File size: 10,722 Bytes
2a8276b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
close all

set(groot, 'DefaultAxesLineWidth', 1.5);
set(groot, 'DefaultLineLineWidth', 4);
set(groot, 'DefaultAxesTickLabelInterpreter','latex'); 
set(groot, 'DefaultLegendInterpreter','latex');
set(groot, 'DefaultAxesFontSize',24);


N     = 2500;
T     = 450; 

A     = zeros(2*N, T + 1);        % Liquid Assets 
Th    = zeros(2*N, T + 1);        % initial mortgage size
  
C     = zeros(2*N, T);            % consumption
L     = zeros(2*N, T);            % liquidity after making housing choice
R     = zeros(2*N, T);            % decision to refinance
X     = zeros(2*N, T);            % amount extracted

Age   = zeros(2*N, T);            % age of loan


% First simulate history of shocks to income

rng(100); 

Y            = randn(N, T)*se; 
Y            = exp([Y; -Y]); 

Th(:, 1)     = p.thetam; 
A(:, 1)      = 0; 
Age(:,1)     = 1; 


for t = 1 : T

unif         = rand(2*N, 1); 
    
state        = [(1 + p.rl)*A(:,t) + Y(:,t), Th(:,t)];    

[~, pall, ~, Lall, thetall] = solveh(state, Winterp, p);

R(:,t)       = unif <= pall(:,1); 

L(:,t)       = Lall(:,1).*R(:,t) + Lall(:,2).*(1 - R(:,t));        % when many options: generate a single unif and ask which interval belongs to

Th(:, t+1)   = thetall(:,1).*R(:,t) + thetall(:,2).*(1 - R(:,t)); 

cmax         = bisect('savings', 1e-13, 1e5, L(:,t), p, amin);     % c that implies a' = amin
cmin         = bisect('savings', 1e-13, 1e5, L(:,t), p, amax);     % c that implies a' = amax

C(:,t)          = max(min(Cinterp(L(:,t), Th(:,t+1)), cmax), cmin); 

[~, A(:, t+1)]  = savings(C(:,t), L(:,t), p);
    
Age(:, t+1)     = (Age(:,t) + 1).*(1 - R(:,t)) + R(:,t); 

X(:,t)       = (Th(:,t+1) - Th(:,t))./Th(:,t).*R(:,t); 

end

 

  A(:, 1 : 150)   = [];
 Th(:, 1 : 150)   = [];
  C(:, 1 : 150)   = [];
  R(:, 1 : 150)   = [];
  L(:, 1 : 150)   = [];
  Y(:, 1 : 150)   = [];
  X(:, 1 : 150)   = [];
Age(:, 1 : 150)   = []; 
  
Asave        = A; 
Thsave       = Th; 
Csave        = C; 
Lsave        = L;
Rsave        = R; 
Ysave        = Y; 
Xsave        = X; 
Agesave      = Age; 


 A(:,  end)  = [];
 Th(:, end)  = [];
Age(:, end)  = []; 
 
Age          = floor(Age/4);

D            = Th.*p.hbar; 
W            = A + p.hbar - D; 

Yh           = p.phi^(1/p.gamma)*C.^(-p.sigma/p.gamma); 



figure(2)

id = 1; 

subplot(1, 3, 1), plot([C(id, :)', Y(id, :)']); 
title('Consumption and Income', 'Interpreter','Latex');
h = legend('consumption', 'income');
set(gca, 'ygrid', 'on')
set(h,'Interpreter','latex'); 


subplot(1, 3, 2), plot([A(id, :)', p.hbar.*(1 - Th(id, :)')]); 
title('Wealth', 'Interpreter','Latex');
set(gca, 'ygrid', 'on')
h = legend('liquid', 'illiquid');
set(h,'Interpreter','latex'); 


subplot(1, 3, 3), plot(Th(id, :)'); 
title('Debt', 'Interpreter','Latex');
set(gca, 'ygrid', 'on')
set(h,'Interpreter','latex'); 


fextract              = mean(vec(X >= 0.05))*4; 
medianextract         = median(X(X >= 0.05)); 

