14774
-------------------+---------------------- BW type = mserd
Number of obs | 8968 5806 Kernel = Uniform
Eff. Number of obs | 3622 1619 VCE method = NN
Order est. (p) | 1 1
Order bias (q) | 2 2
BW est. (h) | 0.104 0.104
BW bias (b) | 0.184 0.184
rho (h/b) | 0.566 0.566
Outcome: y. Running variable: voteshare_female.
--------------------------------------------------------------------------------
Method | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------------+------------------------------------------------------------
Conventional | .38413 .06763 5.6797 0.000 .251574 .516685
Robust | - - 4.6972 0.000 .218021 .530242
--------------------------------------------------------------------------------
(53,038 missing values generated)
(53,038 real changes made)
(71,452 missing values generated)
Iteration 0: log likelihood = -7045.573
Iteration 1: log likelihood = -7014.2341
Iteration 2: log likelihood = -7014.2334
Iteration 3: log likelihood = -7014.2334
Probit regression Number of obs = 10,199
LR chi2(1) = 62.68
Prob > chi2 = 0.0000
Log likelihood = -7014.2334 Pseudo R2 = 0.0044
------------------------------------------------------------------------------
female | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
x | -.2260739 .0286094 -7.90 0.000 -.2821473 -.1700006
_cons | .0707624 .0125909 5.62 0.000 .0460847 .09544
------------------------------------------------------------------------------
(option pr assumed; Pr(female))
(89,801 missing values generated)
(94,552 missing values generated)
(4,751 real changes made)
(sum of wgt is 20,398.6936738491)
Source | SS df MS Number of obs = 10,199
-------------+---------------------------------- F(3, 10195) = 51.96
Model | 193.062182 3 64.3540607 Prob > F = 0.0000
Residual | 12626.5639 10,195 1.23850554 R-squared = 0.0151
-------------+---------------------------------- Adj R-squared = 0.0148
Total | 12819.6261 10,198 1.25707258 Root MSE = 1.1129
-----------------------------------------------------------------------------------------------
y | Coef. Std. Err. t P>|t| [95% Conf. Interval]
------------------------------+----------------------------------------------------------------
female | .1739132 .0439874 3.95 0.000 .0876893 .2601372
voteshare_female_adj | 3.538998 .5419161 6.53 0.000 2.476736 4.60126
|
female#c.voteshare_female_adj |
1 | -6.258399 .7649045 -8.18 0.000 -7.757763 -4.759036
|
_cons | -1.052096 .0305361 -34.45 0.000 -1.111952 -.9922388
-----------------------------------------------------------------------------------------------
Iteration 0: log likelihood = -1933.3477
Iteration 1: log likelihood = -1878.7605
Iteration 2: log likelihood = -1878.6371
Iteration 3: log likelihood = -1878.6371
Probit regression Number of obs = 3,364
LR chi2(1) = 109.42
Prob > chi2 = 0.0000
Log likelihood = -1878.6371 Pseudo R2 = 0.0283
------------------------------------------------------------------------------
female | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
x | .5759299 .055828 10.32 0.000 .4665091 .6853507
_cons | .720536 .0252009 28.59 0.000 .6711433 .7699288
------------------------------------------------------------------------------
(option pr assumed; Pr(female))
(96,636 missing values generated)
(97,516 missing values generated)
(880 real changes made)
(sum of wgt is 6,733.80004513264)
Source | SS df MS Number of obs = 3,364
-------------+---------------------------------- F(3, 3360) = 40.81
Model | 139.293765 3 46.4312551 Prob > F = 0.0000
Residual | 3822.60101 3,360 1.13767887 R-squared = 0.0352
-------------+---------------------------------- Adj R-squared = 0.0343
Total | 3961.89478 3,363 1.17808349 Root MSE = 1.0666
-----------------------------------------------------------------------------------------------
y | Coef. Std. Err. t P>|t| [95% Conf. Interval]
------------------------------+----------------------------------------------------------------
