anonymous-submission-acl2025's picture
add 42
2a8276b
function err_mom = objective(x)
set(groot, 'DefaultAxesLineWidth', 1.5);
set(groot, 'DefaultLineLineWidth', 4);
set(groot, 'DefaultAxesTickLabelInterpreter','latex');
set(groot, 'DefaultLegendInterpreter','latex');
set(groot, 'DefaultAxesFontSize',22);
intmeth = 'linear';
printr = 0;
optset('bisect', 'tol', 1e-32);
% Calibrated Parameters
p.beta = x(1); % discount factor
p.alpha = x(2); % weight on housing in preferences
p.R = x(3);
p.phi = x(4); % productivity non-market
p.F0m = x(5); % fixed cost of refinancing
p.B = x(6);
p.r1 = x(7);
p.r2 = x(8); % parameters governing shape of rl curve
p.rh = (1 + x(9))^(1/4) - 1; % interest rate
p.rr = x(10);
p.hr = x(11);
% Assigned Parameters
p.nu = 3; % parameter in exponential distribution
p.pidelta = [0.975; 0.025]; % probability of expenditure shocks
p.delta = [0; 0.0625]; % expenditure shock, fraction of home (quarterly so divide by 4)
p.rl = (1 - 0.028)^(1/4) - 1; % lower bound on liquid rate
p.T = 61*4; % last period of life
p.D = 30*4; % maturity of mortgages
p.sigma = 2; % CRRA
p.gamma = 1; % Frisch elasticity of non-market production
p.rm = (1 + 0.025)^(1/4) - 1; % mortgage interest rate
p.Fs = 0.06; % fixed cost of selling home
p.F1m = 0.005; % proportional cost of refinancing
p.wbar = 1; % parameter governing luxuriousness of bequests
p.thetam = 0.85; % maximum LTV
p.thetay = 0.214; % maximum PTI
rhoz = 0.9908;
sz = 0.0761;
se = (1 - 0.55)^(1/2)*0.4869; % Krueger Perri (2011) show 55% of the variance of trans compon is measurement error so subtract
time = (1 : 1 : p.T)';
p.lambdat = exp(0.07982636 - 0.02322307 * (time/4 + 25) + 0.00105409 * (time/4 + 25).^2 - 0.00001028 * (time/4 + 25).^3);
p.thetay = p.thetay*(1 - 0.3126./(1 + exp(18.629 - 0.3049*(time/4 + 25))));
p.mbar = p.rm/(1 - (1 + p.rm)^(-p.D)); % minimum payment required per 1 of initial debt
% Quality of Approximation
p.na = 75; % number of nodes for liquid assets
p.nat = 75; % number of nodes for atilde = (1 + rl)*a - delta*h
p.nl = 75; % number of nodes for liquidity
p.no = 11; % number of nodes for omega (fraction of loan outstanding)
p.nt = 5; % number of possible initial LTV
p.nh = 7; % number of nodes for housing
p.nz = 9; % points for exogenous income z
p.ne = 3;
% Discretize Income Process
[zgrid, Fzz] = rouwenhorst(rhoz, sz, p.nz);
zgrid = exp(zgrid');
p.zgrid = zgrid;
[Fz, d] = eigs(Fzz', 1, 'largestabs');
Fz = Fz/sum(Fz);
Fz = full(Fz); % ergodic distribution of z
[egrid, we] = qnwnorm(p.ne, 0, se^2);
egrid = exp(egrid);
p.egrid = egrid;
% Discretize other state variables
amin = -0.4;
amax = 100;
p.agrid = amin + (amax - amin)*nodeunif(p.na, 0, 1).^2;
omin = 0;
omax = 1;
p.ogrid = omin + (omax - omin)*nodeunif(p.no, 0, 1);
tmin = 0.25;
tmax = p.thetam; % allow to cover fixed cost
p.tgrid = tmin + (tmax - tmin)*nodeunif(p.nt, 0, 1);
hmin = 5; % minimum house size
hmax = 40; % maximum house size
p.hgrid = hmin + (hmax - hmin)*nodeunif(p.nh, 0, 1).^1.5;
