--------------------------------------------------------------------------------------------------------------------------------- name: log: C:/Users/paserman/Dropbox/Research/GenderCooperativeness/EJ/3 replication package/Log/AppendixC_simulations_May2021. > log log type: text opened on: 10 May 2021, 18:23:16 . . . cap prog drop rd_sim . prog def rd_sim, rclass 1. version 15.1 2. syntax [, nobs(integer 10000) beta_a(real 1.0) beta_b(real 1.0) rho_x(real 0.7) /* > */ zbar_R(real 0.5) zbar_D(real -0.5) /* > */ alpha_R(real 0.5) alpha_D(real 0.5) /* > */ kappa_ksi_R(real 0.0) beta_ksi_R(real 10.0) kappa_ksi_D(real 0.0) beta_ksi_D(real 10.0) /* > */ phi0_R(real -1.0) phi1_R(real -1.0) phi0_D(real -1.0) phi1_D(real -1.0) /* > */ kappa_u(real 0.0) beta_u(real 1.0) /* > */ gamma0(real 0.0) gamma1(real -5.0) gamma2(real 0.0) gamma3(real 0.0)/* > */ tau0(real 0.3) tau1(real -1.0) tau2(real 0.0)] 3. drop _all 4. set obs `nobs' 5. . * Overall district ideology . gen z = 2*(rbeta(`beta_a',`beta_b')-0.5) 6. gen x = z + (sqrt((1-`rho_x'^2)/`rho_x'^2))*(2*(rbeta(`beta_a',`beta_b')-0.5)) 7. . * Ideology of R and candidates: weighted average of national party and local ideology, plus noise . gen z_R = `alpha_R'*`zbar_R' + (1-`alpha_R')*z + `kappa_ksi_R'*(rbeta(`beta_ksi_R',`beta_ksi_R')-0.5) 8. gen z_D = `alpha_D'*`zbar_D' + (1-`alpha_D')*z + `kappa_ksi_D'*(rbeta(`beta_ksi_D',`beta_ksi_D')-0.5) 9. . * Gender is correlated with candidate ideology . gen byte female_D = rnormal(`phi0_D' + `phi1_D'*z_D)>0 10. gen byte female_R = rnormal(`phi0_R' + `phi1_R'*z_R)>0 11. . * Voteshare depends on ideology of the candidates plus noise . gen u = `kappa_u'*(rbeta(`beta_u', `beta_u')-0.5) 12. gen voteshare_D = (exp(`gamma0' + `gamma1'*(z - (z_D+z_R)/2) + `gamma2'*female_D - `gamma3'*female_R + u)/ /* > */ (1+ exp(`gamma0' + `gamma1'*(z - (z_D+z_R)/2) + `gamma2'*female_D - `gamma3'*female_R + u ))) 13. . gen voteshare_female = voteshare_D if female_D==1 & female_R==0 14. replace voteshare_female = (1-voteshare_D) if female_D==0 & female_R==1 15. . * Outcome: depends on who is elected . gen y = `tau0' + `tau1'*abs(z_D) + `tau2'*female_D + rnormal() if voteshare_D>=0.5 16. replace y = `tau0' + `tau1'*abs(z_R) +`tau2'*female_R + rnormal() if voteshare_D<0.5 17. . * Now four types of RD analyses . * (1) Density test . rddensity voteshare_female, c(0.5) 18. local denstest_pval_all = e(pv_q) 19. . rddensity voteshare_female if voteshare_D>=0.5, c(0.5) 20. local denstest_pval_D = e(pv_q) 21. . rddensity voteshare_female if voteshare_D<0.5, c(0.5) 22. local denstest_pval_R = e(pv_q) 23. . * (2) is ideology continuous at the threshold . rdrobust z voteshare_female, c(0.5) kernel(uniform) 24. mat b = e(b) 25. mat V = e(V) 26. local b_ideology_all = b[1,1] 27. local se_ideology_all = sqrt(V[1,1]) 28. . rdrobust z voteshare_female if voteshare_D>=0.5, c(0.5) kernel(uniform) 29. mat b = e(b) 30. mat V = e(V) 31. local b_ideology_D = b[1,1] 32. local se_ideology_D = sqrt(V[1,1]) 33. . rdrobust z voteshare_female if voteshare_D<0.5, c(0.5) kernel(uniform) 34. mat b = e(b) 35. mat V = e(V) 36. local b_ideology_R = b[1,1] 37. local se_ideology_R = sqrt(V[1,1]) 38. . * (3) Estimate treatment effect with simple RD . rdrobust y voteshare_female, c(0.5) kernel(uniform) 39. mat b = e(b) 40. mat V = e(V) 41. local b_rd_all = b[1,1] 42. local se_rd_all = sqrt(V[1,1]) 43. local band_all = e(h_l) 44. . rdrobust y voteshare_female if voteshare_D>=0.5, c(0.5) kernel(uniform) 45. mat b = e(b) 46. mat V = e(V) 47. local b_rd_D = b[1,1] 48. local se_rd_D = sqrt(V[1,1]) 49. local band_D = e(h_l) 50. . rdrobust y voteshare_female if voteshare_D<0.5, c(0.5) kernel(uniform) 51. mat b = e(b) 52. mat V = e(V) 53. local b_rd_R = b[1,1] 54. local se_rd_R = sqrt(V[1,1]) 55. local band_R = e(h_l) 56. . * (4-5) Estimate the treatment effect with weighted RD . gen byte female = female_D if voteshare_D>=0.5 57. replace female = female_R if voteshare_D<0.5 58. gen voteshare_female_adj = voteshare_female-0.5 59. . * (4) using x . probit female x if abs(voteshare_female_adj)<=`band_all' 60. predict pscore if e(sample)==1 61. gen wt =1/pscore if female==1 62. replace wt = 1/(1-pscore) if female==0 63. reg y female voteshare_female_adj i.female#c.voteshare_female_adj [aw=wt] if abs(voteshare_female_adj)<=`band_all' 64. local b_rdwt_all = _b[female] 65. local se_rdwt_all = _se[female] 66. drop pscore wt 67. . probit female x if voteshare_D>=0.5 & abs(voteshare_female_adj)<=`band_D' 68. predict pscore if e(sample)==1 69. gen wt =1/pscore if female==1 70. replace wt = 1/(1-pscore) if female==0 71. reg y female voteshare_female_adj i.female#c.voteshare_female_adj [aw=wt] if voteshare_D>=0.5 & abs(voteshare_female_adj > )<=`band_D' 72. local b_rdwt_D = _b[female] 73. local se_rdwt_D = _se[female] 74. drop pscore wt 75. . probit female x if voteshare_D<0.5 & abs(voteshare_female_adj)<=`band_R' 76. predict pscore if e(sample)==1 77. gen wt =1/pscore if female==1 78. replace wt = 1/(1-pscore) if female==0 79. reg y female voteshare_female_adj i.female#c.voteshare_female_adj [aw=wt] if voteshare_D<0.5 & abs(voteshare_female_adj) > <=`band_R' 80. local b_rdwt_R = _b[female] 81. local se_rdwt_R = _se[female] 82. drop pscore wt 83. . . . * (5a) using ideology of the district . probit female z if abs(voteshare_female_adj)<=`band_all' 84. predict pscore if e(sample)==1 85. gen wt =1/pscore if female==1 86. replace wt = 1/(1-pscore) if female==0 87. reg y female voteshare_female_adj i.female#c.voteshare_female_adj [aw=wt] if abs(voteshare_female_adj)<=`band_all' 88. local b_rdwtideodistrict_all = _b[female] 89. local se_rdwtideodistrict_all = _se[female] 90. drop pscore wt 91. . probit female z if voteshare_D>=0.5 & abs(voteshare_female_adj)<=`band_D' 92. predict pscore if e(sample)==1 93. gen wt =1/pscore if female==1 94. replace wt = 1/(1-pscore) if female==0 95. reg y female voteshare_female_adj i.female#c.voteshare_female_adj [aw=wt] if voteshare_D>=0.5 & abs(voteshare_female_adj > )<=`band_D' 96. local b_rdwtideodistrict_D = _b[female] 97. local se_rdwtideodistrict_D = _se[female] 98. drop pscore wt 99. . probit female z if voteshare_D<0.5 & abs(voteshare_female_adj)<=`band_R' 100. predict pscore if e(sample)==1 101. gen wt =1/pscore if female==1 102. replace wt = 1/(1-pscore) if female==0 