clear,clc %--------------------------------------------------------- % Add folder 'files' to the search path and load the model %--------------------------------------------------------- addpath('files'); load('model') %---------------------------------------------------------------------------- % Provide nodes and weights for the quadrature that approximates expectations %---------------------------------------------------------------------------- n_e=1; % number of shocks. [n_nodes,nodes,weights] = Monomials_2(n_e,eye(n_e)); % this quadrature function was written by Judd, Maliar, Maliar and Valero (2014). nodes=nodes'; % transpose to n_e-by-n_nodes %---------------------------------- % Make a vector of parameter values %---------------------------------- BETA=.96; GAMMA=2; ALPHA=.3; RHO=.8; DELTA=.1; SIGMA=.02; params=eval(symparams); %---------------------------------------------------------------------- % Prepare an initial guess - in this case I use a perturbation solution %---------------------------------------------------------------------- % Steady state values kss=((1/BETA-1+DELTA)/ALPHA)^(1/(ALPHA-1)); zss=0; css=kss^ALPHA-DELTA*kss; nxss=[kss;zss]; nyss=css; % Cross moments of the shocks M=get_moments(nodes,weights,model.order(2)); % Compute the perturbation solution (keep the 4 outputs): [derivs,stoch_pert,nonstoch_pert,model]=get_pert(model,params,M,nxss,nyss); % Explanation of outputs: % derivs=structure with the perturbation solution as explained in Levintal % (2017): "Fifth-Order Perturbation Solution to DSGE Models". % stoch_pert=the perturbation solution in the form of unique polynomial coefficients. % nonstoch_pert=same as stoch_pert but without correction for the model volatility (i.e. this is a perturbation solution of a deterministic version of the model) %------------------------------------- % Solve the model by Taylor projection %------------------------------------- x0=nxss; % the approximation point (here we use the steady state, but it could be any arbitrary state) c0=nxss; % the center of the initial guess % tolerance parameters for the Newton solver tolX=1e-6; tolF=1e-6; maxiter=10; % model.jacobian='exact'; % this is the default % model.jacobian='approximate'; % for large models try the approximate jacobian. initial_guess=stoch_pert; [coeffs,model]=tpsolve(initial_guess,x0,model,params,c0,nodes,weights,tolX,tolF,maxiter); %------------------------------------------------------------------ % Compute the residual function and the model variables at point x0 %------------------------------------------------------------------ [R_fun0,g_fun0,Phi_fun0,auxvars0]=residual(coeffs,x0,params,c0,nodes,weights); % R_fun0 is the residual function at x0. % g_fun0 is the control variables at x0, namely, g(x0). % Phi_fun0 is the function Phi at x0 and each future node, namely, Phi(x0,g(x0),epsp), for each node of the quadrature. % auxvars0 is the auxiliary functions at x0 and each future node. % compute the function g(x) at x0 y0=evalg(x0,coeffs,c0); % compute the function Phi(x,y,epsp) at x0, y0 and epsp0 epsp0=.02; xp0=evalPhi(x0,y0,epsp0,params); %--------------------------------- % simulate the model for T periods %--------------------------------- T=100; shocks=randn(1,T+1); % draw shocks % preallocate x_simul=zeros(model.n_x,T+1); y_simul=zeros(model.n_y,T); R_simul=zeros(model.n_y,T); x_simul(:,1)=x0; % option=1; % compute only simulated variables option=2; % compute model residuals for t=1:T xt=x_simul(:,t); epsp=shocks(t+1); % Option 1 - compute only the simulated variables if option==1 yt=evalg(xt,coeffs,c0); y_simul(:,t)=yt; x_simul(:,t+1)=evalPhi(xt,yt,epsp,params); else % Option 2 - compute also model residuals [Rt,yt]=residual(coeffs,xt,params,c0,nodes,weights); y_simul(:,t)=yt; x_simul(:,t+1)=evalPhi(xt,yt,epsp,params); R_simul(:,t)=Rt; end end %------------------------------------------- % Solve the model again at a different state %------------------------------------------- % This is useful when the long run domain of the model is far from the % initial state, so we need to approximate the solution at the long run state % (e.g. the risky steady state or the mean of the ergodic distribution) % rather than the steady state. x1=x0*1.1; % take some arbitrary state [coeffs1,model]=tpsolve(coeffs,x1,model,params,c0,nodes,weights,tolX,tolF,maxiter); % solve at x1 %----------------------- % Use a different solver %----------------------- % The function tpsolve uses the Newton method for up to maxiter iterations. If it fails, it % switches automatically to fsolve for another maxiter iterations. You can % control the parameters of the second solver by optimoptions. The % supported solvers are fsolve and lsqnonlin. % For example, do one Newton iteration and switch to lsqnonlin: x2=x1*1.1; maxiter=1; % one Newton iteration OPTIONS = optimoptions('lsqnonlin','TolX',tolX,'TolF',tolF,'MaxIter',10,'Display','iter-detailed'); % 10 more iterations by lsqnonlin [coeffs2,model]=tpsolve(coeffs,x2,model,params,c0,nodes,weights,tolX,tolF,maxiter,OPTIONS); % or switch to fsolve: maxiter=1; % one Newton iteration OPTIONS = optimoptions('fsolve','TolX',tolX,'TolF',tolF,'MaxIter',10,'Display','iter-detailed'); % 10 more iterations by fsolve [coeffs3,model]=tpsolve(coeffs,x2,model,params,c0,nodes,weights,tolX,tolF,maxiter,OPTIONS);