File size: 33,526 Bytes
ce5cd7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Scores"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Introduction:\n",
    "\n",
    "This time you will create the data.\n",
    "\n",
    "***Exercise based on [Chris Albon](http://chrisalbon.com/) work, the credits belong to him.***\n",
    "\n",
    "### Step 1. Import the necessary libraries"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "collapsed": false
   },
   "outputs": [],
   "source": [
    "import pandas as pd\n",
    "import matplotlib.pyplot as plt\n",
    "import numpy as np\n",
    "\n",
    "%matplotlib inline"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Step 2. Create the DataFrame it should look like below."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>first_name</th>\n",
       "      <th>last_name</th>\n",
       "      <th>age</th>\n",
       "      <th>female</th>\n",
       "      <th>preTestScore</th>\n",
       "      <th>postTestScore</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>Jason</td>\n",
       "      <td>Miller</td>\n",
       "      <td>42</td>\n",
       "      <td>0</td>\n",
       "      <td>4</td>\n",
       "      <td>25</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>Molly</td>\n",
       "      <td>Jacobson</td>\n",
       "      <td>52</td>\n",
       "      <td>1</td>\n",
       "      <td>24</td>\n",
       "      <td>94</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>Tina</td>\n",
       "      <td>Ali</td>\n",
       "      <td>36</td>\n",
       "      <td>1</td>\n",
       "      <td>31</td>\n",
       "      <td>57</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>Jake</td>\n",
       "      <td>Milner</td>\n",
       "      <td>24</td>\n",
       "      <td>0</td>\n",
       "      <td>2</td>\n",
       "      <td>62</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>Amy</td>\n",