female | .2406377 .0730094 3.30 0.001 .0974903 .3837851
voteshare_female_adj | 6.792886 1.412536 4.81 0.000 4.023369 9.562403
|
female#c.voteshare_female_adj |
1 | -9.439579 1.989195 -4.75 0.000 -13.33973 -5.539424
|
_cons | -1.285744 .0501982 -25.61 0.000 -1.384166 -1.187322
-----------------------------------------------------------------------------------------------
Iteration 0: log likelihood = -3240.1233
Iteration 1: log likelihood = -3133.1627
Iteration 2: log likelihood = -3132.9107
Iteration 3: log likelihood = -3132.9107
Probit regression Number of obs = 5,241
LR chi2(1) = 214.43
Prob > chi2 = 0.0000
Log likelihood = -3132.9107 Pseudo R2 = 0.0331
------------------------------------------------------------------------------
female | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
x | -.629661 .0437244 -14.40 0.000 -.7153593 -.5439628
_cons | -.5177479 .0184832 -28.01 0.000 -.5539742 -.4815216
------------------------------------------------------------------------------
(option pr assumed; Pr(female))
(94,759 missing values generated)
(98,381 missing values generated)
(3,622 real changes made)
(sum of wgt is 10,475.5064911842)
Source | SS df MS Number of obs = 5,241
-------------+---------------------------------- F(3, 5237) = 80.33
Model | 290.368848 3 96.7896161 Prob > F = 0.0000
Residual | 6310.12588 5,237 1.20491233 R-squared = 0.0440
-------------+---------------------------------- Adj R-squared = 0.0434
Total | 6600.49473 5,240 1.2596364 Root MSE = 1.0977
-----------------------------------------------------------------------------------------------
y | Coef. Std. Err. t P>|t| [95% Conf. Interval]
------------------------------+----------------------------------------------------------------
female | .3231791 .0614265 5.26 0.000 .2027576 .4436006
voteshare_female_adj | 4.05668 .722778 5.61 0.000 2.639734 5.473627
|
female#c.voteshare_female_adj |
1 | -5.84145 1.017686 -5.74 0.000 -7.836538 -3.846362
|
_cons | -.8815513 .0424921 -20.75 0.000 -.9648534 -.7982492
-----------------------------------------------------------------------------------------------
Iteration 0: log likelihood = -7045.573
Iteration 1: log likelihood = -6830.0923
Iteration 2: log likelihood = -6829.9941
Iteration 3: log likelihood = -6829.9941
Probit regression Number of obs = 10,199
LR chi2(1) = 431.16
Prob > chi2 = 0.0000
Log likelihood = -6829.9941 Pseudo R2 = 0.0306
------------------------------------------------------------------------------
female | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
z | -1.538549 .0747452 -20.58 0.000 -1.685046 -1.392051
_cons | -.0209974 .0136641 -1.54 0.124 -.0477786 .0057838
------------------------------------------------------------------------------
(option pr assumed; Pr(female))
(89,801 missing values generated)
(94,552 missing values generated)
(4,751 real changes made)
(sum of wgt is 20,472.7413574457)
Source | SS df MS Number of obs = 10,199
-------------+---------------------------------- F(3, 10195) = 70.48
Model | 262.88843 3 87.6294767 Prob > F = 0.0000
Residual | 12675.1194 10,195 1.24326821 R-squared = 0.0203
-------------+---------------------------------- Adj R-squared = 0.0200
Total | 12938.0078 10,198 1.2686809 Root MSE = 1.115
-----------------------------------------------------------------------------------------------
y | Coef. Std. Err. t P>|t| [95% Conf. Interval]
------------------------------+----------------------------------------------------------------
female | .1943662 .0436797 4.45 0.000 .1087454 .2799871
voteshare_female_adj | 3.946968 .5368838 7.35 0.000 2.894571 4.999366
|
female#c.voteshare_female_adj |
1 | -6.460541 .7641782 -8.45 0.000 -7.958481 -4.962601
|
_cons | -1.069798 .0301335 -35.50 0.000 -1.128866 -1.010731
-----------------------------------------------------------------------------------------------