ymin = min(p.lambdat)*zgrid(1)*egrid(1);
ymax = max(p.lambdat)*zgrid(end)*egrid(end);
lmin = -1; % keep it reasonably negative so they know that's a bad state to find yourself in
lmax = 125;
p.lgrid = lmin + (lmax - lmin)*nodeunif(p.nl, 0, 1).^1.5;
atmin = -p.delta(2)*hmax + (1 + p.rl)*amin;
atmax = (1 + p.rh)*amax;
p.atgrid = atmin + (atmax - atmin)*nodeunif(p.nat, 0, 1).^1.5;
% Construct grids:
svbarh = gridmake(p.agrid, p.ogrid, p.tgrid, p.hgrid, p.zgrid); % grid for expected value of homeowners
svbarr = gridmake(p.agrid, p.zgrid); % grid for expected value of renters
svh = gridmake(p.atgrid, p.ogrid, p.tgrid, p.hgrid, p.zgrid, p.egrid); % grid for value of homeowners prior to making h choice
svr = gridmake(p.atgrid, p.zgrid, p.egrid); % grid for value of renters prior to making h choice
swh = gridmake(p.lgrid, p.ogrid, p.tgrid, p.hgrid, p.zgrid); % grid for W functions
swr = gridmake(p.lgrid, p.zgrid);
svht = gridmake(p.agrid, p.ogrid, p.tgrid, p.hgrid, p.zgrid, p.egrid); % grid for computing intermediate value function (creier prajit)
svrt = gridmake(p.agrid, p.zgrid, p.egrid);
ind2h = kron((1:1:p.no*p.nt*p.nh*p.nz)', ones(p.nl, 1)); % index of all other state-variables to speed up evaluations (Bangladesh)
ind2r = kron((1:1: p.nz)', ones(p.nl, 1));
ind3h = kron((1:1:p.no*p.nt*p.nh*p.nz*p.ne)', ones(p.na, 1)); % index of all other state-variables to speed up evaluations (Bangladesh)
ind3r = kron((1:1: p.nz*p.ne)', ones(p.na, 1));
vbarh = zeros(p.na*p.no*p.nt*p.nh*p.nz, p.T + 1); % expected values of homeowners
vbarr = zeros(p.na*p.nz, p.T + 1); % expected values of renters
vh = zeros(p.nat*p.no*p.nt*p.nh*p.nz*p.ne, p.T); % value of homeowners prior to making h choice (envelope over 5 possible options)
vr = zeros(p.nat*p.nz*p.ne, p.T); % value of renters prior to making h choice (envelope over possible options)
wh = zeros(p.nl*p.no*p.nt*p.nh*p.nz, p.T); % value of homeowners after making h choice
wr = zeros(p.nl*p.nz, p.T); % value of renters after making h choice
ch = zeros(p.nl*p.no*p.nt*p.nh*p.nz, p.T); % consumption homeowners after making h choice
cr = zeros(p.nl*p.nz, p.T); % consumption of renters after making h choice
cmaxh = bisect('savings', 1e-13, 1e5, p.lgrid, p, 'h', amin); % c that implies a' = amin
cmaxr = bisect('savings', 1e-13, 1e5, p.lgrid, p, 'r', amin);
cminh = bisect('savings', 1e-13, 1e5, p.lgrid, p, 'h', amax); % c that implies a' = amax
cminr = bisect('savings', 1e-13, 1e5, p.lgrid, p, 'r', amax);
cmaxh = repmat(cmaxh, p.no*p.nt*p.nh*p.nz, 1);
cmaxr = repmat(cmaxr, p.nz, 1);
cminh = repmat(cminh, p.no*p.nt*p.nh*p.nz, 1);
cminr = repmat(cminr, p.nz, 1);
% Terminal value of bequests
rlh = 1./(1 + exp(-p.r1*(svbarh(:,1) - p.r2)))*(p.rh - p.rl) + p.rl;
rlr = 1./(1 + exp(-p.r1*(svbarr(:,1) - p.r2)))*(p.rh - p.rl) + p.rl;
vbarh(:, p.T + 1) = p.pidelta(1)*p.B*(p.wbar + (1 + rlh).*svbarh(:,1) + (1 - p.Fs - svbarh(:,2).*svbarh(:,3)*(1 + p.rm) - p.delta(1)).*svbarh(:,4)).^(1 - p.sigma)/(1 - p.sigma) + ...