103. reg y female voteshare_female_adj i.female#c.voteshare_female_adj [aw=wt] if voteshare_D<0.5 & abs(voteshare_female_adj) > <=`band_R' 104. local b_rdwtideodistrict_R = _b[female] 105. local se_rdwtideodistrict_R = _se[female] 106. drop pscore wt 107. . * (5b) using ideology of the elected representative . gen z_elected = z_D if voteshare_D>=0.5 108. replace z_elected = z_R if voteshare_D<0.5 109. . probit female z_elected if abs(voteshare_female_adj)<=`band_all' 110. predict pscore if e(sample)==1 111. gen wt =1/pscore if female==1 112. replace wt = 1/(1-pscore) if female==0 113. reg y female voteshare_female_adj i.female#c.voteshare_female_adj [aw=wt] if abs(voteshare_female_adj)<=`band_all' 114. local b_rdwtideoelected_all = _b[female] 115. local se_rdwtideoelected_all = _se[female] 116. drop pscore wt 117. . probit female z_elected if voteshare_D>=0.5 & abs(voteshare_female_adj)<=`band_D' 118. predict pscore if e(sample)==1 119. gen wt =1/pscore if female==1 120. replace wt = 1/(1-pscore) if female==0 121. reg y female voteshare_female_adj i.female#c.voteshare_female_adj [aw=wt] if voteshare_D>=0.5 & abs(voteshare_female_adj > )<=`band_D' 122. local b_rdwtideoelected_D = _b[female] 123. local se_rdwtideoelected_D = _se[female] 124. drop pscore wt 125. . probit female z_elected if voteshare_D<0.5 & abs(voteshare_female_adj)<=`band_R' 126. predict pscore if e(sample)==1 127. gen wt =1/pscore if female==1 128. replace wt = 1/(1-pscore) if female==0 129. reg y female voteshare_female_adj i.female#c.voteshare_female_adj [aw=wt] if voteshare_D<0.5 & abs(voteshare_female_adj) > <=`band_R' 130. local b_rdwtideoelected_R = _b[female] 131. local se_rdwtideoelected_R = _se[female] 132. drop pscore wt 133. . * (6-7) Propensity score methods . gen absMV = abs(voteshare_D-0.5) 134. . * (6a) pscore - x . cap teffects ipw (y) (female x absMV, probit), pstolerance(1e-6) osample(osample) 135. teffects ipw (y) (female x absMV, probit) if osample==0, pstolerance(1e-6) 136. drop osample 137. mat b = e(b) 138. mat V = e(V) 139. local b_pscorex_all = b[1,1] 140. local se_pscorex_all = sqrt(V[1,1]) 141. . cap teffects ipw (y) (female x absMV, probit) if voteshare_D>=0.5, pstolerance(1e-6) osample(osample) 142. teffects ipw (y) (female x absMV, probit) if voteshare_D>=0.5 & osample==0, pstolerance(1e-6) 143. drop osample 144. mat b = e(b) 145. mat V = e(V) 146. local b_pscorex_D = b[1,1] 147. local se_pscorex_D = sqrt(V[1,1]) 148. . cap teffects ipw (y) (female x absMV, probit) if voteshare_D<0.5, pstolerance(1e-6) osample(osample) 149. teffects ipw (y) (female x absMV, probit) if voteshare_D<0.5 & osample==0, pstolerance(1e-6) 150. drop osample 151. mat b = e(b) 152. mat V = e(V) 153. local b_pscorex_R = b[1,1] 154. local se_pscorex_R = sqrt(V[1,1]) 155. . . * (7a) pscore - district ideology . cap teffects ipw (y) (female z absMV, probit), pstolerance(1e-6) osample(osample) 156. teffects ipw (y) (female z absMV, probit) if osample==0, pstolerance(1e-6) 157. drop osample 158. mat b = e(b) 159. mat V = e(V) 160. local b_pscoreideodistrict_all = b[1,1] 161. local se_pscoreideodistrict_all = sqrt(V[1,1]) 162. . cap teffects ipw (y) (female z absMV, probit) if voteshare_D>=0.5, pstolerance(1e-6) osample(osample) 163. teffects ipw (y) (female z absMV, probit) if voteshare_D>=0.5 & osample==0, pstolerance(1e-6) 164. drop osample 165. mat b = e(b) 166. mat V = e(V) 167. local b_pscoreideodistrict_D = b[1,1] 168. local se_pscoreideodistrict_D = sqrt(V[1,1]) 169. . cap teffects ipw (y) (female z absMV, probit) if voteshare_D<0.5, pstolerance(1e-6) osample(osample) 170. teffects ipw (y) (female z absMV, probit) if voteshare_D<0.5 & osample==0, pstolerance(1e-6) 171. drop osample 172. mat b = e(b) 173. mat V = e(V) 174. local b_pscoreideodistrict_R = b[1,1] 175. local se_pscoreideodistrict_R = sqrt(V[1,1]) 176. . . * (7b) pscore - elected representative ideology . cap teffects ipw (y) (female z_elected absMV, probit), pstolerance(1e-6) osample(osample) 177. teffects ipw (y) (female z_elected absMV, probit) if osample==0, pstolerance(1e-6) 178. drop osample 179. mat b = e(b) 180. mat V = e(V) 181. local b_pscoreideoelected_all = b[1,1] 182. local se_pscoreideoelected_all = sqrt(V[1,1]) 183. . cap teffects ipw (y) (female z_elected absMV, probit) if voteshare_D>=0.5, pstolerance(1e-6) osample(osample) 184. teffects ipw (y) (female z_elected absMV, probit) if voteshare_D>=0.5 & osample==0, pstolerance(1e-6) 185. drop osample 186. mat b = e(b) 187. mat V = e(V) 188. local b_pscoreideoelected_D = b[1,1] 189. local se_pscoreideoelected_D = sqrt(V[1,1]) 190. . cap teffects ipw (y) (female z_elected absMV, probit) if voteshare_D<0.5, pstolerance(1e-6) osample(osample) 191. teffects ipw (y) (female z_elected absMV, probit) if voteshare_D<0.5 & osample==0, pstolerance(1e-6) 192. drop osample 193. mat b = e(b) 194. mat V = e(V) 195. local b_pscoreideoelected_R = b[1,1] 196. local se_pscoreideoelected_R = sqrt(V[1,1]) 197. . . * (8) OLS . reg y female 198. local b_ols_all =_b[female] 199. local se_ols_all = _se[female] 200. . reg y female if voteshare_D>=0.5 201. local b_ols_D = _b[female] 202. local se_ols_D = _se[female] 203. . reg y female if voteshare_D<0.5 204. local b_ols_R = _b[female] 205. local se_ols_R = _se[female] 206. . * (9) Return . return scalar denstest_pval_all = `denstest_pval_all' 207. return scalar denstest_pval_D = `denstest_pval_D' 208. return scalar denstest_pval_R = `denstest_pval_R' 209. . return scalar b_ideology_all = `b_ideology_all' 210. return scalar se_ideology_all = `se_ideology_all' 211. return scalar b_ideology_D = `b_ideology_D' 212. return scalar se_ideology_D = `se_ideology_D' 213. return scalar b_ideology_R = `b_ideology_R' 214. return scalar se_ideology_R = `se_ideology_R' 215. . return scalar b_rd_all = `b_rd_all' 216. return scalar se_rd_all = `se_rd_all' 217. return scalar b_rd_D = `b_rd_D' 218. return scalar se_rd_D = `se_rd_D' 219. return scalar b_rd_R = `b_rd_R' 220. return scalar se_rd_R = `se_rd_R' 221. . return scalar b_rdwt_all = `b_rdwt_all' 222. return scalar se_rdwt_all = `se_rdwt_all' 223. return scalar b_rdwt_D = `b_rdwt_D' 224. return scalar se_rdwt_D = `se_rdwt_D' 225. return scalar b_rdwt_R = `b_rdwt_R' 226. return scalar se_rdwt_R = `se_rdwt_R' 227. . return scalar b_rdwtideodistrict_all = `b_rdwtideodistrict_all' 228. return scalar se_rdwtideodistrict_all = `se_rdwtideodistrict_all' 229. return scalar b_rdwtideodistrict_D = `b_rdwtideodistrict_D' 230. return scalar se_rdwtideodistrict_D = `se_rdwtideodistrict_D' 231. return scalar b_rdwtideodistrict_R = `b_rdwtideodistrict_R' 232. return scalar se_rdwtideodistrict_R = `se_rdwtideodistrict_R' 233. . return scalar b_rdwtideoelected_all = `b_rdwtideoelected_all' 234. return scalar se_rdwtideoelected_all = `se_rdwtideoelected_all' 235. return scalar b_rdwtideoelected_D = `b_rdwtideoelected_D' 236. return scalar se_rdwtideoelected_D = `se_rdwtideoelected_D' 237. return scalar b_rdwtideoelected_R = `b_rdwtideoelected_R' 238. return scalar se_rdwtideoelected_R = `se_rdwtideoelected_R' 239. . return scalar b_pscorex_all = `b_pscorex_all' 240. return scalar se_pscorex_all = `se_pscorex_all' 241. return scalar b_pscorex_D = `b_pscorex_D' 242. return scalar se_pscorex_D = `se_pscorex_D' 243. return scalar b_pscorex_R = `b_pscorex_R' 244. return scalar se_pscorex_R = `se_pscorex_R' 245. . return scalar b_pscoreideodistrict_all = `b_pscoreideodistrict_all' 246. return scalar se_pscoreideodistrict_all = `se_pscoreideodistrict_all' 247. return scalar b_pscoreideodistrict_D = `b_pscoreideodistrict_D' 248. return scalar se_pscoreideodistrict_D = `se_pscoreideodistrict_D' 249. return scalar b_pscoreideodistrict_R = `b_pscoreideodistrict_R' 250. return scalar se_pscoreideodistrict_R = `se_pscoreideodistrict_R' 251. . return scalar b_pscoreideoelected_all = `b_pscoreideoelected_all' 252. return scalar se_pscoreideoelected_all = `se_pscoreideoelected_all' 253. return scalar b_pscoreideoelected_D = `b_pscoreideoelected_D' 254. return scalar se_pscoreideoelected_D = `se_pscoreideoelected_D' 255. return scalar b_pscoreideoelected_R = `b_pscoreideoelected_R' 256. return scalar se_pscoreideoelected_R = `se_pscoreideoelected_R' 257. . return scalar b_ols_all = `b_ols_all' 258. return scalar se_ols_all = `se_ols_all' 259. return scalar b_ols_D = `b_ols_D' 260. return scalar se_ols_D = `se_ols_D' 261. return scalar b_ols_R = `b_ols_R' 262. return scalar se_ols_R = `se_ols_R' 263. . end . . . ******************************************************************************** . ******************************************************************************** . ******************************************************************************** . . * Now actually run the simulations . . set seed 1234567 . . * Run one simulation as a test . rd_sim, beta_a(5) beta_b(5) kappa_ksi_R(0.4) kappa_ksi_D(0.4) kappa_u(1) tau1(-5) rho_x(0.6) nobs(100000) /* > */ gamma2(0.0) gamma3(0.6) phi1_D(-1) phi1_R(-1) number of observations (_N) was 0, now 100,000 (79,715 missing values generated) (8,263 real changes made) (53,038 missing values generated) (53,038 real changes made) Computing data-driven bandwidth selectors. Point estimates and standard errors have been adjusted for repeated observations. (Use option nomasspoints to suppress this adjustment.) RD Manipulation test using local polynomial density estimation. c = 0.500 | Left of c Right of c Number of obs = 28548 -------------------+---------------------- Model = unrestricted Number of obs | 11425 17123 BW method = comb Eff. Number of obs | 4542 4450 Kernel = triangular Order est. (p) | 2 2 VCE method = jackknife Order bias (q) | 3 3 BW est. (h) | 0.096 0.083 Running variable: voteshare_female. ------------------------------------------ Method | T P>|T| -------------------+---------------------- Robust | -0.2327 0.8160 ------------------------------------------ P-values of binomial tests. (H0: prob = .5) ----------------------------------------------------- Window Length / 2 | =c | P>|T| -------------------+----------------------+---------- 0.000 | 5 15 | 0.0414 0.000 | 19 29 | 0.1934 0.001 | 31 40 | 0.3425 0.001 | 42 54 | 0.2615 0.001 | 51 69 | 0.1203 0.001 | 64 83 | 0.1374 0.002 | 69 97 | 0.0358 0.002 | 83 112 | 0.0447 0.002 | 100 127 | 0.0842 0.002 | 115 132 | 0.3086 ----------------------------------------------------- Computing data-driven bandwidth selectors. Point estimates and standard errors have been adjusted for repeated observations. (Use option nomasspoints to suppress this adjustment.) RD Manipulation test using local polynomial density estimation. c = 0.500 | Left of c Right of c Number of obs = 13774 -------------------+---------------------- Model = unrestricted Number of obs | 2457 11317 BW method = comb Eff. Number of obs | 1615 6442 Kernel = triangular Order est. (p) | 2 2 VCE method = jackknife Order bias (q) | 3 3 BW est. (h) | 0.141 0.173 Running variable: voteshare_female. ------------------------------------------ Method | T P>|T| -------------------+---------------------- Robust | 9.3618 0.0000 ------------------------------------------ P-values of binomial tests. (H0: prob = .5) ----------------------------------------------------- Window Length / 2 | =c | P>|T| -------------------+----------------------+---------- 0.000 | 5 15 | 0.0414 0.000 | 19 29 | 0.1934 0.001 | 31 40 | 0.3425 0.001 | 42 54 | 0.2615 0.001 | 51 69 | 0.1203 0.001 | 64 83 | 0.1374 0.002 | 69 97 | 0.0358 0.002 | 83 112 | 0.0447 0.002 | 100 127 | 0.0842 0.002 | 115 132 | 0.3086 ----------------------------------------------------- Computing data-driven bandwidth selectors. Point estimates and standard errors have been adjusted for repeated observations. (Use option nomasspoints to suppress this adjustment.) RD Manipulation test using local polynomial density estimation. c = 0.500 | Left of c Right of c Number of obs = 14774 -------------------+---------------------- Model = unrestricted Number of obs | 8968 5806 BW method = comb Eff. Number of obs | 6647 2312 Kernel = triangular Order est. (p) | 2 2 VCE method = jackknife Order bias (q) | 3 3 BW est. (h) | 0.211 0.148 Running variable: voteshare_female. ------------------------------------------ Method | T P>|T| -------------------+---------------------- Robust | -12.2100 0.0000 ------------------------------------------ P-values of binomial tests. (H0: prob = .5) ----------------------------------------------------- Window Length / 2 | =c | P>|T| -------------------+----------------------+---------- 0.000 | 5 15 | 0.0414 0.000 | 19 29 | 0.1934 0.001 | 31 40 | 0.3425 0.001 | 42 54 | 0.2615 0.001 | 51 69 | 0.1203 0.001 | 64 83 | 0.1374 0.002 | 69 97 | 0.0358 0.002 | 83 112 | 0.0447 0.002 | 100 127 | 0.0842 0.002 | 115 132 | 0.3086 ----------------------------------------------------- Sharp RD estimates using local polynomial regression. Cutoff c = .5 | Left of c Right of c Number of obs = 28548 -------------------+---------------------- BW type = mserd Number of obs | 11425 17123 Kernel = Uniform Eff. Number of obs | 2282 2410 VCE method = NN Order est. (p) | 1 1 Order bias (q) | 2 2 BW est. (h) | 0.046 0.046 BW bias (b) | 0.092 0.092 rho (h/b) | 0.497 0.497 Outcome: z. Running variable: voteshare_female. -------------------------------------------------------------------------------- Method | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------------+------------------------------------------------------------ Conventional | .01855 .00924 2.0073 0.045 .000437 .036665 Robust | - - 2.0807 0.037 .001262 .042242 -------------------------------------------------------------------------------- Sharp RD estimates using local polynomial regression. Cutoff c = .5 | Left of c Right of c Number of obs = 13774 -------------------+---------------------- BW type = mserd Number of obs | 2457 11317 Kernel = Uniform Eff. Number of obs | 882 2485 VCE method = NN Order est. (p) | 1 1 Order bias (q) | 2 2 BW est. (h) | 0.065 0.065 BW bias (b) | 0.118 0.118 rho (h/b) | 0.552 0.552 Outcome: z. Running variable: voteshare_female. -------------------------------------------------------------------------------- Method | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------------+------------------------------------------------------------ Conventional | .2107 .00961 21.9190 0.000 .191862 .229544 Robust | - - 18.9995 0.000 .191055 .235007 -------------------------------------------------------------------------------- Sharp RD estimates using local polynomial regression. Cutoff c = .5 | Left of c Right of c Number of obs = 14774 -------------------+---------------------- BW type = mserd Number of obs | 8968 5806 Kernel = Uniform Eff. Number of obs | 2933 1286 VCE method = NN Order est. (p) | 1 1 Order bias (q) | 2 2 BW est. (h) | 0.083 0.083 BW bias (b) | 0.151 0.151 rho (h/b) | 0.551 0.551 Outcome: z. Running variable: voteshare_female. -------------------------------------------------------------------------------- Method | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------------+------------------------------------------------------------ Conventional | -.19744 .0082 -24.0813 0.000 -.213511 -.181372 Robust | - - -20.4594 0.000 -.214516 -.177009 -------------------------------------------------------------------------------- Sharp RD estimates using local polynomial regression. Cutoff c = .5 | Left of c Right of c Number of obs = 28548 -------------------+---------------------- BW type = mserd Number of obs | 11425 17123 Kernel = Uniform Eff. Number of obs | 4751 5448 VCE method = NN Order est. (p) | 1 1 Order bias (q) | 2 2 BW est. (h) | 0.101 0.101 BW bias (b) | 0.190 0.190 rho (h/b) | 0.530 0.530 Outcome: y. Running variable: voteshare_female. -------------------------------------------------------------------------------- Method | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------------+------------------------------------------------------------ Conventional | .17272 .04322 3.9964 0.000 .088013 .257427 Robust | - - 3.2304 0.001 .063486 .25937 -------------------------------------------------------------------------------- Sharp RD estimates using local polynomial regression. Cutoff c = .5 | Left of c Right of c Number of obs = 13774 -------------------+---------------------- BW type = mserd Number of obs | 2457 11317 Kernel = Uniform Eff. Number of obs | 880 2484 VCE method = NN Order est. (p) | 1 1 Order bias (q) | 2 2 BW est. (h) | 0.065 0.065 BW bias (b) | 0.117 0.117 rho (h/b) | 0.555 0.555 Outcome: y. Running variable: voteshare_female. -------------------------------------------------------------------------------- Method | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------------+------------------------------------------------------------ Conventional | .31188 .07973 3.9117 0.000 .15561 .468147 Robust | - - 3.3740 0.001 .131626 .496528 -------------------------------------------------------------------------------- Sharp RD estimates using local polynomial regression. Cutoff c = .5 | Left of c Right of c Number of obs = 14774 -------------------+---------------------- BW type = mserd Number of obs | 8968 5806 Kernel = Uniform Eff. Number of obs | 3622 1619 VCE method = NN Order est. (p) | 1 1 Order bias (q) | 2 2 BW est. (h) | 0.104 0.104 BW bias (b) | 0.184 0.184 rho (h/b) | 0.566 0.566 Outcome: y. Running variable: voteshare_female. -------------------------------------------------------------------------------- Method | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------------+------------------------------------------------------------ Conventional | .38413 .06763 5.6797 0.000 .251574 .516685 Robust | - - 4.6972 0.000 .218021 .530242 -------------------------------------------------------------------------------- (53,038 missing values generated) (53,038 real changes made) (71,452 missing values generated) Iteration 0: log likelihood = -7045.573 Iteration 1: log likelihood = -7014.2341 Iteration 2: log likelihood = -7014.2334 Iteration 3: log likelihood = -7014.2334 Probit regression Number of obs = 10,199 LR chi2(1) = 62.68 Prob > chi2 = 0.0000 Log likelihood = -7014.2334 Pseudo R2 = 0.0044 ------------------------------------------------------------------------------ female | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- x | -.2260739 .0286094 -7.90 0.000 -.2821473 -.1700006 _cons | .0707624 .0125909 5.62 0.000 .0460847 .09544 ------------------------------------------------------------------------------ (option pr assumed; Pr(female)) (89,801 missing values generated) (94,552 missing values generated) (4,751 real changes made) (sum of wgt is 20,398.6936738491) Source | SS df MS Number of obs = 10,199 -------------+---------------------------------- F(3, 10195) = 51.96 Model | 193.062182 3 64.3540607 Prob > F = 0.0000 Residual | 12626.5639 10,195 1.23850554 R-squared = 0.0151 -------------+---------------------------------- Adj