Iteration 0: log likelihood = -1933.3477
Iteration 1: log likelihood = -1286.2133
Iteration 2: log likelihood = -1267.5265
Iteration 3: log likelihood = -1267.4815
Iteration 4: log likelihood = -1267.4815
Probit regression Number of obs = 3,364
LR chi2(1) = 1331.73
Prob > chi2 = 0.0000
Log likelihood = -1267.4815 Pseudo R2 = 0.3444
------------------------------------------------------------------------------
female | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
z | 7.444313 .2623512 28.38 0.000 6.930114 7.958512
_cons | 1.78103 .0537058 33.16 0.000 1.675768 1.886291
------------------------------------------------------------------------------
(option pr assumed; Pr(female))
(96,636 missing values generated)
(97,516 missing values generated)
(880 real changes made)
(sum of wgt is 6,608.81980001926)
Source | SS df MS Number of obs = 3,364
-------------+---------------------------------- F(3, 3360) = 112.97
Model | 469.699399 3 156.566466 Prob > F = 0.0000
Residual | 4656.54364 3,360 1.38587608 R-squared = 0.0916
-------------+---------------------------------- Adj R-squared = 0.0908
Total | 5126.24304 3,363 1.52430658 Root MSE = 1.1772
-----------------------------------------------------------------------------------------------
y | Coef. Std. Err. t P>|t| [95% Conf. Interval]
------------------------------+----------------------------------------------------------------
female | -.793492 .0774302 -10.25 0.000 -.9453071 -.6416768
voteshare_female_adj | 26.62825 1.637998 16.26 0.000 23.41667 29.83982
|
female#c.voteshare_female_adj |
1 | -31.34425 2.256755 -13.89 0.000 -35.769 -26.9195
|
_cons | -.2816657 .0479712 -5.87 0.000 -.3757214 -.1876099
-----------------------------------------------------------------------------------------------
Iteration 0: log likelihood = -3240.1233
Iteration 1: log likelihood = -2172.2326
Iteration 2: log likelihood = -2152.4686
Iteration 3: log likelihood = -2152.4172
Iteration 4: log likelihood = -2152.4172
Probit regression Number of obs = 5,241
LR chi2(1) = 2175.41
Prob > chi2 = 0.0000
Log likelihood = -2152.4172 Pseudo R2 = 0.3357
------------------------------------------------------------------------------
female | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
z | -7.049271 .1911968 -36.87 0.000 -7.42401 -6.674532
_cons | -.7631799 .0241643 -31.58 0.000 -.8105411 -.7158187
------------------------------------------------------------------------------
(option pr assumed; Pr(female))
(94,759 missing values generated)
(98,381 missing values generated)
(3,622 real changes made)
(sum of wgt is 9,903.25282597542)
Source | SS df MS Number of obs = 5,241
-------------+---------------------------------- F(3, 5237) = 22.54
Model | 81.2014589 3 27.067153 Prob > F = 0.0000
Residual | 6288.68375 5,237 1.20081798 R-squared = 0.0127
-------------+---------------------------------- Adj R-squared = 0.0122
Total | 6369.8852 5,240 1.21562695 Root MSE = 1.0958
-----------------------------------------------------------------------------------------------
y | Coef. Std. Err. t P>|t| [95% Conf. Interval]
------------------------------+----------------------------------------------------------------
female | -.1379332 .0656739 -2.10 0.036 -.2666815 -.0091849
voteshare_female_adj | 5.627017 .7120137 7.90 0.000 4.231173 7.022861
|
female#c.voteshare_female_adj |
1 | -7.189718 1.03427 -6.95 0.000 -9.217319 -5.162118
|
_cons | -.680452 .0396242 -17.17 0.000 -.758132 -.6027719
-----------------------------------------------------------------------------------------------
(53,038 missing values generated)
(53,038 real changes made)
Iteration 0: log likelihood = -7045.573
Iteration 1: log likelihood = -6040.1188
Iteration 2: log likelihood = -6037.2237
Iteration 3: log likelihood = -6037.2236
Probit regression Number of obs = 10,199
LR chi2(1) = 2016.70