HY                    = p.hbar./Y/4;
PTI                   = p.mbar*p.hbar./Y; 



moment_model          = zeros(60, 1); 

moment_model(1)       = mean(W(:)) /mean(vec(Y))/4;
moment_model(2)       = p.hbar     /mean(vec(Y))/4;
moment_model(3)       = mean(D(:)) /mean(vec(Y))/4; 
moment_model(4)       = mean(A(:)) /mean(vec(Y))/4;

moment_model(5)       = fextract;
moment_model(6)       = mean(vec(Yh))/mean(vec(C));


moment_model(7  : 11) = prctile( A(:),  [10; 25; 50; 75; 90])/mean(vec(Y))/4;
moment_model(12 : 16) = prctile(Th(:),  [10; 25; 50; 75; 90]);
moment_model(17 : 21) = prctile((1 - Th(:)).*p.hbar./W(:), [10; 25; 50; 75; 90]);
moment_model(22 : 26) = prctile( W(:),  [10; 25; 50; 75; 90])/mean(vec(Y))/4;
moment_model(27 : 31) = prctile(PTI(:), [10; 25; 50; 75; 90]);
moment_model(32 : 36) = prctile(HY(:),  [10; 25; 50; 75; 90]);
moment_model(37 : 41) = prctile(Age(:), [10; 25; 50; 75; 90]);
moment_model(42)      = medianextract;


moment_data = [1.45; 1.82; 0.83; 0.46; 0.08; 0.23; -0.04; 0.01; 0.15; 0.68; 1.69;  
               0.18; 0.39; 0.62; 0.77; 0.88; 0.36; 0.64; 0.87; 0.99; 1.04; 0; 0.04; 0.73; 2.34; 3.94;
               0.05; 0.08; 0.11; 0.17; 0.24; 1.02; 1.62; 2.48; 3.78; 6.43; 0; 1; 3; 6; 10; 0.23];

           

fprintf('\n')
fprintf('Aggregate Wealth to Income                         = %9.2f %9.2f\n',  [moment_model(1),    moment_data(1)]);
fprintf('Aggregate Housing to Income                        = %9.2f %9.2f\n',  [moment_model(2),    moment_data(2)]);
fprintf('Aggregate Debt to Income                           = %9.2f %9.2f\n',  [moment_model(3),    moment_data(3)]);
fprintf('Aggregate Liquid assets to Income                  = %9.2f %9.2f\n',  [moment_model(4),    moment_data(4)]);
fprintf('Non-Market Production to Consumption               = %9.2f %9.2f\n',  [moment_model(6),    moment_data(6)]);
fprintf('\n')
fprintf('Fraction Borrowers who extract                     = %9.2f %9.2f\n',  [moment_model(5),    moment_data(5)]);
fprintf('Median Change in the Balance                       = %9.2f %9.2f\n',  [moment_model(42),   moment_data(42)]);
fprintf('\n')

fprintf('10 pctile liquid assets owners                     = %9.2f %9.2f\n',  [moment_model(7),    moment_data(7)]);
fprintf('25 pctile liquid assets owners                     = %9.2f %9.2f\n',  [moment_model(8),    moment_data(8)]);
fprintf('50 pctile liquid assets owners                     = %9.2f %9.2f\n',  [moment_model(9),    moment_data(9)]);
fprintf('75 pctile liquid assets owners                     = %9.2f %9.2f\n',  [moment_model(10),   moment_data(10)]);
fprintf('90 pctile liquid assets owners                     = %9.2f %9.2f\n',  [moment_model(11),   moment_data(11)]);

fprintf('\n')


