function Z=solvemodel(x, targs, vers, show) % % This function solves the model, given (1) values for the parameters that % don't change, which are global variables, (2) values for "calibrated" % parameters, over which the fsolve function is searching, and which are % passed to this function as the vector 'x'. % % The second argument, 'targs,' gives values for the three statistics whose % values are being targeted by fsolve as part of the calibration exercise. % The vector of values, 'Z,' that are returned by this function are the % squared residuals that fsolve seeks to set to zero. % % The variable 'vers,' determines which variables are being passed to the % function in 'x' and which ones are fixed at the global values set in the % main m-file (as specified below). % % For the variable 'show,' a value of 1 tells the function to print the % values of the various statistics of interest. % % % parameters: global pigrdpts pigrid pigriddiv yb yg beta b gam eta pkh lam alph pi0 kh sigeps A kr % output or results that we want to be available globally: global pe pf u e0 e1 w0 w1 tendist probmatch probg H_pi_dist pibar theta oneqhazrate twoqhazrate threeplushazrate hiresrate jfr meanvacdur if vers==1 localpi0=pi0; localkh=kh; localsigeps=x(1); localA=x(2); localkr=x(3); elseif vers==2 localpi0=x(1); localkh=kh; localsigeps=sigeps; localA=x(2); localkr=x(3); elseif vers==3 localpi0=pi0; localkh=x(3); localsigeps=x(1); localA=x(2); localkr=kr; end % % Compute the cumulative distribution of pi, conditional on normally % distributed signal (z). This must be re-computed every time the values % of sigeps or pi0 change (which is every time that this function is % called). % Find value of z such that pi equals a particular value of pigriddiv for j=1:pigrdpts+1 zz(j)=fsolve(@(z) pigriddiv(j)-localpi0*exp(-(z-yg)^2/2/localsigeps^2)/(localpi0*exp(-(z-yg)^2/2/localsigeps^2)+(1-localpi0)*exp(-(z-yb)^2/2/localsigeps^2)), 0, optimoptions('fsolve','TolFun',1e-16,'Display','off')); end % Probabilities of getting a value of pi between two successive values of % pigriddiv (the range surrounding a value of pigrid) H_pi_dist(1,:)=localpi0*normcdf(zz(2:end), yg, localsigeps)+(1-localpi0)*normcdf(zz(2:end), yb, localsigeps)-(localpi0*normcdf(zz(1:end-1), yg, localsigeps)+(1-localpi0)*normcdf(zz(1:end-1), yb, localsigeps)); H_pi_dist(1,:)=H_pi_dist(1,:)/sum(H_pi_dist(1,:)); % normalize, to ensure elements sum to 1 exactly. %% Solve Bellman equations xx=1/2000; % adjustment factor for convergence of pe pe=.2; % initial value for pe % Create/initiate value functions S0old=zeros(1,length(pigrid)); S1old=zeros(1,length(pigrid)); Je0old=zeros(1,length(pigrid)); Je1old=zeros(1,length(pigrid)); Juold=0; Ve0old=zeros(1,length(pigrid)); Ve1old=zeros(1,length(pigrid)); Vuold=0; Vu=0; difpe=1; tol=1e-8; while abs(difpe)>tol pf=localA^(1/(1-gam))*pe^((-gam)/(1-gam)); difs=1; while difs>tol S0new=max(pigrid*(yg-yb)+yb-localkh-b+beta*(1-lam)*(alph*pigrid*(pkh*S1old(end)+(1-pkh)*S0old(end))+(1-alph)*(pkh*S1old+(1-pkh)*S0old))-... beta*pe*eta*H_pi_dist*S0old',0); S1new=max(pigrid*(yg-yb)+yb-b+beta*(1-lam)*(alph*pigrid*S1old(end)+(1-alph)*S1old)-... beta*pe*eta*H_pi_dist*S0old',0); difs=max(max(abs(S1old-S1new)),max(abs(S0old-S0new))); S1old=S1new; S0old=S0new; end peold=pe; Ju=(-localkr+beta*pf*(1-eta)*H_pi_dist*S0new')/(1-beta); difpe=Ju; pe=peold*(1+difpe*xx); % increase worker's finding rate if Ju>0 end theta=pe/pf; w0=b+eta*(pigrid*yg+(1-pigrid)*yb-localkh-b+localkr*theta); w1=b+eta*(pigrid*yg+(1-pigrid)*yb-b+localkr*theta); pibar=pigrid(sum(S0new==0)); %% Calculate statistics of interest, given the equilibrium pe, pf, and pibar from above probmatch=H_pi_dist*(pigrid>pibar)'; % fraction of meetings with high enought pi to form/continue match probg=(H_pi_dist/sum(H_pi_dist(pigrid>pibar)))*(pigrid.*(pigrid>pibar))'; % probability that matches are actually good (conditional on having been formed) trans=zeros(3,3); % three states: unemployed, unknown type, known good matches trans=[1-pe*probmatch lam+(1-lam)*alph*(1-probg) lam;... pe*probmatch (1-lam)*(1-alph) 0;... 