Prob > chi2 = 0.0000
Log likelihood = -6037.2236 Pseudo R2 = 0.1431
------------------------------------------------------------------------------
female | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
z_elected | -1.958926 .0449516 -43.58 0.000 -2.04703 -1.870823
_cons | .0135668 .0133481 1.02 0.309 -.0125949 .0397285
------------------------------------------------------------------------------
(option pr assumed; Pr(female))
(89,801 missing values generated)
(94,552 missing values generated)
(4,751 real changes made)
(sum of wgt is 20,703.5746251345)
Source | SS df MS Number of obs = 10,199
-------------+---------------------------------- F(3, 10195) = 156.58
Model | 586.245291 3 195.415097 Prob > F = 0.0000
Residual | 12723.9437 10,195 1.24805725 R-squared = 0.0440
-------------+---------------------------------- Adj R-squared = 0.0438
Total | 13310.189 10,198 1.3051764 Root MSE = 1.1172
-----------------------------------------------------------------------------------------------
y | Coef. Std. Err. t P>|t| [95% Conf. Interval]
------------------------------+----------------------------------------------------------------
female | .3725144 .044218 8.42 0.000 .2858384 .4591904
voteshare_female_adj | 3.852766 .5269349 7.31 0.000 2.81987 4.885662
|
female#c.voteshare_female_adj |
1 | -6.090878 .7661041 -7.95 0.000 -7.592593 -4.589164
|
_cons | -1.201598 .0296283 -40.56 0.000 -1.259675 -1.14352
-----------------------------------------------------------------------------------------------
Iteration 0: log likelihood = -1933.3477
Iteration 1: log likelihood = -1587.7928
Iteration 2: log likelihood = -1582.0926
Iteration 3: log likelihood = -1582.0776
Iteration 4: log likelihood = -1582.0776
Probit regression Number of obs = 3,364
LR chi2(1) = 702.54
Prob > chi2 = 0.0000
Log likelihood = -1582.0776 Pseudo R2 = 0.1817
------------------------------------------------------------------------------
female | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
z_elected | 7.410054 .3114873 23.79 0.000 6.79955 8.020558
_cons | 3.042828 .1071286 28.40 0.000 2.83286 3.252796
------------------------------------------------------------------------------
(option pr assumed; Pr(female))
(96,636 missing values generated)
(97,516 missing values generated)
(880 real changes made)
(sum of wgt is 6,813.62821555138)
Source | SS df MS Number of obs = 3,364
-------------+---------------------------------- F(3, 3360) = 44.01
Model | 168.894906 3 56.2983019 Prob > F = 0.0000
Residual | 4298.15433 3,360 1.2792126 R-squared = 0.0378
-------------+---------------------------------- Adj R-squared = 0.0369
Total | 4467.04924 3,363 1.32829296 Root MSE = 1.131
-----------------------------------------------------------------------------------------------
y | Coef. Std. Err. t P>|t| [95% Conf. Interval]
------------------------------+----------------------------------------------------------------
female | -.4509505 .0758094 -5.95 0.000 -.5995877 -.3023132
voteshare_female_adj | 16.0325 1.518248 10.56 0.000 13.05572 19.00929
|
female#c.voteshare_female_adj |
1 | -19.80716 2.132745 -9.29 0.000 -23.98877 -15.62555
|
_cons | -.6497326 .0491586 -13.22 0.000 -.7461164 -.5533488
-----------------------------------------------------------------------------------------------
Iteration 0: log likelihood = -3240.1233
Iteration 1: log likelihood = -2594.5471
Iteration 2: log likelihood = -2583.7661
Iteration 3: log likelihood = -2583.7327
Iteration 4: log likelihood = -2583.7327
Probit regression Number of obs = 5,241
LR chi2(1) = 1312.78
Prob > chi2 = 0.0000
Log likelihood = -2583.7327 Pseudo R2 = 0.2026
------------------------------------------------------------------------------
female | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
z_elected | -7.805294 .2423385 -32.21 0.000 -8.280269 -7.33032
_cons | 1.29987 .0573838 22.65 0.000 1.1874 1.412341
