clear,clc %--------------------------------------------------------- % Add folder 'files' to the search path and load the model %--------------------------------------------------------- addpath('files'); load('model') %---------------------------------------------------------------------------- % Provide nodes and weights for the quadrature that approximates expectations %---------------------------------------------------------------------------- n_e=1; % number of shocks. [n_nodes,nodes,weights] = Monomials_2(n_e,eye(n_e)); % this quadrature function was written by Judd, Maliar, Maliar and Valero (2014). nodes=nodes'; % transpose to n_e-by-n_nodes %-------------------------------------------- % parameter values (for the fixed parameters) %-------------------------------------------- GAMMA=2; ALPHA=.3; RHO=.8; SIGMA=.02; params=eval(symparams); %-------------------------------------------------------------------- % Start with a perturbation solution for the case of fixed parameters %-------------------------------------------------------------------- BETA=.96; DELTA=.1; % Steady state values kss=((1/BETA-1+DELTA)/ALPHA)^(1/(ALPHA-1)); zss=0; css=kss^ALPHA-DELTA*kss; nxss=[kss;zss]; nyss=css; pert_order=model.order(2); M=get_moments(nodes,weights,pert_order); % Get a perturbation solution for the case of fixed parameters. You need to % provide the fixed value of the ms parameters (the variable chi_fixed) chi_fixed=eval(chi); [derivs,stoch_pert,nonstoch_pert,model]=get_pert(model,params,M,nxss,nyss,chi_fixed); %--------------------------------------- % Proceed to Markov-switching parameters %--------------------------------------- % The values of the parameters in each regime (there are 2 regimes) msparams=[BETA-.02,BETA+.02;% BETA varies across regimes DELTA-.05,DELTA+.05]; % DELTA varies across regimes transition=[.9,.1; .8,.2]; initial_guess=stoch_pert; % the initial guess has n_regimes columns (one for each regime). x0=nxss; % evaluate the system at the steady state c0=nxss; % the center of the initial guess is the steady state. tolX=1e-6; tolF=1e-6; maxiter=10; [coeffs,model]=tpsolve(initial_guess,x0,model,params,msparams,transition,c0,nodes,weights,tolX,tolF,maxiter); % compute the model residuals [R_funMS,g_funMS,Phi_funMS,aux_funMS]=residual(coeffs,x0,params,msparams,transition,c0,nodes,weights); % R_funMS is a n_y-by-n_regimes matrix of the model residuals. % g_funMS is a n_y-by-n_regimes matrix of the endogenous control variables for each current regime. % Phi_funMS is a n_x-by-n_nodes-by-n_regimes-by-n_regimes array of next period state variables for each future node and current and future regimes. % aux_funMS is a similar array of the auxiliary functions (for each future % node and current/future regimes) % To compute the model residuals only for a specific regime, add the % required regime as the last argument specific_regime=1; [R_specific,g_specific,Phi_specific,auxvars_specific]=residual(coeffs,x0,params,msparams,transition,c0,nodes,weights,specific_regime); % Compute the function g given the state x0 and the regime specific_regime g_fun=evalg(x0,specific_regime,coeffs,c0); % Compute the function Phi given the state x0, the control y0, the current % and future regimes and the future shock epsp y0=g_fun; current_regime=1; future_regime=2; epsp=0; Phi_fun=evalPhi(x0,y0,epsp,future_regime,current_regime,params,msparams); %--------------------------------- % simulate the model for T periods %--------------------------------- T=10000; shocks=randn(1,T+1); rshock=rand(1,T+1); % to determine the regime x_simul=zeros(model.n_x,T+1); regime_simul=zeros(1,T+1); y_simul=zeros(model.n_y,T); R_simul=zeros(model.n_y,T); coeffs=reshape(coeffs,[],model.n_regimes); x_simul(:,1)=x0; regime_simul(1)=1; % option=1; % compute only simulated variables option=2; % compute model residuals for t=1:T xt=x_simul(:,t); % current state regimet=regime_simul(t); % current regime epsp=shocks(t+1); % future shock % future regime regimet_next=1+model.n_regimes-sum(double(logical((rshock(t+1)-cumsum(transition(regimet,:)))<0))); % Option 1 - compute only the simulated variables if option==1 yt=evalg(xt,regimet,coeffs,c0); y_simul(:,t)=yt; x_simul(:,t+1)=evalPhi(xt,yt,epsp,regimet_next,regimet,params,msparams); regime_simul(t+1)=regimet_next; else % Option 2 - compute also model residuals [Rt,yt]=residual(coeffs,xt,params,msparams,transition,c0,nodes,weights,regimet); y_simul(:,t)=yt; x_simul(:,t+1)=evalPhi(xt,yt,epsp,regimet_next,regimet,params,msparams); regime_simul(t+1)=regimet_next; R_simul(:,t)=Rt; end end % Note that the simulated capital level is considerably different than the % initial approximation point that we used. To improve accuracy, we can solve the % model at the mean of the ergodic distribution. meank=mean(x_simul(1,:)); ergodic_x0=[meank;0]; % solve at the mean of the ergodic distribution [coeffs,model]=tpsolve(coeffs,ergodic_x0,model,params,msparams,transition,c0,nodes,weights,tolX,tolF,maxiter); % simulate again and store residuals in R_simul2 x_simul(:,1)=ergodic_x0; regime_simul(1)=1; R_simul2=R_simul; for t=1:T xt=x_simul(:,t); regimet=regime_simul(t); epsp=shocks(t+1); % future regime regimet_next=1+model.n_regimes-sum(double(logical((rshock(t+1)-cumsum(transition(regimet,:)))<0))); % Option 1 - compute only the simulated variables if option==1 yt=evalg(xt,regimet,coeffs,c0); y_simul(:,t)=yt; x_simul(:,t+1)=evalPhi(xt,yt,epsp,regimet_next,regimet,params,msparams); regime_simul(t+1)=regimet_next; else % Option 2 - compute also model residuals [Rt,yt]=residual(coeffs,xt,params,msparams,transition,c0,nodes,weights,regimet); y_simul(:,t)=yt; x_simul(:,t+1)=evalPhi(xt,yt,epsp,regimet_next,regimet,params,msparams); regime_simul(t+1)=regimet_next; R_simul2(:,t)=Rt; end end % compare mean errors for the two simulations mean(abs(R_simul)) mean(abs(R_simul2)) % the second simulation is more accurate