Datasets:
File size: 47,357 Bytes
51dadda a3d1acc 51dadda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 |
{
"cells": [
{
"cell_type": "markdown",
"id": "7324eaa9",
"metadata": {},
"source": [
"# Tutorial 03: Physics-based Pattern Generation Using LPF Framework\n",
"\n",
"## Introduction\n",
"\n",
"This tutorial demonstrates how to generate ladybird patterns using the **LPF** with PDE parameters from the LadybirdMNIST datset.\n",
"\n",
"### What This Tutorial Covers\n",
"\n",
"1. Loading Model Configurations\n",
" - Extract PDE parameters from the `models` configuration\n",
" - Parse JSON-formatted model specifications\n",
" - Understand parameter meanings and their effects on patterns\n",
"\n",
"2. **Setting Up LPF Simulations**\n",
" - Initialize reaction-diffusion solvers with dataset parameters\n",
" - Configure domain specifications and boundary conditions\n",
" - Set appropriate time steps and iteration counts\n",
"\n",
"3. **Pattern Generation Process**\n",
" - Run reaction-diffusion simulations\n",
" - Monitor convergence and stability\n",
" - Generate patterns matching dataset labels\n",
"\n",
"4. **Visualization and Analysis**\n",
" - Visualize intermediate states during pattern formation\n",
" - Compare generated patterns with original dataset images\n",
" - Analyze the relationship between parameters and resulting patterns\n",
"\n",
"## Prerequisites\n",
"\n",
"Before starting this tutorial, you need to install the LPF framework:\n",
"\n",
"```bash\n",
"pip install lpf\n",
"```\n",
"\n",
"For development version or additional features, install from source:\n",
"- [LPF GitHub Repository](https://github.com/your-repo/lpf)\n",
"\n",
"## Important Notes\n",
"\n",
"⚠️ **Computational Requirements**: Pattern generation is computationally intensive. Each simulation may take 2-3 minutes depending on:\n",
"- Grid resolution (default: 128×128)\n",
"- Number of iterations (typically 500,000)\n",
"- System specifications\n",
"\n",
"⚠️ **Memory Usage**: Large-scale simulations with high resolution may require significant RAM\n"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "9c38106c",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import time\n",
"import json\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"\n",
"from PIL import Image\n",
"from datetime import datetime\n",
"from datasets import load_dataset\n",
"\n",
"# LPF components\n",
"from lpf.initializers import LiawInitializer\n",
"from lpf.models import LiawModel\n",
"from lpf.solvers import EulerSolver, RungeKuttaSolver"
]
},
{
"cell_type": "markdown",
"id": "36127905",
"metadata": {},
"source": [
"## 1. Loading Model Configurations from LadybirdMNIST Dataset\n",
"\n",
"First, we'll load the LadybirdMNIST datset and examine the model configurations that contain the PDE parameters needed for pattern generation."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "ea35840a",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Loading LadybirdMNIST dataset...\n",
"Dataset structure:\n",
"DatasetDict({\n",
" train: Dataset({\n",
" features: ['id', 'label', 'model_json'],\n",
" num_rows: 60000\n",
" })\n",
" test: Dataset({\n",
" features: ['id', 'label', 'model_json'],\n",
" num_rows: 10000\n",
" })\n",
"})\n",
"\n",
"Train set: 60000 samples\n",
"Test set: 10000 samples\n",
"\n",
"Sample ID: 1483518086234970557\n",
"Label: 3\n",
"Model JSON: {\"model\": \"LiawModel\", \"index\": 8, \"width\": 128, \"height\": 128, \"dx\": 0.1, \"thr_color\": 0.5, \"color_u\": [5, 5, 5], \"color_v\": [231, 79, 3], \"initializer\": \"LiawInitializer\", \"u0\": 2.5417754650115967, \"v0\": 1.0, \"n_init_pts\": 25, \"init_pts_0\": [17, 64], \"init_pts_1\": [21, 89], \"init_pts_2\": [23, 84], \"init_pts_3\": [41, 0], \"init_pts_4\": [37, 68], \"init_pts_5\": [32, 26], \"init_pts_6\": [89, 32], \"init_pts_7\": [50, 70], \"init_pts_8\": [79, 64], \"init_pts_9\": [78, 117], \"init_pts_10\": [79, 88], \"init_pts_11\": [67, 50], \"init_pts_12\": [11, 34], \"init_pts_13\": [93, 85], \"init_pts_14\": [65, 63], \"init_pts_15\": [32, 71], \"init_pts_16\": [85, 57], \"init_pts_17\": [84, 103], \"init_pts_18\": [37, 63], \"init_pts_19\": [63, 91], \"init_pts_20\": [0, 0], \"init_pts_21\": [0, 0], \"init_pts_22\": [0, 0], \"init_pts_23\": [0, 0], \"init_pts_24\": [0, 0], \"solver\": \"EulerSolver\", \"dt\": 0.01, \"n_iters\": 500000, \"Du\": 0.0005005555637923848, \"Dv\": 0.07500000000000001, \"ru\": 0.17458988270167908, \"rv\": 0.13353777365013922, \"k\": 0.21288995293268248, \"su\": 0.001, \"sv\": 0.025000000000000005, \"mu\": 0.07999999999999999}\n"
]
}
],
"source": [
"# Load the LadybirdMNIST datset (models configuration)\n",
"print(\"Loading LadybirdMNIST dataset...\")\n",
"ds = load_dataset('cxinsys/ladybirdmnist', 'models')\n",
"\n",
"print(\"Dataset structure:\")\n",
"print(ds)\n",
"print(f\"\\nTrain set: {ds['train'].num_rows} samples\")\n",
"print(f\"Test set: {ds['test'].num_rows} samples\")\n",
"\n",
"# Examine the first model configuration\n",
"sample_model = ds['train'][0]\n",
"print(f\"\\nSample ID: {sample_model['id']}\")\n",
"print(f\"Label: {sample_model['label']}\")\n",
"print(f\"Model JSON: {sample_model['model_json']}\")\n"
]
},
{
"cell_type": "markdown",
"id": "bd8a91c7",
"metadata": {},
"source": [
"### Parsing JSON Model Specifications\n",
"\n",
"Now let's parse the JSON-formatted model specifications to understand the PDE parameters:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "12039772",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"==================================================\n",