       "      <td>Cooze</td>\n",
       "      <td>73</td>\n",
       "      <td>1</td>\n",
       "      <td>3</td>\n",
       "      <td>70</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "  first_name last_name  age  female  preTestScore  postTestScore\n",
       "0      Jason    Miller   42       0             4             25\n",
       "1      Molly  Jacobson   52       1            24             94\n",
       "2       Tina       Ali   36       1            31             57\n",
       "3       Jake    Milner   24       0             2             62\n",
       "4        Amy     Cooze   73       1             3             70"
      ]
     },
     "execution_count": 2,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": []
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Step 3. Create a Scatterplot of preTestScore and postTestScore, with the size of each point determined by age\n",
    "#### Hint: Don't forget to place the labels"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<matplotlib.text.Text at 0x114e89d10>"
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEZCAYAAABiu9n+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYVdWZ7/HvD0pKCkUxEbhERXDAOYhjYoIlDjGJU6JN\n1Ggwg51OYiRJJxHTbcDcduzuDJ2+uYlDbJKrUTAaydQqraXGGRHBOMUoOFIqkwJGEN77x16Fh+PZ\nRZ2qOrXrwO/zPPth77Wnd+9TnPestfagiMDMzKySPkUHYGZmvZeThJmZ5XKSMDOzXE4SZmaWy0nC\nzMxyOUmYmVkuJwkzM8vlJGGdJukNSa+nYY2klSVlp3Rhu/dKOrWs7CRJj0haKqlV0i2ShnX9KOqX\npI9I+kvJ9FUl5/8tSatKPp9fd2E/EyX9tqxspKQZkl6TtFjSbEknduV4rHdqKDoA670k9Y2INXnz\nI2LLkmWfAT4fEbfXII7dgcuBYyLibklbAEcDa7txHwKI+rq7VMC6eCPis8BnASRdBLwnIv6+m/ZV\nfl6uB2YAJ5J9DvsCW5av1BUb+vuznuGaxCZG0rOSJkn6s6RFkq6U1C/NO1TS85K+Lell4Oep/BhJ\nD0taIulPkvautOk0lO6rj6TzJP1V0iuSfilpYJrXJOlXKYYlqfawlaR/Aw4Arki/gP8VGAM8HhF3\nA0TE8oi4PiIWpm31lTQ57WeppPslDS45pofSPu6RtH9JfPdKOl/SfcAK4H9JGiRpqqSXJS2Q9N12\nzuVMSf9SMv0bSf+Zs+xFkq6RdH06rvsl7VEyf29Jd6Y450g6umTe8ZIeT+stkHSWpG2AG4CRJbWH\nQXmxlmxrnKQH0n4ekHRgybyvpO2/LukpScdKOhi4BDg67ecZSQ3AaODnEbE6ItZExKzSHwiSjkzb\nX5rW+WQqf4+kaZJelfS0pK+VrDNR0h8l/UzSYmBiKv+qpCdTreU3koZs6DitG0WEh01oAJ4F5gLD\ngK2BPwHfS/MOBVYDFwKbAY1kvxBbgf3JksDpaRubVdjuuLKyc4A7gCFAP7Kkc2WadzYwLZX3AfYD\n+qd59wKnlGxnFPAmcGmKsalsP+cBDwEj0vT7gYHAtsAysl+7fYAJwCvAliX7eRrYGeibhj8AP0zH\nPiRt9/Scc7ld2t4Hgc8DjwONOcteBPwN+Hjazz8BT6Rz2ggsAL6W5h0FvAEMT+u+BuyXxgcB70/j\nHwGeamd/l5WV7ZK29eE0fTzwMjAgHeurwPZp3jBglzQ+EZhRtq0HgFvTuR1WNm+PFP/H0/FtC+yZ\n5s0AfpGOeRTwHPCJkv2sAj5dcl4mAHOA4encXAL8oej/R5vSUHgAHnr4A8++zM8smf4o8Jc0fmj6\nItusZP5PgPPLtvFE2xdN2XbLk8QzwAdKpkcAK9L4l4Db2748yta7Fzi1rOyDwPT0pbyCrPmpMc2b\nDxxRYTtfAFrKymYD40v2M6lk3g7py61vSdkZ7X0pAaekY1/3RZ6z3EXAbSXTfdOX8n7AEcCzZcvf\nAHw7jS9MX5ZblC1TbZK4EPhRWdl9wLHAYGBR+nvoV7ZMpSTxXuDfyBLj22k7bYngYtKPgbJ1tiBr\nmhpSUvZt4IaS/cwpW+ceUhJJ003AGlKi91D7wc1Nm6YXSsYXkP1qbPNqRKwumR4O/GPqnFwsaQnZ\nL+iOdBpvD/yhbV2yL2hSU8mVwJ3A9ZKek3RBW79AJRFxT0T8XUQMBsaRfUF+O81+H1lCKjcsHV+p\nBWn5Ns+XHWt/4NWSY/0h2S/hPDeS/RJ/OCIeame59fYVWVv7yynGYWS/qPPiPB44CXguNXHtT+cM\nB84s+yz3JKsJvELWn/EtoFXSryUNz9tQRLwWEd+MiN1T/M+T1Qwh+9z/WmG1YcDqiGjNOU5Y//No\ni/m/Sv6GXiSrVW7XwWO2LnKS2DRtXzI+HHipZLq8g/J54IKI2CYNgyJii4i4rgP7eYGsdlG67oCI\nWBwRqyJicvqSGQv8HXByTgzriYj7gZuAvVLRi8BOFRZ9CdixrGyHtPy6zZUd6xtl8W4dEQe0E86/\nArOAXSWd0F7clJx3SX3IvjRfSkP5F/K6OCPi/oho+7V/K3BNhdg74nngx2XHt2VE/CztZ0ZEjEtx\nvQb8R0f2kxLMD4FRkvqm/excYdGXgAZJQysdZ86+ngNOrvD393jHDtm6ykli0/QVSe9Lv+i/A1zb\nzrKXA//Q1sEpaYCkj0ka0IH9/Ay4RNJ2ad3Bko5J44dL2j3VHpaTNVm0XcnSCoxs24ikZkmflfTe\nNL0nWXv3vWmRK4ALJY1I80cr6yCfAYyW9MnUuf0Zsi/qP1YKNiLmA/dJulTSFsrsLOmQSstLOors\nF/5ngM8BP5XUXq3jg+ncNZD117xGVru6K9uczk5xHgkcCUxT1sH/KUlbpvOzvOw8De7gZwFwFXCa\npLHp2PqnDub3SNpB2SW1m5P1S63gnavHWoEdUgJA0mbKOuJ3VXZxwtbAF4FZqYY0FTgxHWuf9Lnv\nGRHLgd8DF6d97wp8BfhlOzH/DJgiaee0720kfaKDx2vdoej2Lg89O5C1n58D/BlYTNaZvHmadyjw\nXIV1jiLrqGyr7l8HDChb5hne3SchsuaLp8g6kJ8CzkvzPpOm3yD7hXlpyXpjgb+QtZFfDOxD9uWy\nEHidrLP5fEBp+QZgSjq2ZWTJY9uSY5oNLCFrNz+gZD/38O6+j62By8hqQYvJagmfqHBOtib7lXts\nSdkPgN/knPeLgKvJLh19I53PPUvm702WLJYCjwBHp/Im4OZ0LpamYys9hl+QJZvFwNZl+7usQhwf\nBu5Oy79M1vfxHrKkfHfaxyLgv3mn43wAWQ1mcfpcRPbj4en0eSxMx7VjyX6OJOv0f52s6amtc3pb\nsr6l19LfzNdK1nlX30cq/3uyv9elaZ0fFv3/aFMa2v6T1YSkK4FjgNaI2CeVDSL7khlO1uE4PiKW\npXnnkv0iexuYGBG31Cy4TZSkZ8nuZ7it6Fg2Jer++xbMekStm5uuIutgLDUJmBkRo4DbgHMBlF0z\nPh7YnewKi5+015FpZma1V9MkERF/IqvmlzqerM2S9G9bZ99xwLUR8XZkbcN/AQ7Euls93VFsZgUr\n4rEcgyNdAhcRC5XujCW7DO7ekuVeZP1L46wbRMTIDS9l3S0izi06BrPO6A1XN/mXrZlZL1VETaJV\n0pCIaE3XS7+Syl9k/ev3t2P966fXkeTEYmbWCRFRVV9vT9Qkyh/8NoPsUQeQPWrgppLykyX1S9e7\n70x2mWBFRV8W1pVh8uTJhcfg+IuPY1OMv55j3xji74ya1iQkXQM0A++R9Bwwmey69+mSPkd2S/54\ngIh4TNI04DGym3m+HJ09KjMz6xY1TRIRcWrOrCNylr+I7CYgMzPrBXpDx/Ump7m5uegQusTxF6ue\n46/n2KH+4++Mmt5xXSuS3BJlZlYlSUQv7Lg2M7M65SRhZma5nCTMzCyXk4SZmeVykjAzs1xOEmZm\nlstJwsw67bXXXuNf/uUi9ttvHIcc8lEuu+xy3nzzzaLDsm7k+yTMrFOefvppDj74MFasOIq//W08\nsJKmpp8xYsQS7rnnVgYOHFh0iFamM/dJOEmYWad84ANH8sADH2ft2q+VlAaNjRP48peH8f3vX1xY\nbFaZk4SZ9YgXXniBXXbZl7/97QWgsWzuUwwcOJZlyxYWEZq1w3dcm1mPePXVV+nXbxjvThAAI3nj\njVc6/Whq612cJMysajvttBOrVj0HVKot3M7Ike9HquoHq/VSThJmVrWBAwcyYcIE+vf/EvC3kjmv\nMGDAP3LeeV8vKjTrZk4SZtYpP/rRJRx1VH/699+RzTf/ewYMOI3GxlFMnHgin/nM6UWHZ93EHddm\n1iVPPPEEM2fOpLGxkWOPPZahQ4cWHZLl8NVNZmaWy1c3mZlZtyosSUiaKGleGs5OZYMk3SLpSUk3\nS9qqqPjMzKygJCFpT+DzwP7AaOAYSTsBk4CZETEKuA04t4j4zMwsU1RNYnfg/oh4KyLWAHcCnwSO\nA6amZaYCJxQUn5mZUVySeBT4cGpeagI+BmwPDImIVoCIWAgMLig+MzMDGorYaUQ8IekS4FZgOfAw\nsKbSoj0amJmZraeQJAEQEVcBVwFIugB4HmiVNCQiWiUNBV7JW3/KlCnrxpubm2lubq5pvGZm9aal\npYWWlpYubaOw+yQkbRsRr0raAfhv4GDgn4DFEXGJpHOAQRExqcK6vk/CzKxKdXUznaQ7gW2A1cDX\nI6JF0jbANLL+iQXA+IhYWmFdJwkzsyrVVZLoCicJM7Pq+Y5rMzPrVk4SZmaWy0nCzMxyOUmYmVku\nJwkzM8vlJGFmZrmcJMzMLJeThJmZ5XKSMDOzXE4SZmaWy0nCzMxyOUmYmVkuJwkzM8vlJGFmZrmc\nJMzMLJeThJmZ5XKSMDOzXE4SZmaWy0nCzMxyFZYkJH1d0qOS5kq6WlI/SYMk3SLpSUk3S9qqqPjM\nzKygJCFpGPBVYExE7AM0AKcAk4CZETEKuA04t4j4zMwsU2RzU19ggKQGoD/wInA8MDXNnwqcUFBs\nZmZGQUkiIl4C/h14jiw5LIuImcCQiGhNyywEBhcRn5mZZRqK2KmkrclqDcOBZcB0SZ8GomzR8ul1\npkyZsm68ubmZ5ubmbo/TzKyetbS00NLS0qVtKCL3e7hmJJ0EfCQizkzTpwMHA+OA5oholTQUuD0i\ndq+wfhQRt5lZPZNERKiadYrqk3gOOFjS5pIEHA48BswAzkjLTABuKiY8MzODgmoSAJImAycDq4GH\ngS8AWwLTgO2BBcD4iFhaYV3XJMzMqtSZmkRhSaIrnCTMzKpXT81NZmZWB5wkzMwsl5OEmZnlcpIw\nM7NcThJmZpbLScLMzHI5SZiZWS4nCTMzy+UkYWZmuZwkzMwsl5OEmZnlcpIwM7NcThJmZpbLScLM\nzHI5SZiZWS4nCTMzy+UkYWZmuZwkzMwsV0PRAfR2c+fO5bbbbiMiOPTQQxkzZkzRIZmZ9ZhC3nEt\naVfgOiAAASOB84BfpvLhwHxgfEQsq7B+zd9x/corr3D88Z9m7tzHWbPmBCJEQ8MMdtttR377218x\nbNiwmu7fzKy7deYd14UkifUCkPoALwAHAWcBiyLiUknnAIMiYlKFdWqaJFatWsVeex3E/PlHs3r1\n/+adCtcaGhouZNiwX/H447NoamqqWQxmZt2tM0miw30SkvpJ2rn6sDboCOCvEfE8cDwwNZVPBU6o\nwf426MYbb+TllweyevWFrN8i15e33z6PRYt25Nprry0iNDOzHtWhJCHp48A84NY0PVrSjd0Uw6eA\na9L4kIhoBYiIhcDgbtpHVa644jqWL/8CWUvYu61YcSaXX35dzwZlZlaAjnZcf4+sOeh2gIiY0x21\nCkmbAccB56Si8jak3DalKVOmrBtvbm6mubm5q+Gss2TJ68DQdpYYwrJlr3fb/szMaqGlpYWWlpYu\nbaOjSWJ1RCyV1vtl3R2dAh8FHoqI19J0q6QhEdEqaSjwSt6KpUmiu40evRtz5tzDmjVHVpzfp889\n7L33bjXbv5lZdyj/AX3++edXvY2O9kk8Lmk80EfSCEk/AO6rem/vdgrwq5LpGcAZaXwCcFM37KNq\nEyd+kX79fkrlHLWYzTf/Md/4xj/0dFhmZj2uo0niLGA/YC1wA/AW8LWu7FhSE1mn9Q0lxZcAR0p6\nEjgcuLgr++isvffem29840s0NY0ly1NvA2uA39PUdChnnnkyBx10UBGhmZn1qA1eAiupL3BBpUtR\ni9IT90kATJ8+nfPP/z5PPPEwkhg5ck+++92vc+qpp1LW9GZm1uvV7D4JSfdHRK/56dxTSaLNypUr\niQgGDBjQY/s0M+tutUwSPyG73Gc6sKKtPCJmVBtkd+jpJGFmtjHoTJLo6NVNW5Ilh4+VlAVZR7OZ\nmW2kCn8sR2e4JmFmVr2aPZZD0jBJ0yW9nIbrJPkJd2ZmG7mOXgJ7FXALsGMabk1lZma2Eetox/Wc\niBi9obKe4uYmM7Pq1fIpsIslnax3fApYXH2IZmZWTzpak9gR+AnZQ/6C7JEcZ0XE/BrG1l48rkmY\nmVWpLl861BlOEmZm1avl1U1XStq6ZHqQpMurDdDMzOpLR/skxkTE0raJiFhC9sA/MzPbiHU0SfSR\ntFXbhKRBwGa1CcnMzHqLjj6W44fAvZKuI3un53jg0ppFZWZmvUKHO64l7QOMI7u66faImFvLwDYQ\nS7d0XM+bN4/58+ez6667MmrUqG6IzMys9+r2jmtJm6f3SZCSwu/IXjy0Y2eD7C0mTjyHgw/+KKed\n9n/Zd9+xXHjhvxUdkplZr9NuTULSHcCZEfGUpJ2AB4HrgN2BuyPin3omzHfF1aWaxM0338yJJ57N\nihX3AYOAl2hqOpC77prBmDFjui1OM7PepBaXwG4TEU+l8QnAtRHxJeAjwHGdiLFXmDNnDm+9dSxZ\nggAYhnQYc+cW1oJmZtYrbShJlP5cH0f2YD8i4i2yZqe6NGzYMBobH+KdQ1iNNJdhw/xgWzOzUhtq\nbvoVsAB4CfhnYERErEiXw94VEft0esfZNq4A9iL7tv4c8BRZc9ZwYD4wPiKWVVi3S81Nq1at4pBD\njuLPf+7Pm2+Opanpj4wduy2///10+vTp6FXBZmb1pdsfyyFpAPB1sleX/jwiZqfyQ4BdIuK/uhDs\nfwF3RMRVkhqAAcB3gEURcamkc4BBETGpwrpdvrrprbfe4oorruDpp+ez1167ccYZZ9C3b98ubdPM\nrDer5Tuuz4qI/9xQWYd3Kg0EHo6IncrKnwAOjYhWSUOBlojYrcL6fnaTmVmVavmo8M9VKPt8NTsq\nMwJ4TdJVkmZLukxSEzAkIloBImIhMLgL+zAzsy5q947r9N6Ik4ERkm4omTUQWFp5rQ7vdwzwlYiY\nJekHwCTW7yinwvQ6U6ZMWTfe3NxMc3NzF8IxM9v4tLS00NLS0qVtbKhPYgSwE3AR2Zd4mzfImotW\nd2qn0hDg3ogYmaY/lLa/E9Bc0tx0e0TsXmF9NzeZmVWpM81N7dYkIuJZ4FlJ9wBvRkSkm+pG0c6v\n/A1JSeB5Sbum+zAOB/6chjOAS8juy7ips/swM7Ou62jH9SxgLLAV2VvpZgNvRMRnOr1j6f1kl8Bu\nBjwDfBboC0wDtie79HZ86SPKS9Z1TcLMrEq1vLppdkSMkXQWsEVEXCxpTkSM7mywXeEkYWZWvVpe\n3dRH0gHAp8ke8gfZr34zMwOef/55Tjnlc2y99f9i6NCd+e53v8eqVauKDqvLOlqTGAd8k+yhfhdI\nGgl8MyK+XOsAc+JxTcLMeo2lS5cyatS+LFp0KmvWnAksoX//8xg3bgC/+911RYe3Ts2am0p20Jie\n21QoJwkz603+/d9/wHnnPcibb15TUvoW/fuPYNasmeyxxx6FxVaqZs1Nkg6UNA/4S5p+v6QfdyJG\nM7ONzn33PcKbbx5RVtpIQ8OH6/7p0h3tk/gP4BhgEUBEPAIcVqugzMzqyR577ERj46yy0rWsXTub\nkSNHFhJTd+lwx3VELCgrW9PdwZiZ1aMvfvHz9Ov3a+DnwGpgMf36ncVuuw3jgAMOKDi6ruloknhe\n0oFASOor6Wtkj/U2M9vkDRs2jDvu+G/GjPkFDQ0D2Wyz7TnuuBXceutvkKrqAuh1Onp102CyJqe2\nRreZwFkR8VoNY2svHndcm1mvtHz5cjbbbDMaGxuLDuVdavE+iU4/DryWnCTMzKpXi6ubKj0i3MzM\nNhF+V6eZmeXaUHPT28DKSrOAiIiBtQqsPW5uMjOrXrc/KhyYFxH7diEmMzOrY25uMjOzXBtKEtN7\nJAozM+uV2k0SEXEhgKRdJf2PpEfT9D6S/rknAjQzs+J0tLnpcuBcsvvNiYi5wMm1CsrMzHqHjiaJ\npoh4oKzs7e4OxszMepeOJonXJO0EBICkk4CXaxaVmZn1Ch19dtNI4DLgg8AS4Fng0xWeDNvxHUvz\ngWXAWmB1RBwoaRBwHTAcmA+Mj4hlFdb1fRJmZlWqyZvpJPUBToqIaZIGkD02/I0uxNm23WeA/SJi\nSUnZJcCiiLhU0jnAoIiYVGFdJwkzsyrV7PWlkmZFxP6djqzyNp8F9o+IRSVlTwCHRkSrpKFAS0Ts\nVmFdJwkzsyrV7PWlwExJ35S0vaRt2oZOxFgqgFslPSjpC6lsSES0AkTEQmBwF/dhZmZdsKHHcrT5\nFNmX+pfLyrvyXr5DIuJlSdsCt0h6Mu2jVG51YcqUKevGm5ubaW5u7kIoZmYbn5aWFlpaWrq0jY42