0 (1-lam)*alph*probg 1-lam]; % steady state mtr=eye(3)-trans; mtr(3,1:3)=1; invmtr=inv(mtr); erg=invmtr(:,3); u=erg(1); % unemployment e0=erg(2); % matches of unknown type e1=erg(3); % matches known to be good % % Calculate the job tenure distribution % --Allow mass of one unit to enter and the trace the realized tenure % distribution of that cohort % --This is equivalent to looking at the point-in-time distribution if one % unit is allowed to enter each period. The whole distribution would simply % scale up or down with the size of the mass of entrants. tendist=[0;1;0]; trans1=trans; trans1(:,1)=0; % don't allow any exits from unemployment after first period, so this just tracks the initial mass of entrants for i=2:2000 % 2000 periods is 2000/52 (roughly 40) years tendist(:,i)=trans1*tendist(:,i-1) ; end % fqseps: All separations among jobs newly created in the quarter=(start in first week of quarter and separate within 12 % periods)+(start in second week of quarter and separate within 11 % periods)+(start in third week of quarter and separate within 10)+...etc fqseps=13*sum(tendist(2:3,1))-sum(tendist(2:3,14))-sum(tendist(2:3,13))-... sum(tendist(2:3,12))-sum(tendist(2:3,11))-sum(tendist(2:3,10))-... sum(tendist(2:3,9))-sum(tendist(2:3,8))-sum(tendist(2:3,7))-... sum(tendist(2:3,6))-sum(tendist(2:3,5))-sum(tendist(2:3,4))-... sum(tendist(2:3,3))-sum(tendist(2:3,2)); % empspells: (Employment among all tenure categories at start of % quarter)+(new starts in 2nd week)+(new starts in third week)+...+(new % starts in 13th week) empspells=sum(sum(tendist(2:3,:)))+12*sum(tendist(2:3,1)); sqrate=fqseps/empspells; % incidence rate of one-quarter spells (q_1 in paper) hires=13*sum(tendist(2:3,1)); % % First quarter hazard rate: among those who enter a job in a given % quarter, what fraction have separated by the start of the next quarter? oneqhazrate=fqseps/hires; % Note: we could have used either tendist or scaledtendist in the above % calculations for sqrate and fqhazrate. Whether they are scaled or not % doesn't matter much so long as the numerators and denominators are scaled % equivalently. % 2 quarter hazard rate twoqseps=sum(sum(tendist(2:3,2:14)))-sum(sum(tendist(2:3,15:27))); twoqhazrate=twoqseps/sum(sum(tendist(2:3,2:14))); % 3+ quarters separation rate threeplusseps=sum(sum(tendist(2:3,15:end)))-sum(sum(tendist(2:3,28:end))); threeplushazrate=threeplusseps/sum(sum(tendist(2:3,15:end))); % Quarterly hires rate (# hires in quarter divided by total employment spells) hiresrate=hires/empspells; % Monthly job-finding rate jfr=pe*probmatch+(1-pe*probmatch)*pe*probmatch +(1-pe*probmatch)^2*pe*probmatch+(1-pe*probmatch)^3*pe*probmatch; % weekly frequency: "month"==4 weeks % % Mean vacancy duration in days % meanvacdur=7*(1/pf/probmatch); % Mean vacancy duration in weeks meanvacdur=(1/pf/probmatch); % print output if show==1 % fid=fopen('results.txt','w'); % fprintf(fid,'Unemployment rate: \t\t\t\t %g\r', u); % fprintf(fid,'Monthly job-finding rate:\t\t %g\r', jfr); % fprintf(fid,'Ave. vacancy duration (weeks):\t %g\r', 1/pf/probmatch); % fprintf(fid,'Prob(good|match):\t\t\t\t %g\r', probg); % fprintf(fid,'1-H(pi^n):\t\t\t\t\t\t %g\r', probmatch); % fprintf(fid,'Worker meeting rate:\t\t\t\t %g\r', pe); % fprintf(fid,'First quarter hazard rate:\t\t %g\r',oneqhazrate); % fprintf(fid,'Second quarter hazard rate:\t\t %g\r',twoqhazrate); % fprintf(fid,'3+ quarter hazard rate:\t\t\t %g\r',threeplushazrate); % fprintf(fid,'Hires rate:\t\t\t\t\t\t %g\r',hiresrate); % fclose(fid); % type results.txt % print results to be cut-and-pasted into tables in Latex fid=fopen('results2.txt','w'); fprintf(fid,'& %.3f & %.3f & %.3f & %.3f & %.3f & %.2f & %.3f', oneqhazrate, twoqhazrate, threeplushazrate, hiresrate, jfr, meanvacdur, u); fclose(fid); type results2.txt end Z=[(log(targs(1))-log(probg))^2; (log(targs(2))-log(jfr))^2; (log(targs(3))-log(meanvacdur))^2];