------------------------------------------------------------------------------
(option pr assumed; Pr(female))
(94,759 missing values generated)
(98,381 missing values generated)
(3,622 real changes made)
(sum of wgt is 10,372.1911814213)
Source | SS df MS Number of obs = 5,241
-------------+---------------------------------- F(3, 5237) = 16.72
Model | 60.8606207 3 20.2868736 Prob > F = 0.0000
Residual | 6354.50433 5,237 1.21338635 R-squared = 0.0095
-------------+---------------------------------- Adj R-squared = 0.0089
Total | 6415.36495 5,240 1.22430629 Root MSE = 1.1015
-----------------------------------------------------------------------------------------------
y | Coef. Std. Err. t P>|t| [95% Conf. Interval]
------------------------------+----------------------------------------------------------------
female | -.1872573 .0632442 -2.96 0.003 -.3112422 -.0632723
voteshare_female_adj | 5.046656 .7215085 6.99 0.000 3.632198 6.461113
|
female#c.voteshare_female_adj |
1 | -5.702727 1.02625 -5.56 0.000 -7.714604 -3.690849
|
_cons | -.6934209 .0411359 -16.86 0.000 -.7740645 -.6127773
-----------------------------------------------------------------------------------------------
Iteration 0: EE criterion = 2.162e-28
Iteration 1: EE criterion = 4.110e-33
Treatment-effects estimation Number of obs = 100,000
Estimator : inverse-probability weights
Outcome model : weighted mean
Treatment model: probit
------------------------------------------------------------------------------
| Robust
y | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
ATE |
female |
(1 vs 0) | .185551 .009143 20.29 0.000 .1676311 .2034709
-------------+----------------------------------------------------------------
POmean |
female |
0 | -1.51444 .0040466 -374.25 0.000 -1.522371 -1.506509
------------------------------------------------------------------------------
Iteration 0: EE criterion = 5.545e-18
Iteration 1: EE criterion = 2.033e-33
Treatment-effects estimation Number of obs = 46,962
Estimator : inverse-probability weights
Outcome model : weighted mean
Treatment model: probit
------------------------------------------------------------------------------
| Robust
y | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
ATE |
female |
(1 vs 0) | -.0620271 .0113967 -5.44 0.000 -.0843642 -.03969
-------------+----------------------------------------------------------------
POmean |
female |
0 | -1.499856 .0061075 -245.58 0.000 -1.511827 -1.487886
------------------------------------------------------------------------------
Iteration 0: EE criterion = 2.364e-23
Iteration 1: EE criterion = 1.407e-32
Treatment-effects estimation Number of obs = 53,038
Estimator : inverse-probability weights
Outcome model : weighted mean
Treatment model: probit
------------------------------------------------------------------------------
| Robust
y | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
ATE |
female |
(1 vs 0) | .4934254 .015274 32.30 0.000 .4634889 .5233619
-------------+----------------------------------------------------------------
POmean |
female |
0 | -1.519821 .0053757 -282.72 0.000 -1.530357 -1.509284
------------------------------------------------------------------------------
Iteration 0: EE criterion = 7.198e-22
Iteration 1: EE criterion = 6.756e-33
Treatment-effects estimation Number of obs = 100,000
Estimator : inverse-probability weights
Outcome model : weighted mean
Treatment model: probit
------------------------------------------------------------------------------
| Robust
y | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
ATE |
female |
(1 vs 0) | .1960373 .0094185 20.81 0.000 .1775775 .2144971
-------------+----------------------------------------------------------------
POmean |
female |
0 | -1.527443 .004071 -375.20 0.000 -1.535422 -1.519464
------------------------------------------------------------------------------