"model : LiawModel\n",
"index : 8\n",
"width : 128\n",
"height : 128\n",
"dx : 0.1\n",
"thr_color : 0.5\n",
"color_u : [5, 5, 5]\n",
"color_v : [231, 79, 3]\n",
"initializer : LiawInitializer\n",
"u0 : 2.5417754650115967\n",
"v0 : 1.0\n",
"n_init_pts : 25\n",
"solver : EulerSolver\n",
"dt : 0.01\n",
"n_iters : 500000\n",
"Du : 0.0005005555637923848\n",
"Dv : 0.07500000000000001\n",
"ru : 0.17458988270167908\n",
"rv : 0.13353777365013922\n",
"k : 0.21288995293268248\n",
"su : 0.001\n",
"sv : 0.025000000000000005\n",
"mu : 0.07999999999999999\n"
]
}
],
"source": [
"# Parse the JSON model configuration\n",
"model_json = json.loads(ds['train'][0]['model_json'])\n",
"print(\"=\" * 50)\n",
"for key, value in model_json.items():\n",
" if key.startswith('init_pts_'):\n",
" continue # Skip individual init points for brevity\n",
" print(f\"{key:15}: {value}\")"
]
},
{
"cell_type": "markdown",
"id": "fc802560",
"metadata": {},
"source": [
"## 2. Setting Up LPF Simulations\n",
"\n",
"Now we'll configure the LPF framework components using the parameters from the dataset:"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "7d07946f",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Setting up LPF components...\n",
"1. Creating LiawInitializer...\n",
"2. Parsing LiawModel parameters...\n"
]
}
],
"source": [
"# Prepare model configurations for LPF\n",
"model_dicts = [model_json]\n",
"\n",
"print(\"Setting up LPF components...\")\n",
"\n",
"# Initialize the LiawInitializer\n",
"print(\"1. Creating LiawInitializer...\")\n",
"initializer = LiawInitializer()\n",
"initializer.update(model_dicts)\n",
"\n",
"# Parse parameters for the LiawModel\n",
"print(\"2. Parsing LiawModel parameters...\")\n",
"params = LiawModel.parse_params(model_dicts)\n",
"\n",
"# Set computational parameters\n",
"device = 'cpu'\n",
"n_iters = model_json['n_iters']\n",
"dpath_output = './output_tutorial'\n",
"\n",
"# Create output directory if it doesn't exist\n",
"os.makedirs(dpath_output, exist_ok=True)"
]
},
{
"cell_type": "markdown",
"id": "cc7d31fb",
"metadata": {},
"source": [
"## Initialize the Reaction-Diffusion Model\n",
"\n",
"Now we'll create the LiawModel with the parsed parameters:"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "ebb691d6",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Creating LiawModel...\n"
]
}
],
"source": [
"# Create the LiawModel instance\n",
"print(\"Creating LiawModel...\")\n",
"model = LiawModel(\n",
" initializer=initializer,\n",
" params=params,\n",
" dx=model_json['dx'],\n",
" width=model_json['width'],\n",
" height=model_json['height'],\n",
" device=device\n",
")"
]
},
{
"cell_type": "markdown",
"id": "476e219f",
"metadata": {},
"source": [
"## 3. Pattern Generation Process\n",
"\n",
"Now we'll run the reaction-diffusion simulation to generate the ladybird pattern:"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "da3d0a67",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Initializing EulerSolver...\n",
"Starting simulation with 500,000 iterations...\n",
"This may take several minutes depending on your system...\n",
"Progress will be reported every 100,000 iterations.\n",
"\n",
"- [Iteration #1] elapsed time: 7.94816e-03 sec.\n",
"- [Iteration #100000] elapsed time: 2.50095e+01 sec.\n",
"- [Iteration #200000] elapsed time: 2.50669e+01 sec.\n",
"- [Iteration #300000] elapsed time: 2.50627e+01 sec.\n",
"- [Iteration #400000] elapsed time: 2.51013e+01 sec.\n",
"- [Iteration #500000] elapsed time: 2.50848e+01 sec.\n",
"- [Duration] : 1.25424e+02 sec.\n",
"\n",
"==================================================\n",
"Simulation completed!\n",
"Total elapsed time: 125.42 seconds\n",
"Average time per iteration: 0.251 ms\n"
]
}
],
"source": [
"# Initialize the solver\n",
"print(\"Initializing EulerSolver...\")\n",
"solver = EulerSolver()\n",
"\n",
"print(f\"Starting simulation with {n_iters:,} iterations...\")\n",
"print(\"This may take several minutes depending on your system...\")\n",
"print(\"Progress will be reported every 100,000 iterations.\\n\")\n",
"\n",
"# Record start time\n",
"t_start = time.time()\n",
"\n",
"# Run the simulation\n",
"solver.solve(\n",
" model=model,\n",
" dt=model_json['dt'],\n",
" n_iters=n_iters,\n",
" period_output=100000,\n",
" dpath_model=dpath_output,\n",
" dpath_ladybird=dpath_output,\n",
" dpath_pattern=dpath_output,\n",
" verbose=1\n",
")\n",
"\n",
"# Record end time\n",
"t_end = time.time()\n",
"elapsed_time = t_end - t_start\n",
"\n",
"print(f\"\\n{'='*50}\")\n",
"print(f\"Simulation completed!\")\n",
"print(f\"Total elapsed time: {elapsed_time:.2f} seconds\")\n",
"print(f\"Average time per iteration: {elapsed_time/n_iters*1000:.3f} ms\")"
]
},
{
"cell_type": "markdown",
"id": "460aab0c",
"metadata": {},
"source": [
"## 4. Visualization and Analysis\n",
"\n",
"Let's visualize the generated patterns and analyze the results:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "fb645b93",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Generated files:\n",
"ladybird_000001.png\n",
"ladybird_100000.png\n",
"ladybird_200000.png\n",
"ladybird_300000.png\n",
"ladybird_400000.png\n",
"ladybird_500000.png\n",
"pattern_000001.png\n",
"pattern_100000.png\n",
"pattern_200000.png\n",
"pattern_300000.png\n",
"pattern_400000.png\n",
"pattern_500000.png\n",
"\n",
" All files in ./output_tutorial:\n",
"output_tutorial/\n",
" model_1/\n",
" pattern_100000.png\n",
" ladybird_500000.png\n",
