File size: 5,751 Bytes
2a8276b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
clear; 
clc;

set(groot, 'DefaultAxesLineWidth', 1.5);
set(groot, 'DefaultLineLineWidth', 4);
set(groot, 'DefaultAxesTickLabelInterpreter','latex'); 
set(groot, 'DefaultLegendInterpreter','latex');
set(groot, 'DefaultAxesFontSize',22);
  
intmeth      = 'spline';
printr       = 1; 

optset('bisect', 'tol', 1e-32);

% Calibrated Parameters

p.beta       = 0.992;                                       % discount factor
p.F          = 0.22;                                        % fixed cost of refinancing
p.phi        = 1;                                           % productivity non-market
p.nu         = 3;                                           % 1 / volatility of extreme value shocks

% Assigned Parameters

p.rm         = (1 + 0.025)^(1/4) - 1;                       % mortgage rate
p.rl         = (1 + 0.010)^(1/4) - 1;                       % liquid rate

p.D          = 120;                                         % maturity of mortgages

p.sigma      = 2;                                           % CRRA
p.gamma      = 1; 
p.thetam     = 0.85;                                        % maximum LTV

se           = (1 - 0.55)^(1/2)*0.4869;                     % Krueger Perri (2011) show 55% of the variance of trans compon is measurement error so subtract

p.mbar       = p.rm/(1 - (1 + p.rm)^(-p.D))*p.thetam;       % minimum payment required per 1 of initial debt
p.hbar       = 8;                                           % house size

% Quality of Approximation
 
p.na         = 250;                                         % number of nodes for liquid assets
p.nw         = 250;                                         % number of nodes for cash on hand
p.nl         = 250;                                         % number of nodes for liquidity
p.nt         = 75; 
p.ny         = 71;


% Discretize Income Process

%[y, wy]      = qnwnorm(p.ny, 0, se^2);

%y            = exp(y); 

[y, wy]      = qnwunif(p.ny, 0, 1); 

y            = norminv(y, 0, 1)*se; 

y            = exp(y);

% Discretize other state variables

amin         = 0; 
amax         = 50; 
p.agrid      = amin + (amax - amin)*nodeunif(p.na, 0, 1).^2;

wmin         = min(y); 
wmax         = (1 + p.rl)*amax + max(y); 
p.wgrid      = wmin + (wmax - wmin)*nodeunif(p.nw, 0, 1).^2;

lmin         = -0.5;
lmax         = wmax + p.hbar;
p.lgrid      = lmin + (lmax - lmin)*nodeunif(p.nl, 0, 1).^2;


p.tgrid      = nodeunif(p.nt, 0, p.thetam); 

% Construct grids: 

sv           = gridmake(p.wgrid, p.tgrid);                          % grid for V 
sw           = gridmake(p.lgrid, p.tgrid);                          % grid for W
svbar        = gridmake(p.agrid, p.tgrid);                          % grid for Vbar (expected continuation value)

% Bounds on consumption mid-period

cmax         = bisect('savings', 1e-13, 1e5, p.lgrid, p, amin);     % c that implies a' = amin
cmin         = bisect('savings', 1e-13, 1e5, p.lgrid, p, amax);     % c that implies a' = amax

cmax         = repmat(cmax, p.nt, 1); 
cmin         = repmat(cmin, p.nt, 1); 



% Initial guess for value function

Vbar         = zeros(p.na*p.nt, 1); 

for iter = 1 : 5

    Vbarold     = Vbar;
    
    EV          = griddedInterpolant({p.agrid, p.tgrid},  reshape(Vbar, p.na, p.nt), intmeth, 'linear');
 
    % solve consumption-savings choice
    
    c           = solve_golden('wfunc', cmin, cmax, sw, EV, p);
    
    [~, aprime] = savings(c, sw, p);

    W           = wfunc(c, sw, EV, p);

    Winterp     = griddedInterpolant({p.lgrid, p.tgrid},  reshape(W, p.nl, p.nt), intmeth, 'linear'); 


    % Solve discrete choice problem

    V          = solveh(sv, Winterp, p);
   
    % Interpolate V(w, theta)
    
    Vinterp    = griddedInterpolant({p.wgrid, p.tgrid},  reshape(V, p.nw, p.nt), intmeth, 'linear'); 

    
    % Compute expected value and update vbar
    
    Vbar        = zeros(p.na*p.nt, 1); 

    for i = 1 : p.ny
        
    Vbar        = Vbar + wy(i)*Vinterp((1 + p.rl)*svbar(:,1) + y(i), svbar(:,2)); 
    
    end
    
    
    fprintf('%4i %6.2e \n', [iter, norm(Vbar - Vbarold)/norm(Vbar)]);    

end



% Apply Howard Improvement to Go Faster



for iter = 1 : 5000

    Vbarold     = Vbar;
    
    EV          = griddedInterpolant({p.agrid, p.tgrid},  reshape(Vbar, p.na, p.nt), intmeth, 'linear');
 
    % solve consumption-savings choice
    
    if mod(iter, 50) == 0
    
    c           = solve_golden('wfunc', cmin, cmax, sw, EV, p);
    
    end
    
    [~, aprime] = savings(c, sw, p);

    W           = wfunc(c, sw, EV, p);

    Winterp     = griddedInterpolant({p.lgrid, p.tgrid},  reshape(W, p.nl, p.nt), intmeth, 'linear'); 


    % Solve discrete choice problem

    V           = solveh(sv, Winterp, p);
   
    % Interpolate V(w, theta)
    
    Vinterp     = griddedInterpolant({p.wgrid, p.tgrid},  reshape(V, p.nw, p.nt), intmeth, 'linear'); 

    
    % Compute expected value and update vbar
    
    Vbar        = zeros(p.na*p.nt, 1); 

    for i = 1 : p.ny
        
    Vbar        = Vbar + wy(i)*Vinterp((1 + p.rl)*svbar(:,1) + y(i), svbar(:,2)); 
    
    end
    
    if mod(iter, 50) == 0
        
    fprintf('%4i %6.2e \n', [iter/50, norm(Vbar - Vbarold)/norm(Vbar)]);    

    if norm(Vbar - Vbarold)/norm(Vbar) < 1e-7, break, end
    
    end
    
end


Cinterp     = griddedInterpolant({p.lgrid, p.tgrid},  reshape(c, p.nl, p.nt), intmeth, 'linear');

plot_decisions
return
simulate

start_new

Cinterp_new = griddedInterpolant({p.lgrid, p.tgrid, p.rgrid},  reshape(c, p.nl, p.nt, p.nr), intmeth, 'linear');

simulate_new