Iteration 0: EE criterion = 4.047e-18
Iteration 1: EE criterion = 2.312e-32
Treatment-effects estimation Number of obs = 46,962
Estimator : inverse-probability weights
Outcome model : weighted mean
Treatment model: probit
------------------------------------------------------------------------------
| Robust
y | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
ATE |
female |
(1 vs 0) | -.0158669 .0108021 -1.47 0.142 -.0370386 .0053048
-------------+----------------------------------------------------------------
POmean |
female |
0 | -1.51214 .0060289 -250.82 0.000 -1.523956 -1.500323
------------------------------------------------------------------------------
Iteration 0: EE criterion = 2.425e-27
Iteration 1: EE criterion = 1.682e-31
Treatment-effects estimation Number of obs = 52,919
Estimator : inverse-probability weights
Outcome model : weighted mean
Treatment model: probit
------------------------------------------------------------------------------
| Robust
y | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
ATE |
female |
(1 vs 0) | -.1946729 .0624661 -3.12 0.002 -.3171042 -.0722417
-------------+----------------------------------------------------------------
POmean |
female |
0 | -1.45934 .0055571 -262.61 0.000 -1.470232 -1.448448
------------------------------------------------------------------------------
Iteration 0: EE criterion = 1.047e-24
Iteration 1: EE criterion = 3.917e-33
Treatment-effects estimation Number of obs = 100,000
Estimator : inverse-probability weights
Outcome model : weighted mean
Treatment model: probit
------------------------------------------------------------------------------
| Robust
y | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
ATE |
female |
(1 vs 0) | .2416772 .0092623 26.09 0.000 .2235235 .2598309
-------------+----------------------------------------------------------------
POmean |
female |
0 | -1.519808 .0040542 -374.88 0.000 -1.527754 -1.511862
------------------------------------------------------------------------------
Iteration 0: EE criterion = 3.676e-18
Iteration 1: EE criterion = 4.790e-33
Treatment-effects estimation Number of obs = 46,962
Estimator : inverse-probability weights
Outcome model : weighted mean
Treatment model: probit
------------------------------------------------------------------------------
| Robust
y | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
ATE |
female |
(1 vs 0) | -.000495 .0106006 -0.05 0.963 -.0212719 .0202818
-------------+----------------------------------------------------------------
POmean |
female |
0 | -1.515822 .0060067 -252.36 0.000 -1.527595 -1.504049
------------------------------------------------------------------------------
Iteration 0: EE criterion = 9.684e-16
Iteration 1: EE criterion = 8.458e-28
Treatment-effects estimation Number of obs = 53,038
Estimator : inverse-probability weights
Outcome model : weighted mean
Treatment model: probit
------------------------------------------------------------------------------
| Robust
y | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
ATE |
female |
(1 vs 0) | -.1050439 .0401988 -2.61 0.009 -.183832 -.0262557
-------------+----------------------------------------------------------------
POmean |
female |
0 | -1.458219 .0054927 -265.48 0.000 -1.468984 -1.447453
------------------------------------------------------------------------------
Source | SS df MS Number of obs = 100,000
-------------+---------------------------------- F(1, 99998) = 115.72
Model | 155.270531 1 155.270531 Prob > F = 0.0000
Residual | 134179.437 99,998 1.3418212 R-squared = 0.0012
-------------+---------------------------------- Adj R-squared = 0.0011
Total | 134334.707 99,999 1.34336051 Root MSE = 1.1584
------------------------------------------------------------------------------
y | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