" pattern_400000.png\n",
" ladybird_000001.png\n",
" ladybird_100000.png\n",
" pattern_300000.png\n",
" pattern_500000.png\n",
" ladybird_200000.png\n",
" pattern_000001.png\n",
" ladybird_400000.png\n",
" pattern_200000.png\n",
" ladybird_300000.png\n",
" models/\n",
" model_1.json\n"
]
}
],
"source": [
"# Check what files were gnerated \n",
"print(\"Generated files:\")\n",
"if os.path.exists(os.path.join(dpath_output, 'model_1')):\n",
" files = os.listdir(os.path.join(dpath_output, 'model_1'))\n",
" for file in sorted(files):\n",
" print(f\"{file}\")\n",
"else:\n",
" print(\"Model output directory not found.\")\n",
"\n",
"# List all files in output directory\n",
"print(f\"\\n All files in {dpath_output}:\")\n",
"for root, dirs, files in os.walk(dpath_output):\n",
" level = root.replace(dpath_output, '').count(os.sep)\n",
" indent = ' ' * 2 * level\n",
" print(f\"{indent}{os.path.basename(root)}/\")\n",
" subindent = ' ' * 2 * (level + 1)\n",
" for file in files:\n",
" print(f\"{subindent}{file}\")\n",
" "
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "9b9ff116",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Loading generated pattern...\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAC+CAYAAADQmX+FAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAV2ZJREFUeJztnXd4VNXWh9896T0hJBASCBB6LwJKkSJFAUUEKaKIXhUV9NouYAEVUEQseBVRxCt8XLGgqCiIgiIqcEHp0qQEAiGQ3ntmfX8cZshkJskkTJJJOO/zzJPMmX322WfPOb/ZZ+2111IiIujo6Ojo1EkMNd0AHR0dHZ2qQxd5HR0dnTqMLvI6Ojo6dRhd5HV0dHTqMLrI6+jo6NRhdJHX0dHRqcPoIq+jo6NTh9FFXkdHR6cOo4u8jo6OTh1GF3knoWnTpkyZMqWmm6Gj43Cc6doeMGAAAwYMqPB+K1asQCnFn3/+WWXHKM6UKVNo2rTpFdVh4opFPjo6munTp9OqVSu8vb3x9vamXbt2TJs2jQMHDjiijU7Dhg0beOGFF2q0DUop88tgMNCoUSOGDh3KL7/8UuG6Sjuf7OxsXnjhhUrVWZfQr+3qRSnF9OnTa7QNdRHXK9n5u+++Y/z48bi6ujJp0iQ6d+6MwWDg6NGjrF27lqVLlxIdHU1kZKSj2lujbNiwgSVLltT4zTBkyBAmT56MiBAdHc27777LoEGDWL9+PTfddJPd9ZR2PtnZ2bz44osAVzwiqa3o17ZOZfnxxx9rugkWVFrkT548yYQJE4iMjOSnn34iLCzM4vOFCxfy7rvvYjA4r0UoKysLHx+fmm5GhWnVqhV33nmn+f3o0aPp1KkTixcvrpDIVze1pb/1a1vnSnB3dy+3TG5uLu7u7tVyDVX6CK+++ipZWVl89NFHVjcBgKurK48++iiNGze22H706FHGjh1LvXr18PT05JprrmHdunUWZUz2r23btvHEE08QEhKCj48Po0ePJiEhwepY33//Pf369cPHxwc/Pz9GjBjBoUOHLMpMmTIFX19fTp48yfDhw/Hz82PSpEkA/Pbbb9x+++00adIEDw8PGjduzOOPP05OTo7F/kuWLAEsTSYmjEYjixcvpn379nh6etKgQQOmTp1KSkqKRTtEhPnz5xMREYG3tzcDBw60amtF6dixI/Xr1yc6OvqKz+f06dOEhIQA8OKLL5q3Fx/hVeQ73Lp1Kw8//DChoaFEREQA2tNBhw4dOHz4MAMHDsTb25vw8HBeffXVK+oHR6Ff285zbZfkm2++YcSIETRq1AgPDw+ioqKYN28eRUVFVmWXLVtGVFQUXl5e9OzZk99++83i88zMTHx8fPjnP/9pte+5c+dwcXFhwYIFFtuzs7OZOnUqwcHB+Pv7M3nyZKt+KGmT/+WXX1BK8emnn/Lcc88RHh6Ot7c36enpAHz99dd06NABT09POnTowFdffVXZ7rFJpUfy3333HS1atKBXr15273Po0CH69OlDeHg4s2bNwsfHh88//5xbb72VL7/8ktGjR1uUf+SRRwgKCuL555/n9OnTLF68mOnTp/PZZ5+Zy6xatYq7776bYcOGsXDhQrKzs1m6dCl9+/Zl7969FpMXhYWFDBs2jL59+/Laa6/h7e0NwJo1a8jOzuahhx4iODiYXbt28fbbb3Pu3DnWrFkDwNSpUzl//jybNm1i1apVVuc2depUVqxYwT333MOjjz5KdHQ077zzDnv37mXbtm24ubkBMGfOHObPn8/w4cMZPnw4e/bsYejQoeTn59vdjyVJSUkhJSWFFi1aXPH5hISEsHTpUh566CFGjx7NbbfdBkCnTp0q9R0+/PDDhISEMGfOHLKysizafOONN3Lbbbcxbtw4vvjiC2bOnEnHjh1r/GlEv7YtqclruyQrVqzA19eXJ554Al9fX37++WfmzJlDeno6ixYtMpf78MMPmTp1Kr179+axxx7j1KlT3HLLLdSrV8/84+zr68vo0aP57LPPeOONN3BxcTHv/8knnyAi5h9LE9OnTycwMJAXXniBY8eOsXTpUs6cOWMW8rKYN28e7u7uPPXUU+Tl5eHu7s6PP/7ImDFjaNeuHQsWLCApKYl77rnHPCByCFIJ0tLSBJBbb73V6rOUlBRJSEgwv7Kzs82f3XDDDdKxY0fJzc01bzMajdK7d29p2bKledtHH30kgAwePFiMRqN5++OPPy4uLi6SmpoqIiIZGRkSGBgo999/v0UbLly4IAEBARbb7777bgFk1qxZVm0u3kYTCxYsEKWUnDlzxrxt2rRpYqvLfvvtNwHk448/tti+ceNGi+3x8fHi7u4uI0aMsDivZ555RgC5++67reouCSD/+Mc/JCEhQeLj42Xnzp1yww03CCCvv/66Q84nISFBAHn++eetPqvod9i3b18pLCy0qKN///4CyP/93/+Zt+Xl5UnDhg1lzJgx5fZBVaJf25ZU97U9bdq0MsvYOp+pU6eKt7e3ue/z8/MlNDRUunTpInl5eeZyy5YtE0D69+9v3vbDDz8IIN9//71FnZ06dbIoZ/reunfvLvn5+ebtr776qgDyzTffmLf179/fYt8tW7YIIM2bN7dqf5cuXSQsLMz8vYuI/PjjjwJIZGRkmX1hL5Uy15geM3x9fa0+GzBgACEhIeaX6TEwOTmZn3/+mXHjxpGRkUFiYiKJiYkkJSUxbNgwjh8/TmxsrEVdDzzwgMWvY79+/SgqKuLMmTMAbNq0idTUVCZOnGiuLzExERcXF3r16sWWLVus2vfQQw9ZbfPy8jL/n5WVRWJiIr1790ZE2Lt3b7n9sWbNGgICAhgyZIhFO7p3746vr6+5HZs3byY/P59HHnnE4rwee+yxco9RnA8//JCQkBBCQ0Pp1auX+dHfVM+Vnk9pVOY7vP/++y1GSCZ8fX0t5hXc3d3p2bMnp06dqnT7HIF+bVtS3dd2eRQ/H1Nf9+vXj+zsbI4ePQrAn3/+SXx8PA8++KCFfXzKlCkEBARY1Dd48GAaNWrExx9/bN72119/ceDAAYvr08QDDzxgfnIBrc9dXV3ZsGFDuW2/++67LdofFxfHvn37uPvuuy3aNWTIENq1a1duffZSKXONn58foNm0SvL++++TkZHBxYsXLTrpxIkTiAizZ89m9uzZNuuNj48nPDzc/L5JkyYWnwcFBQGYbWDHjx8HYNCgQTbr8/f3t3jv6upq8zEoJiaGOXPmsG7dOiv7Wlpams26i3P8+HHS0tIIDQ21+Xl8fDyA+QZu2bKlxechISHmc7OHUaNGMX36dJRS+Pn50b59e4tJtis9n9KozHfYrFkzm+UiIiKsHm+DgoJq3DVRv7Ytqe5ruzwOHTrEc889x88//2z+QTZhOp/S2uLm5kbz5s0tthkMBiZNmsTSpUvJzs7G29ubjz/+GE9PT26//Xar45es09fXl7CwME6fPl1u20veC6W1E6B169bs2bOn3DrtoVIiHxAQQFhYGH/99ZfVZyY7ZsmTNhqNADz11FMMGzbMZr0mm7IJWyNA0CZ4ite5atUqGjZsaFXO1dXy9Dw8PKxms4uKihgyZAjJycnMnDmTNm3a4OPjQ2xsLFOmTDEfoyyMRiOhoaEWo4HimCYyHUVERASDBw+2+Zkjzqc0KvMdFh+5FKe877am0K9tS6r72i6L1NRU+vfvj7+/P3PnziUqKgpPT0/27NnDzJkzK31tT548mUWLFvH1118zceJEVq9ezciRI61G/VdKafdCVVPpidcRI0awfPlydu3aRc+ePcstb/oFdXNzK1WgKkpUVBQAoaGhla7z4MGD/P3336xcuZLJkyebt2/atMmqbGkTK1FRUWzevJk+ffqU+UWafKqPHz9uMaJISEiwGmVVFkecT2nbq+I7dEb0a9uyHc5ybf/yyy8kJSWxdu1arr/+evN2k1eZrbYUfxIqKCggOjqazp07W5Tv0KEDXbt25eOPPyYiIoKYmBjefvttm204fvw4AwcONL/PzMwkLi6O4cOHV/h8irezJMeOHatwfaVRaRfKGTNm4O3tzb333svFixetPi85IgsNDWXAgAG8//77xMXFWZW35T5WHsOGDcPf35+XX36ZgoKCStVpGlEVb6+I8NZbb1mVNZlEUlNTLbaPGzeOoqIi5s2bZ7VPYWGhufzgwYNxc3Pj7bfftjje4sWLy22nvTjifEyeGSW3V8V36Izo1/ZlnP3azs/P591337Uod8011xASEsJ7771n4dmzYsUKq/Mzcdddd/Hjjz+yePFigoODS/XwWrZsmcX3sXTpUgoLCyvlERYWFkaXLl1YuXKlhels06ZNHD58uML1lUalR/ItW7Zk9erVTJw4kdatW5tXBcqlVZirV6/GYDBY2AmXLFlC37596