clear; clc; set(groot, 'DefaultAxesLineWidth', 1.5); set(groot, 'DefaultLineLineWidth', 4); set(groot, 'DefaultAxesTickLabelInterpreter','latex'); set(groot, 'DefaultLegendInterpreter','latex'); set(groot, 'DefaultAxesFontSize',22); intmeth = 'spline'; printr = 1; optset('bisect', 'tol', 1e-32); % Calibrated Parameters p.beta = 0.992; % discount factor p.F = 0.22; % fixed cost of refinancing p.phi = 1; % productivity non-market p.nu = 3; % 1 / volatility of extreme value shocks % Assigned Parameters p.rm = (1 + 0.025)^(1/4) - 1; % mortgage rate p.rl = (1 + 0.010)^(1/4) - 1; % liquid rate p.D = 120; % maturity of mortgages p.sigma = 2; % CRRA p.gamma = 1; p.thetam = 0.85; % maximum LTV se = (1 - 0.55)^(1/2)*0.4869; % Krueger Perri (2011) show 55% of the variance of trans compon is measurement error so subtract p.mbar = p.rm/(1 - (1 + p.rm)^(-p.D))*p.thetam; % minimum payment required per 1 of initial debt p.hbar = 8; % house size % Quality of Approximation p.na = 250; % number of nodes for liquid assets p.nw = 250; % number of nodes for cash on hand p.nl = 250; % number of nodes for liquidity p.nt = 75; p.ny = 71; % Discretize Income Process %[y, wy] = qnwnorm(p.ny, 0, se^2); %y = exp(y); [y, wy] = qnwunif(p.ny, 0, 1); y = norminv(y, 0, 1)*se; y = exp(y); % Discretize other state variables amin = 0; amax = 50; p.agrid = amin + (amax - amin)*nodeunif(p.na, 0, 1).^2; wmin = min(y); wmax = (1 + p.rl)*amax + max(y); p.wgrid = wmin + (wmax - wmin)*nodeunif(p.nw, 0, 1).^2; lmin = -0.5; lmax = wmax + p.hbar; p.lgrid = lmin + (lmax - lmin)*nodeunif(p.nl, 0, 1).^2; p.tgrid = nodeunif(p.nt, 0, p.thetam); % Construct grids: sv = gridmake(p.wgrid, p.tgrid); % grid for V sw = gridmake(p.lgrid, p.tgrid); % grid for W svbar = gridmake(p.agrid, p.tgrid); % grid for Vbar (expected continuation value) % Bounds on consumption mid-period cmax = bisect('savings', 1e-13, 1e5, p.lgrid, p, amin); % c that implies a' = amin cmin = bisect('savings', 1e-13, 1e5, p.lgrid, p, amax); % c that implies a' = amax cmax = repmat(cmax, p.nt, 1); cmin = repmat(cmin, p.nt, 1); % Initial guess for value function Vbar = zeros(p.na*p.nt, 1); for iter = 1 : 5 Vbarold = Vbar; EV = griddedInterpolant({p.agrid, p.tgrid}, reshape(Vbar, p.na, p.nt), intmeth, 'linear'); % solve consumption-savings choice c = solve_golden('wfunc', cmin, cmax, sw, EV, p); [~, aprime] = savings(c, sw, p); W = wfunc(c, sw, EV, p); Winterp = griddedInterpolant({p.lgrid, p.tgrid}, reshape(W, p.nl, p.nt), intmeth, 'linear'); % Solve discrete choice problem V = solveh(sv, Winterp, p); % Interpolate V(w, theta) Vinterp = griddedInterpolant({p.wgrid, p.tgrid}, reshape(V, p.nw, p.nt), intmeth, 'linear'); % Compute expected value and update vbar Vbar = zeros(p.na*p.nt, 1); for i = 1 : p.ny Vbar = Vbar + wy(i)*Vinterp((1 + p.rl)*svbar(:,1) + y(i), svbar(:,2)); end fprintf('%4i %6.2e \n', [iter, norm(Vbar - Vbarold)/norm(Vbar)]); end % Apply Howard Improvement to Go Faster for iter = 1 : 5000 Vbarold = Vbar; EV = griddedInterpolant({p.agrid, p.tgrid}, reshape(Vbar, p.na, p.nt), intmeth, 'linear'); % solve consumption-savings choice if mod(iter, 50) == 0 c = solve_golden('wfunc', cmin, cmax, sw, EV, p); end [~, aprime] = savings(c, sw, p); W = wfunc(c, sw, EV, p); Winterp = griddedInterpolant({p.lgrid, p.tgrid}, reshape(W, p.nl, p.nt), intmeth, 'linear'); % Solve discrete choice problem V = solveh(sv, Winterp, p); % Interpolate V(w, theta) Vinterp = griddedInterpolant({p.wgrid, p.tgrid}, reshape(V, p.nw, p.nt), intmeth, 'linear'); % Compute expected value and update vbar Vbar = zeros(p.na*p.nt, 1); for i = 1 : p.ny Vbar = Vbar + wy(i)*Vinterp((1 + p.rl)*svbar(:,1) + y(i), svbar(:,2)); end if mod(iter, 50) == 0 fprintf('%4i %6.2e \n', [iter/50, norm(Vbar - Vbarold)/norm(Vbar)]); if norm(Vbar - Vbarold)/norm(Vbar) < 1e-7, break, end end end Cinterp = griddedInterpolant({p.lgrid, p.tgrid}, reshape(c, p.nl, p.nt), intmeth, 'linear'); plot_decisions return simulate start_new Cinterp_new = griddedInterpolant({p.lgrid, p.tgrid, p.rgrid}, reshape(c, p.nl, p.nt, p.nr), intmeth, 'linear'); simulate_new