female | .0988518 .0091894 10.76 0.000 .0808406 .1168629
_cons | -1.501196 .0040908 -366.97 0.000 -1.509214 -1.493178
------------------------------------------------------------------------------
Source | SS df MS Number of obs = 46,962
-------------+---------------------------------- F(1, 46960) = 81.37
Model | 107.755058 1 107.755058 Prob > F = 0.0000
Residual | 62185.463 46,960 1.32422196 R-squared = 0.0017
-------------+---------------------------------- Adj R-squared = 0.0017
Total | 62293.2181 46,961 1.32648832 Root MSE = 1.1507
------------------------------------------------------------------------------
y | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
female | -.1088381 .0120654 -9.02 0.000 -.1324866 -.0851897
_cons | -1.487199 .0061843 -240.48 0.000 -1.499321 -1.475078
------------------------------------------------------------------------------
Source | SS df MS Number of obs = 53,038
-------------+---------------------------------- F(1, 53036) = 886.34
Model | 1182.47024 1 1182.47024 Prob > F = 0.0000
Residual | 70755.5305 53,036 1.33410383 R-squared = 0.0164
-------------+---------------------------------- Adj R-squared = 0.0164
Total | 71938.0008 53,037 1.35637387 Root MSE = 1.155
------------------------------------------------------------------------------
y | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
female | .4290223 .0144105 29.77 0.000 .4007775 .457267
_cons | -1.511833 .0054114 -279.38 0.000 -1.522439 -1.501226
------------------------------------------------------------------------------
.
. fulijhkjhk
command fulijhkjhk is unrecognized
r(199);
end of do-file
r(199);
end of do-file
r(199);
. rdrobust z voteshare_female, c(0.5) kernel(uniform)
Sharp RD estimates using local polynomial regression.
Cutoff c = .5 | Left of c Right of c Number of obs = 28548
-------------------+---------------------- BW type = mserd
Number of obs | 11425 17123 Kernel = Uniform
Eff. Number of obs | 2282 2410 VCE method = NN
Order est. (p) | 1 1
Order bias (q) | 2 2
BW est. (h) | 0.046 0.046
BW bias (b) | 0.092 0.092
rho (h/b) | 0.497 0.497
Outcome: z. Running variable: voteshare_female.
--------------------------------------------------------------------------------
Method | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------------+------------------------------------------------------------
Conventional | .01855 .00924 2.0073 0.045 .000437 .036665
Robust | - - 2.0807 0.037 .001262 .042242
--------------------------------------------------------------------------------
. rdrobust z voteshare_female, c(0.5) kernel(uniform) masspoints(off) stdvars(on)
Sharp RD estimates using local polynomial regression.
Cutoff c = .5 | Left of c Right of c Number of obs = 28548
-------------------+---------------------- BW type = mserd
Number of obs | 11425 17123 Kernel = Uniform
Eff. Number of obs | 2279 2405 VCE method = NN
Order est. (p) | 1 1
Order bias (q) | 2 2
BW est. (h) | 0.046 0.046
BW bias (b) | 0.092 0.092
rho (h/b) | 0.495 0.495
Outcome: z. Running variable: voteshare_female.
--------------------------------------------------------------------------------
Method | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------------+------------------------------------------------------------
Conventional | .01803 .00924 1.9510 0.051 -.000083 .036141
Robust | - - 2.0378 0.042 .000813 .041726
--------------------------------------------------------------------------------
. adopath
[1] "C:/ado/plus/r/rd_2021"
[2] (BASE) "C:\Program Files (x86)\Stata15\ado\base/"
[3] (SITE) "C:\Program Files (x86)\Stata15\ado\site/"
[4] "."
[5] (PERSONAL) "c:\ado\personal/"
[6] (PLUS) "c:\ado\plus/"
[7] (OLDPLACE) "c:\ado/"
. doedit
. pwd
C:\Users\paserman\Dropbox
. doedit "C:\Users\paserman\Dropbox\Research\GenderCooperativeness\EJ\3 replication package\Dofiles\master.do"
. exit, clear
|