dixI/fffz/Nmzfn4sWL7Nixg3PnzrF///4KtcHf35+lS5dy11130a1bNyZMmEBISAgxMTGsX7+ePn368M4775RZR5s2bYiKiuKpp54iNjYWf39/vvzyS5ujj+7duwPw6KOPMmzYMFxcXJgwYQL9+/dn6tSpLFiwgH379jF06FDc3Nw4fvw4a9as4a233mLs2LGEhITw1FNPsWDBAkaOHMnw4cPZu3cv33//PfXr16/QuVfl+Xh5edGuXTs+++wzWrVqRb169ejQoQMdOnRw+HfojOjXds1d23/++Sfz58+32j5gwAB69+5NUFAQd999N48++ihKKVatWmX1o+vm5sb8+fOZOnUqgwYNYvz48URHR/PRRx9Z2eRN3HHHHcyYMYOvvvqKhx56yGJytTj5+fnccMMNjBs3jmPHjvHuu+/St29fbrnlFrvPsTgLFixgxIgR9O3bl3vvvZfk5GTefvtt2rdvb3NeqFJcqXvOiRMn5KGHHpIWLVqIp6eneHl5SZs2beTBBx+Uffv2WZU/efKkTJ48WRo2bChubm4SHh4uI0eOlC+++MJcxuSu9Mcff1jsa3JF2rJli9X2YcOGSUBAgHh6ekpUVJRMmTJF/vzzT3OZu+++W3x8fGyew+HDh2Xw4MHi6+sr9evXl/vvv1/2798vgHz00UfmcoWFhfLII49ISEiIKKWsXM6WLVsm3bt3Fy8vL/Hz85OOHTvKjBkz5Pz58+YyRUVF8uKLL0pYWJh4eXnJgAED5K+//pLIyEiHuZk54ny2b98u3bt3F3d3dyt3yiv5DkU0F7P27dtbbb/77rsd5jbmCPRr+zLVdW2X9po3b56IiGzbtk2uvfZa8fLykkaNGsmMGTPMbpAl++7dd9+VZs2aiYeHh1xzzTXy66+/Wrk3Fmf48OECyPbt260+M31vW7dulQceeECCgoLE19dXJk2aJElJSRZlS3OhXLNmjc3jfvnll9K2bVvx8PCQdu3aydq1ax16LyiRGp7p0tHR0XECRo8ezcGDBzlx4kRNN8WhOG/wDR0dHZ1qIi4ujvXr13PXXXfVdFMczhVFodTR0dGpzURHR7Nt2zaWL1+Om5sbU6dOrekmORx9JK+jo3PVsnXrVu666y6io6NZuXKlzTUJtR3dJq+jo6NTh9FH8jo6Ojp1GF3kdXR0dOowlRL5V199lTZt2lxRHJSrEVPCCHuCGTkLL7zwQrlxsquDWbNmVSi++9WCfi9eOddeey0zZsyo6WZUGRUW+fT0dBYuXMjMmTMtAiI1bdrUIquM6fXggw9a1ZGamsoDDzxgzoozcODAUiOurVu3jm7duuHp6UmTJk14/vnnKSwstLu9H374IW3btsXT05OWLVuWGpMiNjaWcePGERgYiL+/P6NGjSo17K29ddrDu+++y4oVKyq9vyOoDYm7H3vsMfbv32+Vaelqxta9+Nlnn3HnnXfSsmVLlFJl5ujNy8tj5syZNGrUCC8vL3r16mUzrk1xUlNTCQ0NRSnFF1984ZDziIuLY9asWQwcOBA/Pz+UUjavxezsbJYsWcLQoUMJCwvDz8+Prl27snTpUpuZoUBL5XjHHXcQGhqKl5cXLVu25Nlnn7UoM3PmTJYsWcKFCxcccj5OR0VXT7355pvi7+8vOTk5FtsjIyOlS5cusmrVKovXzp07LcoVFRVJ7969xcfHR1544QV55513pF27duLn5yd///23RdkNGzaIUkoGDhwoy5Ytk0ceeUQMBoM8+OCDdrX1vffeE0DGjBkjy5Ytk7vuuksAeeWVVyzKZWRkSMuWLSU0NFQWLlwob7zxhjRu3FgiIiIkMTGxUnXaorCwUHJyciySKrRv377UFXjVRVlJQgoKCqy+65pi3Lhx0q9fv5puhtNg617s37+/+Pr6ysCBAyUoKKjMa2vChAni6uoqTz31lLz//vty3XXXiaurq/z222+l7vPII4+Ij49PmSs4K4ppRWjLli3luuuus7l6VUTk4MGDopSSwYMHy6uvvirvvfeejB49WgCZPHmyVfm9e/dKQECAtGvXTl555RX54IMPZPbs2TJlyhSLckVFRdKwYUOZPXu2Q87H2aiwyHfq1EnuvPNOq+2RkZEyYsSIcvf/7LPPrC6Q+Ph4CQwMlIkTJ1qUbdeunXTu3FkKCgrM25599llRSsmRI0fKPE52drYEBwdbtWnSpEni4+MjycnJ5m0LFy4UQHbt2mXeduTIEXFxcZGnn366UnXaS1WIfEFBgUVGnPIoS+SdiS+++EKUUnLy5MmabopTYOtejImJkaKiIhEp+9rauXOnALJo0SLztpycHImKipLrrrvO5j4HDx4UV1dXmTt3bqkin5ycLF9++WWpbV69erVkZmZabEtPTzeHBlizZk2pIp+QkCB//fWX1fZ77rlHADl+/Lh5W1FRkXTo0EF69eplM5tUSaZPny6RkZEWA7C6QoVE/tSpUwLIihUrrD4ziXxeXp7Vl1ic22+/XRo0aGC+EE088MADFim8Dh06JIAsWbLEolxsbKxFLIvSWL9+vQCyfv16i+3bt28XQFatWmXe1qNHD+nRo4dVHUOHDpWoqKhK1WkLU/yL6OhoEdH6jBIxOorflCkpKfLPf/5TIiIixN3dXaKiouSVV16x6Lvo6Gjzzfrmm29K8+bNxWAwyN69eyUvL09mz54t3bp1E39/f/H29pa+ffvKzz//bLV/yZdJ8J9//nmrOCYFBQUyd+5cad68ubi7u0tkZKQ8/fTTFqnvTOc3YsQI+e2336RHjx7i4eEhzZo1k5UrV1qUy8/PlxdeeEFatGghHh4eUq9ePenTp4/8+OOPFuVSU1NFKSVvvPFGmf18NVDWvWiiLJH/17/+JS4uLpKWlmax/eWXXxZAYmJirPYZNGiQ3H777WXGYpk/f764uLjI2rVrrT5bvny5zXu6OGWJfGmsW7dOAFm3bp152/fffy+AbNiwQUREsrKyrNJQFuebb74RQPbs2WP3cWsLFbLJb9++HYBu3brZ/Pznn3/G29sbX19fmjZtajOk6d69e+nWrZtVgoOePXuSnZ3N33//bS4HWtjQ4jRq1IiIiIhyU5eVtn/37t0xGAzmz41GIwcOHLAqZ2rTyZMnycjIqFCd9rJ48WIiIiJo06YNq1atYtWqVWZ7YXZ2Nv379+e///0vkydP5t///jd9+vTh6aef5oknnrCq66OPPuLtt9/mgQce4PXXX6devXqkp6ezfPlyBgwYwMKFC3nhhRdISEhg2LBh7Nu3D7icuBu02B2mdpgSeNvivvvuY86cOXTr1o0333yT/v37s2DBAiZMmGBV9sSJE4wdO5YhQ4bw+uuvExQUxJQpUzh06JC5zAsvvMCLL77IwIEDeeedd3j22Wdp0qSJ1TxNQEAAUVFRbNu2rUL9XBcp714sj71799KqVSurDFOm+Pmm68PEmjVr2L59O6+++mqZ9c6cOZMRI0YwceJEfvrpJ/P2tWvXMnXqVO68806baQqvBJMtvXi0y82bNwNaMpVrrrkGHx8fvL29mTBhAsnJyVZ1mKJw1slrqyK/CM8995wAkpGRYfXZzTffLAsXLpSvv/5aPvzwQ+nXr58AMmPGDItyPj4+cu+991rtbxolb9y4UUREFi1aVOqIokePHnLttdeW2dZp06aJi4uLzc9CQkJkwoQJInLZVDF37lyrckuWLBFAjh49WqE6S6PkSF6k9NHWvHnzxMfHx2qeYtasWeLi4mLuF9NI3N/fX+Lj4y3KFhYWWpltUlJSpEGDBhbfQVnmmpIj+X379gkg9913n0W5p556SgCLpwTTk8qvv/5q3hYfHy8eHh7y5JNPmrd17tzZLlOfiPZ01bZtW7vK1mXKuhdNlDWSb9++vQwaNMhqu+kJ+r333jNvy87OliZNmphNl+VFVczJyTHPDfzvf/+TzZs3i4eHh4wcOdLC9GqLio7k8/LypF27dtKsWTOLum+55RYBJDg4WCZNmiRffPGFzJ49W1xdXaV37942zTLu7u7y0EMP2XXc2kSFRvJJSUm4urraTHK8bt06ZsyYwahRo7j33nvZunUrw4YN44033uDcuXPmcjk5OXh4eFjt7+npaf68+N/Sypo+L42cnByLJL6l7V/ecUq2yZ46HcGaNWvo168fQUFBFgmUBw8eTFFREb/++qtF+TFjxlilYnNxcTG312g0kpycTGFhIddcc02l80eaEhaXfJp48sknAVi/fr3F9nbt2tGvXz/z+5CQEFq3bm3huRQYGMihQ4dsZsgpiak/rnbKuhftwd77EOCVV16hoKCAZ555xq66PT09WbduHa1atWL48OHceuut9OrVi88//9wqbeGVMn36dA4fPsw777xjUbcpFnuPHj3473//y5gxY5g7dy7z5s1j+/btFk8ZJurqtVVli6GUUjz++OMUFhZauEN5eXmRl5dnVT43N9f8efG/pZUtL1+il5eXRVaY0vYv7zgl22RPnY7g+PHjbNy4kZCQEIuXKRWcKYGyidISZq9cuZJOnTrh6elJcHAwISEhrF+/vtIJvc+cOYPBYLDKWdqwYUMCAwPNyYlNlExYDdrNVDxxxdy5c0lNTaVVq1Z07NiRf/3rX6Um9BYRp/Dbr+3Yex+ePn2aRYsW8dJLL1XoB8Xf35/XXnuN5ORkMjMzWbx4scNznC5atIgPPviAefPmWaXfMx1r4sSJFtvvuOMO4LK5qzh19dqqkMgHBwdTWFhotlGXR+PGjQEsbGBhYWE2U6SZtjVq1Mhcrvj2kmVN5UojLCyMoqIiKzHMz88nKSnJvH+9evXw8PCwu0321OkIjEYjQ4YMYdOmTTZfY8aMsShv6wb673//y5QpU4iKiuLDDz9k48aNbNq0iUGDBl3x4hl7bwZ7EnZff/31nDx5kv/85z906NCB5cuX061bN5YvX261X0pKisOyaNVmKnovlsTe+3DOnDmEh4czYMAATp8+zenTp8028ISEBE6fPm3zWjp16hSTJk2iTZs2REZGMmbMGJvHqywrVqxg5syZPPjggzz33HNWn5va36BBA4vtoaGhADazY6WmptbJa6tCIt+mTRvAOnFuaZgeyYubEbp06cKePXusLoydO3fi7e1Nq1atzOVASwdWnPPnz3Pu3Dnz56VR2v5//vknRqPR/LnBYKBjx45W5Uxtat68OX5+fhWqsyKUlUA5MzOTwYMH23zZGiGX5IsvvqB58+asXbuWu+66i2HDhjF48GDzaK28NtgiMjISo9FoZVq5ePEiqamp5uTEFaVevXrcc889fPLJJ5w9e5ZOnTrxwgsvWJWLjo6mbdu2lTpGXaKi92JJunTpwt9//016errF9p07d5o/B4iJieHEiRM0b96cZs2a0axZM/Po+OGHH6ZZs2ZWdcTFxTFkyBDc3NzMg5KsrCyGDh1qc9KzonzzzTfcd9993HbbbSxZssRmGdNEamxsrMX28+fPA1iZNmNjY8nPz6+T11aFRP66664DrEUuOTnZasVZQUEBr7zyCu7u7hbZzceOHcvFixdZu3ateVtiYiJr1qzh5ptvNtsJ27dvT5s2bVi2bJlF3UuXLkUpxdixY8ts66BBg6hXr57Zc6T4/t7e3owYMcKiTX/88YfFeR07doyff/6Z22+/vVJ12ouPj4/N5MLjxo1jx44d/PDDD1afpaam2rXq11bi4507d7Jjxw6LcqUl7raF6bG4ZILmN954A6BSfZCUlGTx3tfXlxYtWliZE9LS0jh58iS9e/eu8DHqGqXdi/YyduxYioqKWLZsmXlbXl4eH330Eb169TI/hc+fP5+vvvrK4mVK6m3KiWpKAg7aCHnYsGFkZmayefNmIiIiaNmyJT/88ANnz55lxIgRZGVlVfa0+fXXX5kwYQLXX389H3/8sZWXnolRo0bh4eHBRx99ZDGgND0dDhkyxKL87t27AermtVXRmdoOHTpYLVr66KOPJCoqSmbOnCnvvfeevPzyy9KhQwcB5OWXX7YoW1hYKNdee634+vrKiy++KEuWLJH27duLn5+f2YvFxLfffitKKRk0aJAsW7ZMHn30UTEYDHL//fdblDN5mJTMI2nyjhk7dqx88MEHMnnyZAHkpZdesiiXnp4uUVFREhoaKq+++qq8+eab0rhxY2nUqJGVx4q9ddrClnfNww8/LEopmTdvnnzyySfy008/iYjm19utWzdxdXWV++67T5YuXSqvvfaaOZ9nQkKCxbkXX9Ri4j//+Y8Acsstt8j7778vs2bNksDAQGnfvr1V/sh27dpJw4YNZcmSJfLJJ5/IwYMHRcS2n/zdd98tgIwbN06WLFlifn/rrbdalCttgVzJHJihoaEybtw4WbhwoXzwwQcydepUUUrJI488YrHfF198IYCcOHGi7I6+SrB1L27dulXmzZsn8+bNk9DQUGnatKn5/datWy3K3n777eLq6ir/+te/5P3335fevXuLq6urVbmSlOcnHxgYaDMH7m+//SZeXl42/eRNbZwwYYIAcu+995q3mTh9+rQEBASY6yi5un7//v0WdZoWbQ0ZMkSWLFkiDzzwgCilrPpMRFsM1aRJE30xlIjIG2+8Ib6+vharyP7880+5+eabJTw8XNzd3cXX11f69u0rn3/+uc06kpOT5R//+IcEBweLt7e39O/f32bCZxGRr776Srp06SIeHh4SEREhzz33nOTn51uUOXjwoAAya9Ysq/2XLVsmrVu3Ni8mevPNN21+kWfPnpWxY8eKv7+/+Pr6ysiRIy1W0FWmzpLYEvkLFy7IiBEjxM/Pz2oxVEZGhjz99NPSokULcXd3l/r160vv3r3ltddeM/dBWSJvNBrl5ZdflsjISPHw8JCuXbvKd999ZzNJcGmJu0tbDPXiiy9Ks2bNxM3NTRo3blzmYqiSlBT5+fPnS8+ePSUwMNCcLPull16y+p7Hjx8vffv2La17rzps3Yum78vWq6SLbE5Ojjz11FPSsGFD8fDwkB49ephdmMuiLJEvKCiwuSrVxP79+23eK6W1ufi1ZzquvednNBrl7bffllatWpmvU1v6UVRUJGFhYfLcc8+Ve+61kQqLfGpqqtSrV0+WL19eFe2pFEuWLBEfHx+5cOFCTTdFp4qIi4sTT09P+frrr2u6KU6DM96LtZGvvvpKvLy85Pz58zXdlCqhwi6UAQEBzJgxg0WLFjlNeNMtW7bw6KOPWs2k69QdFi9eTMeOHRk1alRNN8VpcMZ7sTaycOFCpk+fbvboq2vo6f90dHR06jB6ZigdHR2dOowu8jo6Ojp1GF3kdXR0dOowusjr6Ojo1GF0kdfR0dGpwzg27qeduLu7ceYm3annakMpaPi1/UnYdXR0rpwaEfkzNwmR3+sPEVcbZ27Sfbl1dKqbGhF5HR2duoHRaCQlJYW4uDiSkpJIT08nMTGRlJQU0tPT8ff3Jzg4mMTERDIyMggICCAwMJCQkBD8/PwIDg4mLCyMoKCgUoON6VwZusjr6OhUiIKCAk6dOmXOyLRly5YrrvOGG27g4Ycfpl27djRv3hw3NzcHtFQHdJHX0dEpBxEhISGBvXv38ttvv7FmzRpOnDhhDmHtiEXzP/30Ez/99BNKKVq1asWYMWO4/vrr6dKlCyEhIXUyY1N1USNhDeJGueo2+auQMzcZCftGn3itLWRlZbFz507Wrl3Ljz/+SExMjEX6y6qQjuJi7uHhQZMmTRg2bBijR4+mZ8+eFrHrdexDF3mdakMX+dpBQkICGzZs4NNPP+WPP/4gLS3NInFPdUhGcbF3cXEhICCAnj17MmHCBIYPH14n0/RVFbq5RkdHB4CcnBx+/vlnVq5cydatW0lPT8fV1ZWwsDDS09PJyMiotmiXIoLBYMDf3x8/Pz9SUlLYsmULe/fuZcOGDUyePJlBgwbh6elZLe2pzdQCkRdcyjDHFYluq6sqXJR9I7YiAdC/h9pMbGwsK1as4NNPP+X06dO0bt2aUaNG0bNnTxo1asTHH3/MypUrzUm8q4MGDRpwzz33MGHCBGJjY9m1axfffPMN69ev58iRI0yYMIHJkycTHh5ebW2qjTixuUZwVeBmgGPDbDcxvQC6bNbFparYO1gIsMPJodVGRa4RyhN63VzjfIgI+/fv591332XdunV4e3tz8803M2nSJDp06ICnpydKKWJiYrj33nvZsmVLtZlrbrjhBj788EMaN26MiJCbm8uBAwdYvXo13377LXl5edx88808/PDDdOrUSZ+cLQWnHcm7KjhVzqpYf7fyy+hUPX/fKJeEXtBH9LUHo9HIL7/8whtvvMGOHTsYPHgwd9xxB9deey3169c3+60rpWjcuDFDhw7l6NGjnD9/vsrbFh4eztChQ4mIiDCLt5eXF9dccw3NmjVj0KBBrF69mi+//JK4uDgee+wxBgwYoPva28BJe0Rwc9KW6djm7xvFWS8mHRsYjUbWr1/Pc889x65du/jnP//Jyy+/zE033URoaCgGgwGllFlglVKMHj2aqKioamlfy5YtufXWWy2Or5TCxcWF0NBQhg8fzksvvcT06dPZuXMns2fPZsOGDXqGLBs45UjeRZVuotHR0blyfv31V+bOnUt0dDQzZ87krrvuIjQ01EJUi6OUIj8/v9pEtKioiPz8fJvtEBHc3NyIioriwQcfxMvLi0WLFjFv3jx8fX0ZMGBAtbSxtqAPvnR0rjL279/PrFmzOHToEHfeeSfjx483LzgqPnovyb59+0hISKiWNsbHx7Nv3z6bnxVvZ0hICOPHj2fSpEkcPHiQp59+mv3791dLG2sLusjr6FxFxMfHM2vWLA4cOED//v2ZOHEiDRs2NJtnSiM7O5s///yzWkV+9+7dZGdnl1pGKYXBYCAsLIyJEydy/fXXc+DAAZ599lni4+OrpZ21AV3kdXSuIj744AN27dpFixYteOqpp+jUqRNubm5lCryIEB0dzaFDh8jIyKiWdmZkZHDo0CFOnz5dpjePUgp3d3c6d+7Mk08+SVRUFP/73/9Yvnx5tbSzNqCLvI7OVcLBgwdZsWIFWVlZzJo1i549e9q1mKiwsJA9e/YQExNDYWH1uMAWFBQQExPD3r177Tqmp6cnvXr1YsaMGWRmZrJy5UoOHjxYDS11fnSR19G5CigqKmLlypVcvHiR/v3707dvX3McmPL8y9PS0tixY0e1m0AuXrzIjh07SE9PL7Ocqf2+vr707duX66+/nosXL7Jy5UqLcAxXK7rI6+jUcUwLnr766isyMzPp37+/eQRfnsCLCKdPn2b//v3liq2jSU9P58CBA+WabAALX/r+/fuTnp7O119/zYEDB6pl8ZYz47Qin1ZQ0y2oHPlGre1pBZCjDyJ0nICMjAw2bNhAUlISBoOBjRs3MmPGDLZt20ZOTk6ZImg0GtmyZQtnzpypdh/0oqIioqOj+eWXX8o8toiQk5PD77//zsyZM9m4cSMGg4GkpCQ2bNhAZmZmNbba+XBKkS8SRddaFq4grwhS82HFaei4yUDHTQbmH1Gk5ju/2KcVaG1PzQdjJQc9qfnll9GpGVJSUti+fTs5OTkUFRWxfft2Vq9ezejRoxk/fjw7duwgNzfXptjHxcXxyy+/VJtXTUni4+P55ZdfbMbMMYn7tm3bGD9+PLfddhurV69mx44dFBUVkZOTw44dO0hOTq6BljsPTrkYqraRVwQfx8ALRyx/M1fFKFbFKB5uLsxq43yPjKn5YASG/KZIyNN+VLdcbyTIHQLdwFCB39muPymMekgDpyU+Pt5sny4qKqKoqIikpCS+//57duzYwbXXXsv999/PddddR7169TAYDOTm5vL1119z6NAhizjy1Ul+fj6HDh3im2++4Z577sHT0xOj0UhycjLbtm3jww8/5H//+x+pqalWE7SFhYU19uPkTOgi7wDWxVkLfHFyiiC7ELwr2NsZhZBf4inAzw3cHfD8lZIPw35XXMi1FOaBv2qV/9LfSFPvigm9jnPi5uZWqkmmsLCQxMRENm7cyI4dOxgzZgzjxo0jMTGRb775ht9//524uLhqbrElZ8+eZeHChWzbto1bbrmFevXqsWbNGtauXUtaWlqZ3jcigru7ezW21vmoUyJvFEgqMeBwUVCvhr/jj84ofFxhRmv7RvMZBZBrhNmHFBsuWKrsG52M3NwIPK5Q6Edusxb44gzYauDgEKNdUSh1nJuYmJhyyxQWFpKUlMTKlSv59ttvKSoqIj09nby8vBqfuCwsLOTs2bOsXbuWzZs34+LiQnJyMnl5eeXuKyKcOXOGsLCwamipc1JnRN4o8HcmDP3NUv0aegob+gj1PWqoYZVg7hHFZ+dsC/ATBwwoZWRkQ/BwqeaG6dQqtm3bxrfffsvq1auJi4uza+I0Ly+PCxcu1Liwl8QUajg3N9fufYxGI/v27WP8+PHccccd3HzzzfTu3bsKW+mcOOXEa0UpTeABLuQqRm2vPTYHe7xyHt9vYMfVPZekUw7Lli1j0qRJvPPOO5w7d47CwkK7hdvZBL6yiIj5KeDtt99m0qRJfPDBBzXdrGqnTozk0wtsC7yJQoH4XAgtZ3FfvhESLz0Buhtw2Ojfx0Xwd7Xvxnn5qGJdXPk/Skn52oSvPprXKcmyZcuYO3cu58+fR0Ro6An3NVd0CICkPPgrHQ6nCRdz4Uy283t/2YOXC0R6QwNPaB+gaO8P9TzgYBr855RwISuL7Oxs5s6dC8D9999fwy2uPuqEyJdHXK7itv/B7wNsC22+EeLz4FAa3L9H+7HoGigs6Sp42iH23i4Q6CakFliLs6+rMD1KeNDBYbgf328gxN3I9SGV27+BJ5zPlVLTJ4Z56vHhayNff/018+bNMwv8bRHwrzYGQj20LGtGgSENoUCUNoeVBwl5wvkcTfCT8yExT7iQC8l5kFmoDaLyjFAT43uFNpDxdwVfVwj2gIaeEOyhqOeuCXsjLwjxUAR7aHNwbpcyyhkU9KgHI8MUi44a+SpWiI2NZf78+YSGhjJq1KgaOKPq56oQ+bLIN8LWBPjHbktJ25uq6L1F0a++8HHPsi/vEWEgCAuOWn92RxPh4SrIs1DfXfC8glH82uuE23Yo9qZaC30jT+HHfoKfPulaq8jOzubJJ58kNjYWEWFMBDzbzkADTxi5zWB2Svi6txB26am2njs099Xy9BaK9tco6tJfbVtqPiTkQXqhkF0IuUXafZNbBOmXfgSyC4V8IyilvT+SDhdsmM/DPKGtv+YlJqI9MXu7KvzdtExvngZtm6cL+LiCv6uivqfm0uuqNOF2KfbX9dJfF6XMnmCxOXDbDu1NiAes623kufYGDMrIl+eEc+fO8eSTTzJkyBC8vb2r4ZupWa56kf87w1rgi5NbBBdztZFvWYwMg5FhVz7WCXbXzDtZRWWbbN7oLPSsd2XHMgl9fJ5lu7/rI/jrAl/r+Pjjj4mLi0NE6B4Es9oamPKngfQCiMvFvI5h1DZNGD+/VmjsDQalKO3rFtGu/ZYiGEVhvLRN0F7GSz8GgjKP9I0CJzPhneNGNl+8XNfQhjCthYEoX+3HALSRukITbYO6/F4pbcJQ264wcHmf0jiTBRN2KgoFLl5a93ExV+izxUCgOyzrBqezjOxOMRIXF8fHH398VZhtrgqRd1VCY6/K7ftHiuKpA7CqnNG8o5jRWkjIU3x2rvQyDTwELwfZ4tdeVzcm2a521q9fz/z588nNzaWJNyzuauAfuw0cy8BqkdqFSwJYaMcEq1LggjZSrggBbsK9zbTR819p0CkApjQz0DUI3Kpo8UWBQGwJt2AjithciMsV7t9t4N9d4a7/GTmbk8P8+fNp1KgRI0aMqJL2OAt1QuQNCpp6C6ezrS8eVyX0qgef9LK+oPOK4FxOdbSwYoR4QHMfIT4PMgstz6mhh/BWF+2cdHQAUlNTWbVqldkO/2w7RaSP5ejdFhN3Kj67VoisoMXimb8UvyVabpvRWri5mCu6m0HR0k/oUU+h0P628LUW+G/Ow2t/W24bEALz2lds8BGdBXfuKv1cjSjicoWmPvBMO8WDfwrnz5/nv//9L3369CEwMLBCx6tN1Im5NX83+LaP0NJXaO6jXRwuSnt/bSkCD3AqCx7Y43xdMKO18Et/YXITaOkrFq/FXYTrgmu6hTrOxLp16/jxxx8pKiri9sbQP1Thasdg+XyuoqACMcdmHVQM2KpYGwtnspXF6/lDinXnLcu7Ks2+7uGicHcBlxK32lex8OJhZVXXF+dgwFbFM3/ZP+IvMGrnUx5uCvqHKMZGaOEdNm3axLp16+w+Tm2kTozkAQLc4KfrhZR8GLcT6ruXLu4mPAylPwE4A7PaCLPaVH7/6CztaaUkzX0dExpBp+Y5e/YsL774IqmpqQS4Co+2MuDnWn4I4coQlwunsmzXm5ivePEIGEW4NVzbZrLZmyZxi1uHvoyFl44oEvOt68sqUpzKwjxgcyRKKfzdtH7afFGLgTN37lwGDRpERESEw4/nDNS5Wz3IHTb1k3IFHjSxe7dr2eV8XCr+OOsMnMqCe/9UDP3dYPX6NVHzjtCp/fzwww+cPXsWEeHmcIjwAlUFgeJmHlTsKmcBXkKeIrVYiHDT5CxYu1+m5WNT4IuzI4kKjebtRaGI8IaRjbQFU+fOneOHH35w+HGchTon8hXFywWiShkx+LgIt4XD/A61a3LyZCbc96fiZCmjrnv/NNh0b9OpXRw5coQFCxZQWFiIlwvc09SAu6F8LxQTH11jtNshITaHcj2+AJacVHwVW3aZL87Bu6fKryurSBFr55xZpDcs727fyEUp7Sl+SjMDXi5apMsFCxZw+PBh+w5Wy7jqRT7KFz7oLnQKEFpcEnsfF+39beHwUgUEPikP9qdefp2voUndx/YrTpQi8CaOZuij+drOjz/+aB7Fj2oETX0tR/GfX1v6SuuPrjHSt77jV0xfzFOklBOVODkf4vMcO0L3cIH+9eHDUoQ+0E347NrLfaFQNPOBWy6N5mNiYti0aZND2+Qs1Bmb/JXQwlfzDT+aATMOQHt/WNCxYqP3pDz4IFpZjFBGhQn3NhMaeGir8pyJ+3Yb2D7QSISTtUvHPi5cuMBbb71FYWEhLsBdTQ14lBjFt/HThL7Ihqtka7+qmZd5qLlwS6Oyy4wOh/g8YVm044X++vqwvo+10LsqrT9MKKWVv6upgS/OGiksLOTf//4348ePp2HDhg5tV02ji3wx2vjBuj4VN80k5sGHp5XVI+g3cYpv4pw3aYhO7eXw4cOcO3cOEWFoGLT2t22Lb+fvmOPNbSc8dRD+TClbmMM8y4/4GuKhraqmnLmDnkHC8+0qdt94uEDHAPvKGlC09tf67/s4zTZ/+PDhOifyV725xhFsSdBskaURlwvnsquxQTp1nl27dpmjRd7d1ICni/22+MrQ3Bf8yhkSPtRcGGFn2PaRjeCBZmULuL8bNPexs4GVQCltTm5yU00GjUYju3btqroD1hA1IvI761CY3IQ8OJlZ9t311XnF6rPO5abZJUCuOPGITs0QGxvLBx98QFFRER0DoGuQNiqtap5rK6y9zkjPIGtxfri5cF8zIcTOyK2hHprIP9jcuq7r6mnHeaYann4NKLoGQgd/zW9++fLlxMaWM3Ncy6gRc82bx51L8K6E3xLt8xSoCCcytaiYLX2x+6YpTqcAOJFZevybroHCB93svyF1nIu9e/cSExODiHBTmMK7ikfxJlr6an8XdBBSCiwFuJlPxa/VUE+4r6kwONSyrnru2jxZdaCUlpbzpkaKv45qE7B79+4lPDy8ehpQDdSIyH/aS4j8vm4IfYiHtir1eDmjeXs4kamZdpadUmxNVDzUXOhbX2jjV7EbSPMIUkRnCXtSIbuY2HcPFN7rJuXG1tdxXjZv3ozRaMRFwbCGqtrz8Lb0K7+MvYR6lp/noaox9eMbxwSj0cjmzZsZOXJkzTbKgegP7FdIv/rYfOQsTmMvoVk5q/eOZ8L8I4pJuwxsTdTu2qWntPf/Oa1IKD+dpQUvdRBW99LcQK+vL+bX0m5SbkRNHefl4sWLrF27FhHh2mBo6lM1i5+uJhSKpj5wbbBml1+7di0XL14sf8dagu5d4wAaekIbP+FohvXN1thL+GdL4fYyVkwfz4CXjyl+TrB9sy45qejgb/+kVnFermULuXTKZvfu3eZAZIMbKDyqyVRTlzEtjhrcQLEtUQtctnv3boYPH17TTXMIusg7gH71tUmpj05rUS2PZSgaewmt/OCmBsK4ckJi/Pes4qf4su/Ug2mKHkG6meVqZ/v27YhoWbv6hdg3hp+2V5FeLNzAm51rV2L7ihKfC08euNwzAW7wTjnhSwwK+oQoDAgiwvbt23WRd2byiuAXUyhU0dykKpsmz16ur6+ZRX5JgP+egRsaCBMbO67+d08pugQKN9YtF16dCpCZmcmnn36KiNDC1z5TzfS9io0XtHR/Jqbt1TIvvdqxbpnu4nJg1l+K3CLYkXz5fN0NwiP7FG93KV3otRWwQpQvnMgSPvvsM2bNmoWvbzXNAFchdU7k84rgq/Mw4+Dl6YZgd2FxZ6F/FQs9aLGwB4Q43kTSJbBu3ZA6Fef06dOcPn0aEaF3fVWub/wj+xTflxB4uCyA2UV1y5SXVQRbbJg8842K7+OER1H8uxShV0pLPdi7vuJ4ppj7ukOHDlXd7CqnTk285hVpIUyLCzxAUr7i8f2KLfEVqy8xD76Lu/z6owb9+6c2E7oG1tzxdWqeI0eOmBdA9Qwub72olru4pMAX59m/FHF1JFDd+RyYc6j0c80XxdaEsutQSutX0OLZHDlyxIEtrDnqjMjnGeGLWJj1l+1TSsxXPHVQ8bMdQp+UB+vOw0enFQ/vNZhfLxwuP9xqZejoLzT1Ln1U1T1QnC72jU71c/DgQUQEFwUdAso21Dy+X5FVWHZ9vyeVX6a2kFmonU95ZZ7YX3oZA9A+QOGiNJE/ePCgg1tZM9QZkc8qhKdLEXgTCXmKuUfKn6o6kQXT9xl4u0SogoPp2v6OXrE7NgIeaSE0syH01wQJs9vqo3gdzEvuG3pCuBeUNZbfdLHsUXxlWHISHt6j2Jfq0Gqt2JOiHWfpScfWWyCKzWUO8hThXlr/ikidCXFQ52zyV0piHmwtxZUR4ECaYt4RmN1G6OXANHyai6WwPcly+51NhG5BjjtOSTbEQbaN7FG3NNKzRzkTFy5cYPfu3QC09dfsx2XZ41/tKDxxwHIhXGV5+4TmMbYzWQslHJ+nCeE9TYXuDrw2dyXD/51RnM/VAqH9kQKH0qGtvzAt6srr93ERXikjuqzJLt/WH87nau6qFy5cqPUBy3SRL0F0FrxTRrAx0IR+ZQz0CnbsxNXtEXB7RPVNhn0XB0//pUgrsD7fzEIjdzTRhd5ZiI2NJTk5GRGhnb8q1yA/PAxm/WX7B9zEs22MNCjHlfLtE7DijCKhWPz3XZciUcblwqzWQg8HJJXflQyvHFMWUS4v5inWxcH/kgHKFvqGnvBMayMvHyv9gnU3wPBy9FopaOuv2HxRSElJITY2ttaLvH4LX6WsO6+lVrMl8ABzDhvIKUMgdKqX4kGztLDC5TOvveDtYnvQ8EwbI5OagJ9b6fu/fUKbl0ooJcHHHymKsw5KjHMmu/QwxvF5io9OK5aUYb7xd4M7msDTrW0nDfF1Fea1L38ApdBi7YNmsqkLwcquqpG8n6twcyVWjTozmy/ChUshD4Y1sD/GzcJjitRSBF7H+Thz5ozZs0bL41o+oxppibXzjcLcI4qMQsWzbYwEusGIMPAt5+7/JcF2ou3ifHJW0cRbuOYKzDY7k+GzcqK0xudp3jHTokoXan83uLMJ1HM3kpwPC44Z8HfV5rQ8XCg3mYmJiGI5nc+cOWPfTk5MnRF5DwOMixA+P1f6xRLsDk+2KvvXPNQThjUQfrhYej1NvLU4MDXJ5oua3fA/pxWnLqX6i87SQrc6Krrkp2fhnqa6yaamMRqNfP755wAEukG4l/0/zqMvBVN0Mwi5RVqaQB8H3vU7k7VAeFci8qeyLpuArhQ/NxjfWPOkCXAz4uVyuQ/sQaH1b6CbkFYofP7550ybNg2DofbeBHVG5H1c4cV2ggI+syH0fq7CmPDyhTnSG55to9Wz0YbQN/EWHokSxjtwNWtF2XQRFhy1zuP6QbRC0JI3OELoXzpqYGJjoy7yNUxaWpo5nEGENwR7gH1j+cvcVkWRc28PF7oFXlkd1wTBmHDhy1jHPVn6umrmm4qjCPbQ+jk1TQtvkJaWRlBQFXo/VDF1RuRBE/rn2wm+rtrqt0/PKnxchAmNIchdeLSFffU09YFn2ghKwfcXLl94TbxqXuB/vKiZWkpL1L08WoHAw1FXHp/kziaiC7wTkJR02eUqxAPmHzFYeNbMaSu41dD31Ke+FgrgSmjpC72DHSvyFaHAiIVrtYgixOOybT8pKUkXeWfC95LQpxeAvyv4u9kv7sVp6qN5DjQutgippW/lBH5fqmU2rB5BVNot8tOzqtzY9ctPK24NL1vkJzQWlp6CzMLS65rZWvB0qVw7dRxHcZGPzlL8ngLFR/ICPF8FQn9vUyE+D85k275GxoYLnezMp1oeXQJhdCPhq/O2j9XMR5gS6XgTab4R5h5W/F9M8eMK4e4KrWe1/m/RohIi4iTUOZE34e+mRYa8Epr5XHkd+1LhjeOKX4r53l9fX+gTLFwXrF3cNcEjLWB1jGa7tMU9kXp6QGchIyPDPOkak6MwlPCR/78zCgPaterIJ68RYSAIi45BdAmhHxMuTIu68lG8iZa+ML2FZiZdW0Lom/sIM1oJwx3sNJFXBC8dLSnwIKL1s0nkMzIyHHvgaqbOirwzYEvgAX5NVPyaqBgQIjzRUmpM6CdHCumFsOI0FqkC/9FUmKGP4p2GgoKCcsusOKNliHq6teZJ4ihGXhL62BzLwc6QUBwm8CZMQt/G3/JYjb2oEoFfcEyx4kz5JiJ7+t+Z0UW+iihN4IvzS4KiX33Hi/z4CCHUDnv8Q1EAQoCb5Yh+WpTgpQu805CdnW1Xuf+cVjzVSnB0qPjqdDtu4Vs9+V3zjVp/2YO9/e+s6CJfRexJoUyBryyjGgknM60fn4szqYnQsAJhiR9sDqZHUx3nIy0traabcFVT2/tfF/laxqhGoBBe+xtO2xD6OxpXTOB1nJ/aKDK/JGiDnGPpcD5byC5SXMhTDAyp+gQ+jkREamX/F0cX+VrILY00O2lMtvXo+/YIdJGvY+Tl2ZfF/eHmNe/yuiUe9qdpAr87BYxGARQnsuC3JMX+NNiTqpkoB9Sg2LsbtPUkS0+V/7Rtb/87K7rIl8KZbPgkRtHUR/OzdzZG2blEW6f2Y/KsKYsHmwtPtKpZkf85Ht46odibahJO63b/maIFIesWKIDUmNB7uGir3wV4rxyht6f/nRld5EtwNvtyuNNv4xQRXnAyE1pU0Ee+Rz24IVTKTNA9KEToWXvXWOjUAAND4dcS4agfaCb8q1XNLYgCbQS/+LhiX5p981B7UhWLj0NNCr27AZ5qJRgFlkVfbrdBQf9Q+OlCzbTL0egiX4xz2Vq402/jLn/h53IU70drblyC/aP6jgHwREttBGBL6AeFCI+3FDoHOqLlOnUZV9fLt+nwhkJbfyg+Sp7ZWnCthMB/EgNpxbyqxoZT6VXS31+wX+BN7EnVkoxXNidyQp6W7tNEoBsVfup2N2j9Z9FyBU29xCzyxfu/NlK7W+9AYnPg5WOK7+JsX6hncxRvnwAqIfT9goVfExU/JygGhgj962vJFnSB17EHb+/LYREFeLqNEUNZGUPs4NOz2oAmpVgk0oQ8oaGnFsTMHhfcmuJiLqyLg7gcxfJibpDB7oKi4qvS3QzwbLFFj0YRVhcLPlm8/2sjushfIiGPUgXexNkcxU/xWkgAe+kYoL2uCRIGhGhp/HRx16kI/v7+5v+LHGAe/vysFuAupUSo6Q+iFaC4kCtMbSaEOuEE/oVceP+U4kMbPu5J+YoFR8Gg5FKmtcpj6melFAEBDordUEPoIl9NdArUXjo6FaW4yBfYzolhN2vOwbyjpSeLAU3shzd0TpGPycamwJtILlDMP6K5GY+9AqEvLPZj6ufnV/mKnABd5K8C3jwOF3Iv3xgzWsmlcLU6tQEPj8tf1pVm63rt77IFvrJcGyzsTqXc4HnFaeUrXFvP8Z4rKQWKN47D2CtIpVk8bWLx/q+N1EmRTy+AeZdChwa6a/Hhy6OxN0yPknLzu9YWFh+H2BztXL6/AOnFok2mF2jROp9pIwS511QLdezFy+tyKNTk/BpsSBlo8eqFJSftE/pWvsL0FsKtTugKLEBKsX4u3v+1kTol8pmFMOeQIrcIvrsUB97bRUjKUwR7lC32we4wOLRskW/vL9zT1Pl9Zhcf1+JylJbeb/2lvskohFc6CIG60Ds1QUFBKKUQES7kClLBhCHVxW3hmplk2yUXz+xC4UwWJOYJIR6KSB/B65Li9KsvTr3W40Lu5fu8NseShzom8nlF8EWJxAPZRYovYsHHRRBRZYYOjvSBR1sI/z5hfRO18xPmtNXCAzs7P8Xbl791wwXFnLZCYNU3SecKCAwMNP9/LB2+PKcYG6H5czsbo8Nh9KUMbOdzhG9ihd0p0KOecEsjCHPyQbFR4ItzWjgGE8X7vzZSZ0Q+sxCe/qv0qz6rSPHjReG5tqXXEewO9zQVWvha/xA09IBrq0jgvzgHW0sEM7szUuhVr+J1vf634kztDpqnU4LAwEA6derE/v37OZwuPHlAoZTgorSVzy4VEPsbG8KnZ4WcotJ3GhAi1HPSp7tgdy0fw6+Jpbff20UY1qBi9RYJfHNe+/vUAUVhoeZZ06lTJ13knYV8o+2crMVJyIMXDyueb1e22aY67YRfnoO3TyirqJKns7V5gnsihR4VEPtfE7FrFK9Te/D392fMmDHs37/fvO2J/eqSCcfIreH2C/2L7bQn2s/PaUHDSnJ9fWFuO6Gpj6Na71iifGFue2HOIWwKvY+L5idf1j1ekkKBr2PhiQMGixAGSinGjh1r4d1UG6kzIm8PWUWKLQnC8zXdkEt8GQv/tiHwAPvTtGBOQxsIPWqgbTrORWRkpNkuLyKoS4uhHj9gwKCM3FKBEf3c9lrQsMQ8YUuCdl9cX1/wd4WZbYRIJ1/709wH5rcXXj2mrdj9LVHh6yoMqK/lwH2hIgJv1BZWPXHg8pLh4kLfpEmlsoE7FVeVyDsTa2PhrePKZrjg4iyPVoR72j+af7q1MOOg7TDEOrWXBg0u2x+KizzAP/cbuLGhsUKJXjShh+cPKS7kCbPbChFObi8vTlMfeLebcDYb5h+FMM+KibuJfCM8tt8yJkRxkS/e77UVXeRriL8zyhd4gANpymKmvzyuDYYAN/vKvtrR6LS2Vx1LqmpE+WJ75/cWK4vG3vB+t6o5B6VUnRjJX1Wpmht4CAs61O6L2h7mtBUivcs+z0UdjdzaCD2Pay2hYcOGhIeHm002OlWH6UkpPDychg0b1nRzrpg6I/J+rvBOl7LXfHu5UCtcIK+UHvXgzc7C//Uw0tjrsiAs7GDk/3por1t0ga9VBAYGMmLECOCyOUEXe8dSvF+VUgwfPrzWe9ZAHTLXuBk097AlXYxM22f92xXqIbze6cpvij+SYbENP/r+9YUHml9x9VY83Fwq5bp5zaX1G//uImRdCsRxTRB415lv/Oqjc+fONidf+9WXujNaq2ZcFPQLFn5L0vqy+A9n586da6pZDqVO3fLuBhjWEFb3tB7Re7pcFr7KsjsFnj2kOJphLfLHMkAp4f5m9tU1obEQk1N+5Ms2/kLIFYTO6F67F+vpFKN169bm/00i3ydY+Oiamk/7V1vxcIH/XCNM+RN+T7ws8kopi/6uzdQpkQdN6PvWd3y9e1Jg1kHFsVLicsTnKU5kgq2UZ7Zo6gMzWwkil8MMlGRalND3KjAv6dhHy5YtadCgARcuXMDHRehaD/6vR9VlhDqYpsU5Kk5bf6plsj4pD45mWG4LcIMOVRD118MFVvYQ7tql2JssZIqiQYMGtGzZ0vEHqwHqnMhXBXtTYcZBxd/lBF7aHA/LTmG32SbSB2a1EaY0FT6MVubFXA81FwaFClE+lc/Uo1P3iIiI4MYbb2TFihWEuAsfdDfieoXJQ0rjrzR48oD1U+uMVka6B0ErX6okkmliHhzPhF3J8Ppxy1+vdn6aybV9FQi9m4Jl3Y0M3ypkFRm48cYbiYi4wqD0ToIu8naQVkC5Ag+QkKc4nQ32juYBIr21V0NP4f5m2n5NfbgiE41O3aVfv36sXLmSU1nCoTToFSwoBwcsO5QOj+23Pah59W9NeJd2NTIizKGHBWB7Eky3MacGcDhD8fgBWNxZaOfgRaiC1p+nssDV1UDfvn0de4AaRLfkOQmR3ppXTI96usDrlI5p8hVga4KWhNqRHEmHR/eV/9R6MsvxYY+T8jSRLYujGYp/7lMcSS+7XEUxCmyNr3uTrqCLvEMZ1kB4qLnu1qZTdbRv355mzZqhlGJrgpBnBEd6Uj51QNkVD/61vw38nui44wJsTYQ3jpcvSccyFTMOOu7pRQTyjPBrgjaZ3axZM9q3b++w+msaXeTtoHsgPN+2/Lxr9dy1FXg6OlWFh4cHjz32GC4uLuxP0ezXUgHzoI41gnA8A/angouLC4899litzwZVHN0mbwd+bjAuAsDIi0ds/y4ObSD8s0Xtudmm/KG4mHf5/cc9nTe8rI4lAwcOJCAggOTkZNaeFTr4K6eMLV9bKBL48pyAUgQGBjJgwICabpJD0UXeTkxCLxiZW0zobwgRZrQWAtygUS0J8DTlD8VviVAgl5Vh7P/AVcHnvfRMUc5Ou3btGDZsGJ9++ik/XjTyWGvFhVzb0/2tfcG1Cp7XI7wEfztjJNlLgBuEe4k5baUjKTTCsUzr7Qpo4AGbLgoGgwtDhw6lXbt2Dj9+TaKLfAXwc4PxEdCv/mXTjb+r82e7KY4tgQc4cckOO3oHfN1b7A5yplMzDB8+nM8//5wzWUa+PS/MPWKw+k4B1lxrpHug/ULf1AeOZwq5xrKF9tk2woCQSjS8DG4IhaxCYfq+so/tZahYvPtCI/yRAuN3WneCmxJmtzFyJgvc3AwMHz68os12eq4akT+fA3f+YXnxRPnAB90rZmLxc4PWNSCALxxW/FpiouvVjlKhVbx3/6H43YbAF+dklqJIj4ni9LRp04bAwECSkpJ4+gC4uABYhiAGuP1/BvbcYLR7vcWSrsK0vYpNF0sX+kaegm8VKYefK4R5CnG5to/tZRCGNdTCddhLcr5tgRcR8gWeOaitcA0MDKRNmzaVbruzUucnXi/kwoCtinH/U5zItHxtSdA+m7rbeQ2a844oBmxVfHYWq/ZP26vYnWJ/XWeyyxZ4ndpD9+7dufXWWzEYDOZYNqURnaWNZu1lSVdhaANo4SN4Gi7XG+YptPARXusk9HfwKN7EwFBt8NLCRwjzvHxsLxdt240VFPhCI0SXkQ7T1HcuLi7ceuutdO/e/Uqa75TUaZGPz4XbdihOZSlibNj58o3aZ+dyaqBxdhKfC6eyFFk2UrXF5Soe3KPYm1r97dKpecaPH09AQABKKYxGTcVtif2Y/xkq7NP+Tlfh5/6aqDbzFpp5C4s7a9uqImxIcfqHwM/9hTc6ifnYIxpq296qgMADJOZrTzMlMfWT0WhEKYW/vz/jx493SPudjTptrikUOGfHJM6xDLh/t6qw6aY8Pj0LSfkwLapy+887otgUX3aZi3mK3CLdvHI1MnjwYEaOHMnHH39MUVGRVcYoR1CRUbOj6VMftg6ouuObRvGurq7cfPPN3HDDDVV2rJqkTo/k7SVfNO8ER7A2FnpvUfTeonjpqGLJSe3/909VvK7EPGwmWy7J9L2KfakVr1+n9nPHHXcQFBRU5mi+kafYnf+1ruGitPMvTslRfFBQEBMnTqyJ5lULusg7kK/Pw/OHFedytFdagSKzUPv/rROKZZUQentIyFfk2WFz/ayXEOGlj/rrEsOGDWPChAm4uLiUapv/ro9USTCx2kCIB6zrbd0npr5yc3Nj/PjxDBs2rAZaVz3oIu8g1p2H5/7ShN0WmYWKxccVH0ZXc8OK0cBT84Uvi419jQTq7pO1ijFjxtCgQQObo/kGHnLVL5RyUVo/gPUoPiQkhDFjxtRk86ocXeQdRHYRpBeWfTdlFikyCx1/7Pe6GukaaF/ZtdcJ4TZG89/3NfLHICNt/LjqRaG2MWDAAObMmWNOVWc0Ggnx0IRtUz99JXOwB/zQT2jgIdT3wPxDWK9ePWbPnl3nVriWpE5PvDbwhO96Gxm5vXb+ls1rL2QXwQ8Xy1bdIHfszgxU3wO+6y0UlVgfGezOVWu3rQuMGzeOXbt2sWrVKvLz81neHToHgksVxZuvbdRzh/8NMrI3BW7+zYi7uzujR4+usx41xamd6mcnLgraB8C3vcs2WLf1E1b1cD5btb8bvNFJGBJaetve62qscFrDYA8ILfHSBb52ExgYyPjx46lfvz5KKWbsM3IhB4xVvLAtvQAS8ixfOUVl75NdaL1PRkHZ+1wpRhHicmDW/stmmvHjx9eJRN3lUadH8qCJV4cA2DvYSEw2jCo2qm/pK3x+reCqcNpl/H5usLiLkG8Untiv2JKg+HcXI/0u+Sr7u1Jl6d90ahdDhgxh9uzZzJkzh8OJiTy+z8jb3QyEejjetTKjQAvP+9whxYYS6Sv/1crIfaXkOs4pgvej4c0SIYVvDhNebCd4GLRr3pGICPG58Pg+I4czFKGhocyePZvBgwc79kBOSp0XedCEPtgdAt1g/2CjxXZHBVka3QgyCy2Dl5VkajOxOzVgcfwufUtLugoFRm1JuS7sOra47bbbSEtL45VXXuH3xDTePGZkRlsDQW6OFfp/HbQWdxOL/jZgFCM3l8gclVsE757UPM1K8m2c4ts4xc1hwpKujnv6EBGS8+HNY0a2JWruko8//jijR4922DGcnatKKlyUZr82vRwZRc/DBe6KhOfa2DYN3d9MeLKV4OVS+WP4umrt1gVepzRCQ0O56aabGDNmDB4eHqw8DavPCBmFlz1L0gq08LqVJbMQCspx2X39uIEVZyzFfPlp2wJfnAIjZF2Bc0KRXE4+LiKkF8DqGOH/zmix+G+77TZuuukmQkNDK3+QWsZVMZKvLjwMMKUpTGhsfQe4G8DzCgReR8deOnXqxPjx49m4cSPnz5/npcPa4GJkI4WnCwz9TfGf7kKEtzZwqOh8zOP7FZviy98pz3j5x6DACPl2rOXYeFFhOADvdavYr1CRaD8+MdkwdY/i+75CbhF8e154+bBY2OE7depUobprO7rIOxh3g/2eLjo6VcWQIUN4/fXXeeKJJ4iLi+O5g8KcQwrDJf/Ym7ZpF+m3vY10CKiaiffVMYqWPormPsIXsYqTWYqqcPYpEjiQdnm+TUTo8KPCaBSMRk3gGzVqxGuvvXbV2OGLo8uRjk4dZfz48bz++uuEhYWZF0qVXCx183YDB9OuzHxTkxQJ7Eu1FHjAfK7FBX7cuHE12NKawylF3kUJB4fU0qvuKuWvIYJBzzXqdEyYMIHXX3+dRo0alSr0t2w38HeG44/tpi6vsHZT2svRHM2A0TtKF/iIiAhee+01JkyY4PiD1xKcUuQBfHRDUq1C/76clwkTJvDaa68RHh6Oq6srIkJRkebMXl4selu4G7SBWHncGSmMDtfKjY0QJjYpfx8XpblRVoTi52CKxunq6krjxo1ZtGjRVS3w4MQir6Oj4zgmTJjAhx9+yJ133klAQAAAhYWF5lE9gL1av6SrcHMYZT65uSqxipPkqrTtpeGihFsbYXfMeBHMiW2NRiOFhZpbTlBQEHfddRfLly+/Kla0loc+/tLRuUoYOnQo4eHhdOzYkddff524uDizaSM530C+URul2+NP/+8ugkEp1scJBUYwonBVl0MaP91GuLGB8E3s5X0ebC6Ee8Giv7X3RQKFojAguBlgVCN4rZO9Ai/kG7XUfoWF2lOJyf7+5JNPMnToUNq3b1+h/qmr6CKvo3MV0b59e9q3b09YWBjPPPMM586do6ioiEk7jDzRWjGxiSLYQ1CU7wmzuLOwuDPMOKBYe16Y116Y2Pjy5+dtZFx7oDk80FwT8lVn4MUjMC4CXu5g/+hdEBLzNP//xX9r3jMuLi40adKEl19+WR+9l0AXeR2dq5CJEyfStm1bNm7cyDvvvMP58+d55Sh8d97I7PYGugcJHi6aPbe8kf2rnYRXK+F6flck3BVp/8jdiLZq9s9kmH/YyKF0BWiTq9OmTePGG2+kc+fOFW9IHccpRb5IoNVGxd836t4atYWWGxUVyBWt4wR06dKFLl260Lx5c5YsWcLu3bv5Kz2bcduNdA+C2xsrbgrTRvb2iH1VYBL3xDz4Pk5Yc1bYk6K1xdvbm2uuuYZp06Zx++23V3vbagtOKfKgKKzi6Hk6jqVQAPRQlrWRcePG0b9/f7777jsWLlzIyZMn2ZMq7E4RFh0VJjdVTIpUNPQStLEzYIc5R5V42YN22wumOdW4HPj4jPB/p7UYNEppC7patGjBzJkzGTly5FUVoqAyOKnIa6LR7HuFm8LmiD6zEDr+eOnSUWhXhK2/JSlelSrxvuS2suq1dZzS/q/sZ/Yeu2R7Szsf0/uSlFcv8NdQsekm2XKjolBq72IaHY0GDRrwj3/8g9atW/P111/zySefcOHCBZILhDf/FpafEvqFwPAwRZ8QRX13MbvmlSb6BqXFWXK99NfWqtriog5gFC308LZEYUOc8HsCZBReFvewsDAmTpzIrbfeSp8+faqoN+oWSirqJOsA4ka5Evm9vd6bUqqfp1EfOVYbpbnLaSYa+76HMzcZCfumClJj6TickydP8vPPP7N48WKOHj1q9kMX0aKgdgyAHsGK7kHQKVBR390yo5gC/s6AT2KE3clCj3qKCZGKlr6WYw6jaKaYA2nCnynwR5JwMBWyii6bh5RStG3blscee4xBgwbRvHklQrlexdQCkdepK+giX/tISUlh8+bNvPfee+zcuZOcnBwLwXc3QFMfaOkHDTwgyF1R30MLfLYzCTZe0DxhQjzgxjBFz3paLPqkfEjJFy7mwvFMOJ2lBTArLuxeXl707t2bqVOncsMNN1wVCT6qAl3kdaoNXeRrN0eOHGHbtm2sW7eO33//nbS0tEqtmLWFUgqlFAEBAfTr149Ro0bRu3dv2rRp44CWX93oIq9TbegiX3eIiYlh7969vPXWW2zduvWKhF4pxaBBg3jkkUfo0qULTZo0cWBLdZx24lVHR8d5adKkCU2aNGHYsGGcOXOGmJgYkpKSSEtLIz09ncLCQrKzs2nYsCGNGzcmJiaGixcv4u3tjaurK/7+/gQEBBAcHEyTJk2IjIzE09Ozpk+rTqKLvI6OTqXx9PSkdevWtG7duqabolMKus1ER0dHpw5TgyN53bFaR0dHp6qpEZFXCs7cpIv81UYNrIrX0bnqqRHvGh0dHR2d6kG3yevo6OjUYXSR19HR0anD6CKvo6OjU4fRRV5HR0enDqOLvI6Ojk4dRhd5HR0dnTqMLvI6Ojo6dRhd5HV0dHTqMLrI6+jo6NRh/h8NBkwhxgJPfAAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 400x200 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Display the generated pattern\n",
"try:\n",
" pattern_path = os.path.join(dpath_output, 'model_1', f'pattern_{n_iters}.png')\n",
" if os.path.exists(pattern_path):\n",
" print(\"Loading generated pattern...\")\n",
" img_pattern = Image.open(pattern_path)\n",
" \n",
" # Create a figure with subplots\n",
" fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(4, 2))\n",
"\n",
" ax1.imshow(img_pattern)\n",
" ax1.set_title(f'Generated Pattern \\n({n_iters:,} iterations)', fontsize=12)\n",
" ax1.axis('off')\n",
" \n",
" # Try to load and display the ladybird image\n",
" ladybird_path = os.path.join(dpath_output, 'model_1', f'ladybird_{n_iters}.png')\n",
" if os.path.exists(ladybird_path):\n",
" img_ladybird = Image.open(ladybird_path)\n",
" ax2.imshow(img_ladybird)\n",
" ax2.set_title(f'Generated Ladybird \\n({img_ladybird.size[0]}×{img_ladybird.size[1]})', fontsize=12)\n",
" ax2.axis('off')\n",
" else:\n",
" ax2.text(0.5, 0.5, 'Ladybird image\\\\nnot generated', \n",
" ha='center', va='center', transform=ax2.transAxes, fontsize=14)\n",
" ax2.set_title('Ladybird Output', fontsize=12)\n",
" ax2.axis('off')\n",
" \n",
" plt.tight_layout()\n",
" plt.show()\n",
" \n",
" \n",
" else:\n",
" print(f\"Pattern file not found at: {pattern_path}\")\n",
" print(\"Available files:\", os.listdir(os.path.join(dpath_output, 'model_1')) if os.path.exists(os.path.join(dpath_output, 'model_1')) else \"No model_1 directory\")\n",
" \n",
"except Exception as e:\n",
" print(f\"Error loading images: {e}\")\n",
" print(\"This might be normal if the simulation was interrupted or files haven't been generated yet.\")\n",
" "
]
}
],
"metadata": {
"kernelspec": {
"display_name": "ladybirdmnist",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.11"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|