p.pidelta(2)*p.B*(p.wbar + (1 + rlh).*svbarh(:,1) + (1 - p.Fs - svbarh(:,2).*svbarh(:,3)*(1 + p.rm) - p.delta(2)).*svbarh(:,4)).^(1 - p.sigma)/(1 - p.sigma);
vbarr(:, p.T + 1) = p.B*(p.wbar + (1 + rlr).*svbarr(:,1)).^(1 - p.sigma)/(1 - p.sigma);
for t = p.T : -1 : 1
EVh = griddedInterpolant({p.agrid, (1: 1:p.no*p.nt*p.nh*p.nz)'}, reshape(vbarh(:, t + 1), p.na, p.no*p.nt*p.nh*p.nz), intmeth, 'linear');
EVr = griddedInterpolant({p.agrid, (1: 1: p.nz)'}, reshape(vbarr(:, t + 1), p.na, p.nz), intmeth, 'linear');
% solve consumption-savings choice
ch(:, t) = solve_golden('wfunc', cminh, cmaxh, swh, ind2h, EVh, p, 'h');
cr(:, t) = solve_golden('wfunc', cminr, cmaxr, swr, ind2r, EVr, p, 'r');
wh(:, t) = wfunc(ch(:, t), swh, ind2h, EVh, p, 'h');
wr(:, t) = wfunc(cr(:, t), swr, ind2r, EVr, p, 'r');
Whinterp = griddedInterpolant({p.lgrid, (1: 1: p.no*p.nt*p.nh*p.nz)'}, reshape(wh(:, t), p.nl, p.no*p.nt*p.nh*p.nz), intmeth, 'linear');
Wrinterp = griddedInterpolant({p.lgrid, (1: 1: p.nz)'}, reshape(wr(:, t), p.nl, p.nz), intmeth, 'linear');
% Solve discrete choice problem of renters
At = svr(:,1);
Y = p.lambdat(t)*svr(:,2).*svr(:,3);
znow = repmat(kron((1: 1 : p.nz)', ones(p.nat, 1)), p.ne, 1); % index of z in (a, z, e) space for renters
[~, ~, ~, ~, vr(:,t)] = solveh(svr, Whinterp, Wrinterp, p, p.thetay(t), 'r', At, Y, znow);
% Solve discrete choice problem of housing
At = svh(:,1);
Y = p.lambdat(t)*svh(:,5).*svh(:,6);
znow = repmat(kron((1: 1 : p.nz)', ones(p.nat*p.no*p.nt*p.nh, 1)), p.ne, 1); % index of z in (a, omega, theta, h, z, e) space for owners
hnow = repmat(kron((1: 1 : p.nh)', ones(p.nat*p.no*p.nt, 1)), p.nz*p.ne, 1); % index of h in (a, omega, theta, h, z, e) space for owners
tnow = repmat(kron((1: 1 : p.nt)', ones(p.nat*p.no, 1)), p.nh*p.nz*p.ne, 1); % index of theta in (a, omega, theta, h, z, e) space for owners
[~, ~, ~, ~, vh(:,t)] = solveh(svh, Whinterp, Wrinterp, p, p.thetay(t), 'h', At, Y, znow, hnow, tnow);
% We need to interpolate to calculate the expected value before the delta shocks are realized, but after the z,e shocks are realized
Vhinterp = griddedInterpolant({p.atgrid, (1: 1:p.no*p.nt*p.nh*p.nz*p.ne)'}, reshape(vh(:, t), p.nat, p.no*p.nt*p.nh*p.nz*p.ne), intmeth, 'linear');
Vrinterp = griddedInterpolant({p.atgrid, (1: 1: p.nz*p.ne)'}, reshape(vr(:, t), p.nat, p.nz*p.ne), intmeth, 'linear');
% Compute expected value and update vbar
% 1. Step 1: integrate delta shocks by interpolate value of home and rent (which are functions of atilde)
vhtemp = p.pidelta(1)*Vhinterp((1 + interest(svht(:,1), p)).*svht(:,1) - p.delta(1)*svht(:, 4), ind3h) + p.pidelta(2)*Vhinterp((1 + interest(svht(:,1), p)).*svht(:,1) - p.delta(2)*svht(:, 4), ind3h);
vrtemp = Vrinterp((1 + interest(svrt(:,1), p)).*svrt(:,1), ind3r);
for i = 1 : p.ne
vbarh(:,t) = vbarh(:,t) + we(i)*kronm({p.na*p.no*p.nt*p.nh, Fzz}, vhtemp((i - 1)*p.na*p.no*p.nt*p.nh*p.nz + 1 : i*p.na*p.no*p.nt*p.nh*p.nz));
vbarr(:,t) = vbarr(:,t) + we(i)*kronm({p.na, Fzz}, vrtemp((i - 1)*p.na*p.nz + 1 : i*p.na*p.nz));
end
end
simulate