#plotting the assumptions of different versions of spatial control and how their parameters relate to distances in km #script written by Sam Passmore and modified by Olena Shcherbakova #two sets cols = c(brewer.pal(6, "Dark2")) # Assume these are kilometers n_points = 2500 #with this many points (233) we achieve roughly the minimal distance that corresponds to the minimal distance in our small sample data longitude = seq(from = -90, to = 90, length.out = n_points) #with this span we achieve roughly the maximum distance between points that corresponds to the one found in our data latitude = rep(0, n_points) df = data.frame(latitude = latitude, longitude = longitude) parameters = data.frame(kappa = c(1, 1), phi = c(1.25, 17)) parameters$name = c(sprintf("phi%.2fkappa%.2f", parameters$phi, parameters$kappa)) #parameters <- parameters %>% # filter(kappa==0.5) ## Covariance matrix spatial_parameters = map2(parameters$kappa, parameters$phi,function(k, p){ spatial_covar_mat = varcov.spatial(coords = df, cov.pars = c(1, p), kappa = k, cov.model= "matern")$varcov spatial_covar_mat }) ## Distance matrix (in km - so divide by 1000) dist_data = as.matrix(df[,c("longitude", "latitude")], ncol = 2) dist_matrix = distm(dist_data, fun = distHaversine) / 1000 euclidean_dist = geosphere::distm(df[,c("longitude", "latitude")], fun = distHaversine) dimnames(euclidean_dist) = list(c(1:n_points), c(1:n_points)) # scale euclidean_dist = scales::rescale(euclidean_dist) diag(dist_matrix) distance = round(dist_matrix[lower.tri(dist_matrix)], 4) transformed_dist = round(euclidean_dist[lower.tri(euclidean_dist)], 4) datafr <- as.data.frame(cbind(distance, transformed_dist)) datafr$covariance <- rep(0,1) #a scale from 0 to 1 to make sure we have a "y axis" to which spatial parameter lines will later be plotted plot_n = 1000 sample_idx = ceiling(seq(1, nrow(datafr)-1, length.out = plot_n)) plot_ss = datafr[sample_idx,] plot_ss$index = sample_idx plot_ss = plot_ss[order(plot_ss$distance),] spatialkappa_lines = lapply(spatial_parameters, function(x) { d = sort(c(x[lower.tri(x)]), decreasing = TRUE) sample_idx = seq(1, length(d), length.out = plot_n) d[sample_idx] }) legend_text = c(bquote("local:" ~ kappa == .(parameters[1,1]) ~ "; " ~ phi == .(parameters[1,2])), bquote("regional:" ~ kappa == .(parameters[2,1]) ~ "; " ~ phi == .(parameters[2,2]))) #final version: zoomed in on the distances of up to 10000 km svg("output/plot_spatial_pars_km_zoomed.svg", width = 8, height = 8, dpi=300) plot(x = plot_ss$distance, y = plot_ss$covariance, type = "l", main = "Spatial parameters", col = "white", #not plotting these lines; just keeping to axis ylim = c(0, 1), xlim = c(0, 10000), xlab = "Distance (km)", ylab = "Covariance", frame.plot = TRUE, cex.main=1.7, axes=FALSE, cex.lab=1.5 ) axis(1, at = seq(0,10000,by=2000), labels = seq(0,10000,by=2000), tick = TRUE, cex.axis=1.4) axis(2, at = seq(0,1,by=0.2), labels = seq(0,1,by=0.2), tick = TRUE, cex.axis=1.4) for(i in seq_along(spatialkappa_lines)){ lines(x = plot_ss$distance, y = spatialkappa_lines[[i]], col = cols[i], lwd = 2) } legend("topright", legend=legend_text, col=cols, lty=1, cex=1.5, lwd = 3) x <- dev.off() #full version svg("output/plot_spatial_pars_km.svg", width = 8, height = 8, dpi=300) plot(x = plot_ss$distance, y = plot_ss$covariance, type = "l", main = "Spatial parameters", col = "white", #not plotting these lines; just keeping to axis ylim = c(0, 1), xlim = c(0, 15000), xlab = "Distance (km)", ylab = "Covariance", frame.plot = TRUE, cex.main=1.7, axes=FALSE, cex.lab=1.5) axis(1, at = seq(0,15000,by=2500), labels = seq(0,15000,by=2500), tick = TRUE, cex.axis=1.4) axis(2, at = seq(0,1,by=0.2), labels = seq(0,1,by=0.2), tick = TRUE, cex.axis=1.4) for(i in seq_along(spatialkappa_lines)){ lines(x = plot_ss$distance, y = spatialkappa_lines[[i]], col = cols[i], lwd = 2) } legend("topright", legend=legend_text, col=cols, lty=1, cex=1.5, lwd = 3) x <- dev.off()