R-squared = 0.0148 Total | 12819.6261 10,198 1.25707258 Root MSE = 1.1129 ----------------------------------------------------------------------------------------------- y | Coef. Std. Err. t P>|t| [95% Conf. Interval] ------------------------------+---------------------------------------------------------------- female | .1739132 .0439874 3.95 0.000 .0876893 .2601372 voteshare_female_adj | 3.538998 .5419161 6.53 0.000 2.476736 4.60126 | female#c.voteshare_female_adj | 1 | -6.258399 .7649045 -8.18 0.000 -7.757763 -4.759036 | _cons | -1.052096 .0305361 -34.45 0.000 -1.111952 -.9922388 ----------------------------------------------------------------------------------------------- Iteration 0: log likelihood = -1933.3477 Iteration 1: log likelihood = -1878.7605 Iteration 2: log likelihood = -1878.6371 Iteration 3: log likelihood = -1878.6371 Probit regression Number of obs = 3,364 LR chi2(1) = 109.42 Prob > chi2 = 0.0000 Log likelihood = -1878.6371 Pseudo R2 = 0.0283 ------------------------------------------------------------------------------ female | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- x | .5759299 .055828 10.32 0.000 .4665091 .6853507 _cons | .720536 .0252009 28.59 0.000 .6711433 .7699288 ------------------------------------------------------------------------------ (option pr assumed; Pr(female)) (96,636 missing values generated) (97,516 missing values generated) (880 real changes made) (sum of wgt is 6,733.80004513264) Source | SS df MS Number of obs = 3,364 -------------+---------------------------------- F(3, 3360) = 40.81 Model | 139.293765 3 46.4312551 Prob > F = 0.0000 Residual | 3822.60101 3,360 1.13767887 R-squared = 0.0352 -------------+---------------------------------- Adj R-squared = 0.0343 Total | 3961.89478 3,363 1.17808349 Root MSE = 1.0666 ----------------------------------------------------------------------------------------------- y | Coef. Std. Err. t P>|t| [95% Conf. Interval] ------------------------------+---------------------------------------------------------------- female | .2406377 .0730094 3.30 0.001 .0974903 .3837851 voteshare_female_adj | 6.792886 1.412536 4.81 0.000 4.023369 9.562403 | female#c.voteshare_female_adj | 1 | -9.439579 1.989195 -4.75 0.000 -13.33973 -5.539424 | _cons | -1.285744 .0501982 -25.61 0.000 -1.384166 -1.187322 ----------------------------------------------------------------------------------------------- Iteration 0: log likelihood = -3240.1233 Iteration 1: log likelihood = -3133.1627 Iteration 2: log likelihood = -3132.9107 Iteration 3: log likelihood = -3132.9107 Probit regression Number of obs = 5,241 LR chi2(1) = 214.43 Prob > chi2 = 0.0000 Log likelihood = -3132.9107 Pseudo R2 = 0.0331 ------------------------------------------------------------------------------ female | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- x | -.629661 .0437244 -14.40 0.000 -.7153593 -.5439628 _cons | -.5177479 .0184832 -28.01 0.000 -.5539742 -.4815216 ------------------------------------------------------------------------------ (option pr assumed; Pr(female)) (94,759 missing values generated) (98,381 missing values generated) (3,622 real changes made) (sum of wgt is 10,475.5064911842) Source | SS df MS Number of obs = 5,241 -------------+---------------------------------- F(3, 5237) = 80.33 Model | 290.368848 3 96.7896161 Prob > F = 0.0000 Residual | 6310.12588 5,237 1.20491233 R-squared = 0.0440 -------------+---------------------------------- Adj R-squared = 0.0434 Total | 6600.49473 5,240 1.2596364 Root MSE = 1.0977 ----------------------------------------------------------------------------------------------- y | Coef. Std. Err. t P>|t| [95% Conf. Interval] ------------------------------+---------------------------------------------------------------- female | .3231791 .0614265 5.26 0.000 .2027576 .4436006 voteshare_female_adj | 4.05668 .722778 5.61 0.000 2.639734 5.473627 | female#c.voteshare_female_adj | 1 | -5.84145 1.017686 -5.74 0.000 -7.836538 -3.846362 | _cons | -.8815513 .0424921 -20.75 0.000 -.9648534 -.7982492 ----------------------------------------------------------------------------------------------- Iteration 0: log likelihood = -7045.573 Iteration 1: log likelihood = -6830.0923 Iteration 2: log likelihood = -6829.9941 Iteration 3: log likelihood = -6829.9941 Probit regression Number of obs = 10,199 LR chi2(1) = 431.16 Prob > chi2 = 0.0000 Log likelihood = -6829.9941 Pseudo R2 = 0.0306 ------------------------------------------------------------------------------ female | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- z | -1.538549 .0747452 -20.58 0.000 -1.685046 -1.392051 _cons | -.0209974 .0136641 -1.54 0.124 -.0477786 .0057838 ------------------------------------------------------------------------------ (option pr assumed; Pr(female)) (89,801 missing values generated) (94,552 missing values generated) (4,751 real changes made) (sum of wgt is 20,472.7413574457) Source | SS df MS Number of obs = 10,199 -------------+---------------------------------- F(3, 10195) = 70.48 Model | 262.88843 3 87.6294767 Prob > F = 0.0000 Residual | 12675.1194 10,195 1.24326821 R-squared = 0.0203 -------------+---------------------------------- Adj R-squared = 0.0200 Total | 12938.0078 10,198 1.2686809 Root MSE = 1.115 ----------------------------------------------------------------------------------------------- y | Coef. Std. Err. t P>|t| [95% Conf. Interval] ------------------------------+---------------------------------------------------------------- female | .1943662 .0436797 4.45 0.000 .1087454 .2799871 voteshare_female_adj | 3.946968 .5368838 7.35 0.000 2.894571 4.999366 | female#c.voteshare_female_adj | 1 | -6.460541 .7641782 -8.45 0.000 -7.958481 -4.962601 | _cons | -1.069798 .0301335 -35.50 0.000 -1.128866 -1.010731 ----------------------------------------------------------------------------------------------- Iteration 0: log likelihood = -1933.3477 Iteration 1: log likelihood = -1286.2133 Iteration 2: log likelihood = -1267.5265 Iteration 3: log likelihood = -1267.4815 Iteration 4: log likelihood = -1267.4815 Probit regression Number of obs = 3,364 LR chi2(1) = 1331.73 Prob > chi2 = 0.0000 Log likelihood = -1267.4815 Pseudo R2 = 0.3444 ------------------------------------------------------------------------------ female | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- z | 7.444313 .2623512 28.38 0.000 6.930114 7.958512 _cons | 1.78103 .0537058 33.16 0.000 1.675768 1.886291 ------------------------------------------------------------------------------ (option pr assumed; Pr(female)) (96,636 missing values generated) (97,516 missing values generated) (880 real changes made) (sum of wgt is 6,608.81980001926) Source | SS df MS Number of obs = 3,364 -------------+---------------------------------- F(3, 3360) = 112.97 Model | 469.699399 3 156.566466 Prob > F = 0.0000 Residual | 4656.54364 3,360 1.38587608 R-squared = 0.0916 -------------+---------------------------------- Adj R-squared = 0.0908 Total | 5126.24304 3,363 1.52430658 Root MSE = 1.1772 ----------------------------------------------------------------------------------------------- y | Coef. Std. Err. t P>|t| [95% Conf. Interval] ------------------------------+---------------------------------------------------------------- female | -.793492 .0774302 -10.25 0.000 -.9453071 -.6416768 voteshare_female_adj | 26.62825 1.637998 16.26 0.000 23.41667 29.83982 | female#c.voteshare_female_adj | 1 | -31.34425 2.256755 -13.89 0.000 -35.769 -26.9195 | _cons | -.2816657 .0479712 -5.87 0.000 -.3757214 -.1876099 ----------------------------------------------------------------------------------------------- Iteration 0: log likelihood = -3240.1233 Iteration 1: log likelihood = -2172.2326 Iteration 2: log likelihood = -2152.4686 Iteration 3: log likelihood = -2152.4172 Iteration 4: log likelihood = -2152.4172 Probit regression Number of obs = 5,241 LR chi2(1) = 2175.41 Prob > chi2 = 0.0000 Log likelihood = -2152.4172 Pseudo R2 = 0.3357 ------------------------------------------------------------------------------ female | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- z | -7.049271 .1911968 -36.87 0.000 -7.42401 -6.674532 _cons | -.7631799 .0241643 -31.58 0.000 -.8105411 -.7158187 ------------------------------------------------------------------------------ (option pr assumed; Pr(female)) (94,759 missing values generated) (98,381 missing values generated) (3,622 real changes made) (sum of wgt is 9,903.25282597542) Source | SS df MS Number of obs = 5,241 -------------+---------------------------------- F(3, 5237) = 22.54 Model | 81.2014589 3 27.067153 Prob > F = 0.0000 Residual | 6288.68375 5,237 1.20081798 R-squared = 0.0127 -------------+---------------------------------- Adj R-squared = 0.0122 Total | 6369.8852 5,240 1.21562695 Root MSE = 1.0958 ----------------------------------------------------------------------------------------------- y | Coef. Std. Err. t P>|t| [95% Conf. Interval] ------------------------------+---------------------------------------------------------------- female | -.1379332 .0656739 -2.10 0.036 -.2666815 -.0091849 voteshare_female_adj | 5.627017 .7120137 7.90 0.000 4.231173 7.022861 | female#c.voteshare_female_adj | 1 | -7.189718 1.03427 -6.95 0.000 -9.217319 -5.162118 | _cons | -.680452 .0396242 -17.17 0.000 -.758132 -.6027719 ----------------------------------------------------------------------------------------------- (53,038 missing values generated) (53,038 real changes made) Iteration 0: log likelihood = -7045.573 Iteration 1: log likelihood = -6040.1188 Iteration 2: log likelihood = -6037.2237 Iteration 3: log likelihood = -6037.2236 Probit regression Number of obs = 10,199 LR chi2(1) = 2016.70 Prob > chi2 = 0.0000 Log likelihood = -6037.2236 Pseudo R2 = 0.1431 ------------------------------------------------------------------------------ female | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- z_elected | -1.958926 .0449516 -43.58 0.000 -2.04703 -1.870823 _cons | .0135668 .0133481 1.02 0.309 -.0125949 .0397285 ------------------------------------------------------------------------------ (option pr assumed; Pr(female)) (89,801 missing values generated) (94,552 missing values generated) (4,751 real changes made) (sum of wgt is 20,703.5746251345) Source | SS df MS Number of obs = 10,199 -------------+---------------------------------- F(3, 10195) = 156.58 Model | 586.245291 3 195.415097 Prob > F = 0.0000 Residual | 12723.9437 10,195 1.24805725 R-squared = 0.0440 -------------+---------------------------------- Adj R-squared = 0.0438 Total | 13310.189 10,198 1.3051764 Root MSE = 1.1172 ----------------------------------------------------------------------------------------------- y | Coef. Std. Err. t P>|t| [95% Conf. Interval] ------------------------------+---------------------------------------------------------------- female | .3725144 .044218 8.42 0.000 .2858384 .4591904 voteshare_female_adj | 3.852766 .5269349 7.31 0.000 2.81987 4.885662 | female#c.voteshare_female_adj | 1 | -6.090878 .7661041 -7.95 0.000 -7.592593 -4.589164 | _cons | -1.201598 .0296283 -40.56 0.000 -1.259675 -1.14352 ----------------------------------------------------------------------------------------------- Iteration 0: log likelihood = -1933.3477 Iteration 1: log likelihood = -1587.7928 Iteration 2: log likelihood = -1582.0926 Iteration 3: log likelihood = -1582.0776 Iteration 4: log likelihood = -1582.0776 Probit regression Number of obs = 3,364 LR chi2(1) = 702.54 Prob > chi2 = 0.0000 Log likelihood = -1582.0776 Pseudo R2 = 0.1817 ------------------------------------------------------------------------------ female | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- z_elected | 7.410054 .3114873 23.79 0.000 6.79955 8.020558 _cons | 3.042828 .1071286 28.40 0.000 2.83286 3.252796 ------------------------------------------------------------------------------ (option pr assumed; Pr(female)) (96,636 missing values generated) (97,516 missing values generated) (880 real changes made) (sum of wgt is 6,813.62821555138) Source | SS df MS Number of obs = 3,364 -------------+---------------------------------- F(3, 3360) = 44.01 Model | 168.894906 3 56.2983019 Prob > F = 0.0000 Residual | 4298.15433 3,360 1.2792126 R-squared = 0.0378 -------------+---------------------------------- Adj R-squared = 0.0369 Total | 4467.04924 3,363 1.32829296 Root MSE = 1.131 ----------------------------------------------------------------------------------------------- y | Coef. Std. Err. t P>|t| [95% Conf. Interval] ------------------------------+---------------------------------------------------------------- female | -.4509505 .0758094 -5.95 0.000 -.5995877 -.3023132 voteshare_female_adj | 16.0325 1.518248 10.56 0.000 13.05572 19.00929 | female#c.voteshare_female_adj | 1 | -19.80716 2.132745 -9.29 0.000 -23.98877 -15.62555 | _cons | -.6497326 .0491586 -13.22 0.000 -.7461164 -.5533488 ----------------------------------------------------------------------------------------------- Iteration 0: log likelihood = -3240.1233 Iteration 1: log likelihood = -2594.5471 Iteration 2: log likelihood = -2583.7661 Iteration 3: log likelihood = -2583.7327 Iteration 4: log likelihood = -2583.7327 Probit regression Number of obs = 5,241 LR chi2(1) = 1312.78 Prob > chi2 = 0.0000 Log likelihood = -2583.7327 Pseudo R2 = 0.2026 ------------------------------------------------------------------------------ female | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- z_elected | -7.805294 .2423385 -32.21 0.000 -8.280269 -7.33032 _cons | 1.29987 .0573838 22.65 0.000 1.1874 1.412341 ------------------------------------------------------------------------------ (option pr assumed; Pr(female)) (94,759 missing values generated) (98,381 missing values generated) (3,622 real changes made) (sum of wgt is 10,372.1911814213) Source | SS df MS Number of obs = 5,241 -------------+---------------------------------- F(3, 5237) = 16.72 Model | 60.8606207 3 20.2868736 Prob > F = 0.0000 Residual | 6354.50433 5,237 1.21338635 R-squared = 0.0095 -------------+---------------------------------- Adj R-squared = 0.0089 Total | 6415.36495 5,240 1.22430629 Root MSE = 1.1015 ----------------------------------------------------------------------------------------------- y | Coef. Std. Err. t P>|t| [95% Conf. Interval] ------------------------------+---------------------------------------------------------------- female | -.1872573 .0632442 -2.96 0.003 -.3112422 -.0632723 voteshare_female_adj | 5.046656 .7215085 6.99 0.000 3.632198 6.461113 | female#c.voteshare_female_adj | 1 | -5.702727 1.02625 -5.56 0.000 -7.714604 -3.690849 | _cons | -.6934209 .0411359 -16.86 0.000 -.7740645 -.6127773 ----------------------------------------------------------------------------------------------- Iteration 0: EE criterion = 2.162e-28 Iteration 1: EE criterion = 4.110e-33 Treatment-effects estimation Number of obs = 100,000 Estimator : inverse-probability weights Outcome model : weighted mean Treatment model: probit ------------------------------------------------------------------------------ | Robust y | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- ATE | female | (1 vs 0) | .185551 .009143 20.29 0.000 .1676311 .2034709 -------------+---------------------------------------------------------------- POmean | female | 0 | -1.51444 .0040466 -374.25 0.000 -1.522371 -1.506509 ------------------------------------------------------------------------------ Iteration 0: EE criterion = 5.545e-18 Iteration 1: EE criterion = 2.033e-33 Treatment-effects estimation Number of obs = 46,962 Estimator : inverse-probability weights Outcome model : weighted mean Treatment model: probit ------------------------------------------------------------------------------ | Robust y | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- ATE | female | (1 vs 0) | -.0620271 .0113967 -5.44 0.000 -.0843642 -.03969 -------------+---------------------------------------------------------------- POmean | female | 0 | -1.499856 .0061075 -245.58 0.000 -1.511827 -1.487886 ------------------------------------------------------------------------------ Iteration 0: EE criterion = 2.364e-23 Iteration 1: EE criterion = 1.407e-32 Treatment-effects estimation Number of obs = 53,038 Estimator : inverse-probability weights Outcome model : weighted mean Treatment model: probit ------------------------------------------------------------------------------ | Robust y | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- ATE | female | (1 vs 0) | .4934254 .015274 32.30 0.000 .4634889 .5233619 -------------+---------------------------------------------------------------- POmean | female | 0 | -1.519821 .0053757 -282.72 0.000 -1.530357 -1.509284 ------------------------------------------------------------------------------ Iteration 0: EE criterion = 7.198e-22 Iteration 1: EE criterion = 6.756e-33 Treatment-effects estimation Number of obs = 100,000 Estimator : inverse-probability weights Outcome model : weighted mean Treatment model: probit ------------------------------------------------------------------------------ | Robust y | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- ATE | female | (1 vs 0) | .1960373 .0094185 20.81 0.000 .1775775 .2144971 -------------+---------------------------------------------------------------- POmean | female | 0 | -1.527443 .004071 -375.20 0.000 -1.535422 -1.519464 ------------------------------------------------------------------------------ Iteration 0: EE criterion = 4.047e-18 Iteration 1: EE criterion = 2.312e-32 Treatment-effects estimation Number of obs = 46,962 Estimator : inverse-probability weights Outcome model : weighted mean Treatment model: probit ------------------------------------------------------------------------------ | Robust y | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- ATE | female | (1 vs 0) | -.0158669 .0108021 -1.47 0.142 -.0370386 .0053048 -------------+---------------------------------------------------------------- POmean | female | 0 | -1.51214 .0060289 -250.82 0.000 -1.523956 -1.500323 ------------------------------------------------------------------------------ Iteration 0: EE criterion = 2.425e-27 Iteration 1: EE criterion = 1.682e-31 Treatment-effects estimation Number of obs = 52,919 Estimator : inverse-probability weights Outcome model : weighted mean Treatment model: probit ------------------------------------------------------------------------------ | Robust y | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- ATE | female | (1 vs 0) | -.1946729 .0624661 -3.12 0.002 -.3171042 -.0722417 -------------+---------------------------------------------------------------- POmean | female | 0 | -1.45934 .0055571 -262.61 0.000 -1.470232 -1.448448 ------------------------------------------------------------------------------ Iteration 0: EE criterion = 1.047e-24 Iteration 1: EE criterion = 3.917e-33 Treatment-effects estimation Number of obs = 100,000 Estimator : inverse-probability weights Outcome model : weighted mean Treatment model: probit ------------------------------------------------------------------------------ | Robust y | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- ATE | female | (1 vs 0) | .2416772 .0092623 26.09 0.000 .2235235 .2598309 -------------+---------------------------------------------------------------- POmean | female | 0 | -1.519808 .0040542 -374.88 0.000 -1.527754 -1.511862 ------------------------------------------------------------------------------ Iteration 0: EE criterion = 3.676e-18 Iteration 1: EE criterion = 4.790e-33 Treatment-effects estimation Number of obs = 46,962 Estimator : inverse-probability weights Outcome model : weighted mean Treatment model: probit ------------------------------------------------------------------------------ | Robust y | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- ATE | female | (1 vs 0) | -.000495 .0106006 -0.05 0.963 -.0212719 .0202818 -------------+---------------------------------------------------------------- POmean | female | 0 | -1.515822 .0060067 -252.36 0.000 -1.527595 -1.504049 ------------------------------------------------------------------------------ Iteration 0: EE criterion = 9.684e-16 Iteration 1: EE criterion = 8.458e-28 Treatment-effects estimation Number of obs = 53,038 Estimator : inverse-probability weights Outcome model : weighted mean Treatment model: probit ------------------------------------------------------------------------------ | Robust y | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- ATE | female | (1 vs 0) | -.1050439 .0401988 -2.61 0.009 -.183832 -.0262557 -------------+---------------------------------------------------------------- POmean | female | 0 | -1.458219 .0054927 -265.48 0.000 -1.468984 -1.447453 ------------------------------------------------------------------------------ Source | SS df MS Number of obs = 100,000 -------------+---------------------------------- F(1, 99998) = 115.72 Model | 155.270531 1 155.270531 Prob > F = 0.0000 Residual | 134179.437 99,998 1.3418212 R-squared = 0.0012 -------------+---------------------------------- Adj R-squared = 0.0011 Total | 134334.707 99,999 1.34336051 Root MSE = 1.1584 ------------------------------------------------------------------------------ y | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- female | .0988518 .0091894 10.76 0.000 .0808406 .1168629 _cons | -1.501196 .0040908 -366.97 0.000 -1.509214 -1.493178 ------------------------------------------------------------------------------ Source | SS df MS Number of obs = 46,962 -------------+---------------------------------- F(1, 46960) = 81.37 Model | 107.755058 1 107.755058 Prob > F = 0.0000 Residual | 62185.463 46,960 1.32422196 R-squared = 0.0017 -------------+---------------------------------- Adj R-squared = 0.0017 Total | 62293.2181 46,961 1.32648832 Root MSE = 1.1507 ------------------------------------------------------------------------------ y | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- female | -.1088381 .0120654 -9.02 0.000 -.1324866 -.0851897 _cons | -1.487199 .0061843 -240.48 0.000 -1.499321 -1.475078 ------------------------------------------------------------------------------ Source | SS df MS Number of obs = 53,038 -------------+---------------------------------- F(1, 53036) = 886.34 Model | 1182.47024 1 1182.47024 Prob > F = 0.0000 Residual | 70755.5305 53,036 1.33410383 R-squared = 0.0164 -------------+---------------------------------- Adj R-squared = 0.0164 Total | 71938.0008 53,037 1.35637387 Root MSE = 1.155 ------------------------------------------------------------------------------ y | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- female | .4290223 .0144105 29.77 0.000 .4007775 .457267 _cons | -1.511833 .0054114 -279.38 0.000 -1.522439 -1.501226 ------------------------------------------------------------------------------ . . fulijhkjhk command fulijhkjhk is unrecognized r(199); end of do-file r(199); end of do-file r(199); . rdrobust z voteshare_female, c(0.5) kernel(uniform) Sharp RD estimates using local polynomial regression. Cutoff c = .5 | Left of c Right of c Number of obs = 28548 -------------------+---------------------- BW type = mserd Number of obs | 11425 17123 Kernel = Uniform Eff. Number of obs | 2282 2410 VCE method = NN Order est. (p) | 1 1 Order bias (q) | 2 2 BW est. (h) | 0.046 0.046 BW bias (b) | 0.092 0.092 rho (h/b) | 0.497 0.497 Outcome: z. Running variable: voteshare_female. -------------------------------------------------------------------------------- Method | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------------+------------------------------------------------------------ Conventional | .01855 .00924 2.0073 0.045 .000437 .036665 Robust | - - 2.0807 0.037 .001262 .042242 -------------------------------------------------------------------------------- . rdrobust z voteshare_female, c(0.5) kernel(uniform) masspoints(off) stdvars(on) Sharp RD estimates using local polynomial regression. Cutoff c = .5 | Left of c Right of c Number of obs = 28548 -------------------+---------------------- BW type = mserd Number of obs | 11425 17123 Kernel = Uniform Eff. Number of obs | 2279 2405 VCE method = NN Order est. (p) | 1 1 Order bias (q) | 2 2 BW est. (h) | 0.046 0.046 BW bias (b) | 0.092 0.092 rho (h/b) | 0.495 0.495 Outcome: z. Running variable: voteshare_female. -------------------------------------------------------------------------------- Method | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------------+------------------------------------------------------------ Conventional | .01803 .00924 1.9510 0.051 -.000083 .036141 Robust | - - 2.0378 0.042 .000813 .041726 -------------------------------------------------------------------------------- . adopath [1] "C:/ado/plus/r/rd_2021" [2] (BASE) "C:\Program Files (x86)\Stata15\ado\base/" [3] (SITE) "C:\Program Files (x86)\Stata15\ado\site/" [4] "." [5] (PERSONAL) "c:\ado\personal/" [6] (PLUS) "c:\ado\plus/" [7] (OLDPLACE) "c:\ado/" . doedit . pwd C:\Users\paserman\Dropbox . doedit "C:\Users\paserman\Dropbox\Research\GenderCooperativeness\EJ\3 replication package\Dofiles\master.do" . exit, clear