fprintf('10 pctile LTV, borrowers                           = %9.2f %9.2f\n',  [moment_model(12),   moment_data(12)]);
fprintf('25 pctile LTV, borrowers                           = %9.2f %9.2f\n',  [moment_model(13),   moment_data(13)]);
fprintf('50 pctile LTV, borrowers                           = %9.2f %9.2f\n',  [moment_model(14),   moment_data(14)]);
fprintf('75 pctile LTV, borrowers                           = %9.2f %9.2f\n',  [moment_model(15),   moment_data(15)]);
fprintf('90 pctile LTV, borrowers                           = %9.2f %9.2f\n',  [moment_model(16),   moment_data(16)]);
fprintf('\n')
fprintf('10 Share Housing Wealth in Owner Wealth            = %9.2f %9.2f\n',  [moment_model(17),   moment_data(17)]);
fprintf('25 Share Housing Wealth in Owner Wealth            = %9.2f %9.2f\n',  [moment_model(18),   moment_data(18)]);
fprintf('50 Share Housing Wealth in Owner Wealth            = %9.2f %9.2f\n',  [moment_model(19),   moment_data(19)]);
fprintf('75 Share Housing Wealth in Owner Wealth            = %9.2f %9.2f\n',  [moment_model(20),   moment_data(20)]);
fprintf('90 Share Housing Wealth in Owner Wealth            = %9.2f %9.2f\n',  [moment_model(21),   moment_data(21)]);
fprintf('\n')
fprintf('10 pctile Wealth                                   = %9.2f %9.2f\n',  [moment_model(22),   moment_data(22)]);
fprintf('25 pctile Wealth                                   = %9.2f %9.2f\n',  [moment_model(23),   moment_data(23)]);
fprintf('50 pctile Wealth                                   = %9.2f %9.2f\n',  [moment_model(24),   moment_data(24)]);
fprintf('75 pctile Wealth                                   = %9.2f %9.2f\n',  [moment_model(25),   moment_data(25)]);
fprintf('90 pctile Wealth                                   = %9.2f %9.2f\n',  [moment_model(26),   moment_data(26)]);
fprintf('\n')
fprintf('10 pctile PTI                                      = %9.2f %9.2f\n',  [moment_model(27),   moment_data(27)]);
fprintf('25 pctile PTI                                      = %9.2f %9.2f\n',  [moment_model(28),   moment_data(28)]);
fprintf('50 pctile PTI                                      = %9.2f %9.2f\n',  [moment_model(29),   moment_data(29)]);
fprintf('75 pctile PTI                                      = %9.2f %9.2f\n',  [moment_model(30),   moment_data(30)]);
fprintf('90 pctile PTI                                      = %9.2f %9.2f\n',  [moment_model(31),   moment_data(31)]);
fprintf('\n')
fprintf('10 pctile housing to income                        = %9.2f %9.2f\n',  [moment_model(32),   moment_data(32)]);
fprintf('25 pctile housing to income                        = %9.2f %9.2f\n',  [moment_model(33),   moment_data(33)]);
fprintf('50 pctile housing to income                        = %9.2f %9.2f\n',  [moment_model(34),   moment_data(34)]);
fprintf('75 pctile housing to income                        = %9.2f %9.2f\n',  [moment_model(35),   moment_data(35)]);
fprintf('90 pctile housing to income                        = %9.2f %9.2f\n',  [moment_model(36),   moment_data(36)]);
fprintf('\n')
fprintf('10 pctile mortgage age                             = %9.2f %9.2f\n',  [moment_model(37),   moment_data(37)]);
fprintf('25 pctile mortgage age                             = %9.2f %9.2f\n',  [moment_model(38),   moment_data(38)]);
fprintf('50 pctile mortgage age                             = %9.2f %9.2f\n',  [moment_model(39),   moment_data(39)]);
fprintf('75 pctile mortgage age                             = %9.2f %9.2f\n',  [moment_model(40),   moment_data(40)]);
fprintf('90 pctile mortgage age                             = %9.2f %9.2f\n',  [moment_model(41),   moment_data(41)]);

% Calculate life time value
    
T  = size(C, 2); 

U  = C.^(1 - p.sigma)/(1 - p.sigma) -  p.phi^(1 + 1/p.gamma)/(1 + p.gamma)*C.^(-p.sigma*(1 + 1/p.gamma));  

V  = sum(p.beta.^(0 : 1 : T -1).*U, 2); 
    
V  = ((1 - p.sigma)*(1 - p.beta)*mean(V))^(1/(1 - p.sigma)); 

fprintf('\n') 
fprintf('Life Time Value, CEV                               = %9.4f \n',     V);

% Compare characteristics of those who refinance and don't 

S   = (1 - Th(:)).*p.hbar./W(:); 
R   = R(:) == 1; 

fprintf('\n');
fprintf('Mean Liquid Assets           = %9.2f %9.2f %9.2f \n',  [mean(A(:)),        mean(A(R)),                    mean(A(~R))]);
fprintf('Mean Income                  = %9.2f %9.2f %9.2f \n',  [mean(Y(:)),        mean(Y(R)),                    mean(Y(~R))]);
fprintf('Mean Liquid Asset to Income  = %9.2f %9.2f %9.2f \n',  [mean(A(:)./Y(:)),  mean(A(R)./Y(R)),              mean(A(~R)./Y(~R))]);
fprintf('Mean Share Housing Wealth    = %9.2f %9.2f %9.2f \n',  [mean(S(:)),        mean(S(R)),                    mean(S(~R))]);
fprintf('Mean Wealth                  = %9.2f %9.2f %9.2f \n',  [mean(W(:)),        mean(W(R)),                    mean(W(~R))]);
fprintf('Mean LTV                     = %9.2f %9.2f %9.2f \n',  [mean(Th(:)),       mean(Th(R)),                   mean(Th(~R))]);
fprintf('Mean Age                     = %9.2f %9.2f %9.2f \n',  [mean(Age(:)),      mean(Age(R)),                  mean(Age(~R))]);

fprintf('\n');
fprintf('\n');