File size: 2,019 Bytes
2a8276b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
A = [Asave, zeros(2*N, T)]; % Liquid Assets
Th = [Thsave, zeros(2*N, T)]; % initial mortgage size
C = [Csave, zeros(2*N, T)]; % consumption
L = [Lsave, zeros(2*N, T)]; % liquidity after making housing choice
R = [Rsave, zeros(2*N, T)]; % refinance choice
X = [Xsave, zeros(2*N, T)]; % amount extracted
Age = [Agesave, zeros(2*N, T)]; % age of loan
% First simulate history of shocks to income
Y = randn(N, T)*se;
Y = [Ysave, exp([Y; -Y])];
S = ones(2*N, size(Asave, 2) + T); % interest state
for t = size(Asave, 2) : size(Asave, 2) + T - 1
unif = rand(2*N, 1);
state = [(1 + p.rl)*A(:,t) + Y(:,t), Th(:,t), S(:,t)];
[~, pall, ~, Lall, thetall] = solveh_new(state, Winterp, p);
R(:,t) = unif <= pall(:,1);
L(:,t) = Lall(:,1).*R(:,t) + Lall(:,2).*(1 - R(:,t)); % when many options: generate a single unif and ask which interval belongs to
Th(:, t+1) = thetall(:,1).*R(:,t) + thetall(:,2).*(1 - R(:,t));
cmax = bisect('savings', 1e-13, 1e5, L(:,t), p, amin); % c that implies a' = amin
cmin = bisect('savings', 1e-13, 1e5, L(:,t), p, amax); % c that implies a' = amax
C(:,t) = max(min(Cinterp_new(L(:,t), Th(:,t+1), S(:,t+1)), cmax), cmin);
[~, A(:, t+1)] = savings(C(:,t), L(:,t), p);
Age(:, t+1) = (Age(:,t) + 1).*(1 - R(:,t)) + R(:,t);
X(:,t) = (Th(:,t+1) - Th(:,t))./Th(:,t).*R(:,t);
S(:,t + 1) = S(:,t).*(1 - R(:,t)) + p.nr*R(:,t);
end
figure(4)
id = 1;
subplot(1, 3, 1), plot(mean(C)');
title('Consumption', 'Interpreter','Latex');
set(gca, 'ygrid', 'on')
set(h,'Interpreter','latex');
subplot(1, 3, 2), plot(mean(R)');
title('Fraction Refinance', 'Interpreter','Latex');
set(gca, 'ygrid', 'on')
set(h,'Interpreter','latex');
subplot(1, 3, 3), plot(mean(Th)');
title('LTV', 'Interpreter','Latex');
set(gca, 'ygrid', 'on')
set(h,'Interpreter','latex');
|