\nN/UnSxAfIvvivgv4aUS82aW9v7P9ycBy4AtAc0lz0+0RsXuF5d3cZGZWpVo2N00Fdid7O92PgT1S\nWadIapK0RRofABwFzANmAGekxSYAN3V2H2Zm1nUdrUk8FhF7bKiswzuVRgA3ktVKGoCrI+Li1M8x\nDdgeWEB2CezSCuu7JmFmVqVaPCq8zWxJB0fEfWlHBwGzqg2wTUQ8C4yuUL6Yd96jbWZmBetoTeJx\nYBTwXCraAXiS7NEcERH71CzCyvG4JmFmVqVa1iSO7kQ8ZmZW5zpUk+htXJMwM6teLa9uMjOzTZCT\nhJmZ5XKSMDOzXE4SZmaWy0nCzMxyOUmYmVkuJwkzM8vlJGFmZrmcJMzMLJeThJmZ5XKSMDOzXE4S\nZmaWy0nCzMxyOUmYmVkuJwkzM8vlJGFmZrkKTRKS+kiaLWlGmh4k6RZJT0q6WdJWRcZnZrapK7om\nMRF4rGR6EjAzIkYBtwHnFhKVmZkBBSYJSdsBHwOuKCk+HpiaxqcCJ/R0XGZm9o4iaxI/AL4FlL6s\nekhEtAJExEJgcBGBmZlZpqGInUr6ONAaEXMkNbezaOTNmDJlyrrx5uZmmpvb24yZ2aanpaWFlpaW\nLm1DEbnfwzUj6ULgNOBtoD+wJXAjsD/QHBGtkoYCt0fE7hXWjyLiNjOrZ5KICFWzTiHNTRHxnYjY\nISJGAicDt0XE6cBvgTPSYhOAm4qIz8zMMkVf3VTuYuBISU8Ch6dpMzMrSCHNTV3l5iYzs+rVTXOT\nmZnVBycJMzPL5SRhZma5nCTMzCyXk4SZmeVykjAzs1xOEmZmlstJwszMcjlJmJlZLicJMzPL5SRh\nZma5nCTMzCyXk4SZmeVykjAzs1xOEmZmlstJwszMcjlJmJlZLicJMzPLVUiSkNQo6X5JD0uaJ2ly\nKh8k6RZJT0q6WdJWRcRnZmaZwt5xLakpIlZK6gvcDZwNnAgsiohLJZ0DDIqISRXW9TuuzcyqVFfv\nuI6IlWm0EWgAAjgemJrKpwInFBCamZklhSUJSX0kPQwsBG6NiAeBIRHRChARC4HBRcVnZmbF1iTW\nRsS+wHbAgZL2JKtNrLdYz0dmZmZtGooOICJel9QCHA20ShoSEa2ShgKv5K03ZcqUdePNzc00NzfX\nOFIzs/rS0tJCS0tLl7ZRSMe1pPcCqyNimaT+wM3AxcChwOKIuMQd12Zm3aszHddFJYm9yTqm+6Th\nuoi4QNI2wDRge2ABMD4illZY30nCzKxKdZMkuspJwsysenV1CayZmfV+ThJmZpbLScLMzHI5SZiZ\nWS4nCTMzy+UkYWZmuZwkusGdd97JYYcdy3vfO5zRo8cybdq0okMyM+sWvk+ii2688TecdtqXWLny\nQqAZmMuAAefyrW+dxuTJ3yk4OjOzd/hmuh62du1atttuN15++TKyBNHmRTbffC9eeukZBg0aVFB0\nZmbr8810PWzBggUsW7aS7JFTpd5Hv34HcddddxURlplZt3GS6IKmpibWrFkBrKowdwlbbLFFT4dk\nZtatnCS6YMiQIYwevR99+vyfsjm30tDwImPHji0kLjOz7uI+iS56+umn+eAHD2flyjGsWHEYm2/+\nCH37zuD3v7+eQw8tb4YyMyuOO64Lsnz5cq6++hpmzZrHLrsMZ8KE0xkyZEjRYZmZrcdJwszMcvnq\nJjMz61ZOEmZmlstJwszMcjlJmJlZrkKShKTtJN0m6c+S5kk6O5UPknSLpCcl3SxpqyLiMzOzTFE1\nibeBb0TEnsAHgK9I2g2YBMyMiFHAbcC5BcVXUy0tLUWH0CWOv1j1HH89xw71H39nFJIkImJhRMxJ\n48uBx4HtgOOBqWmxqcAJRcRXa/X+h+b4i1XP8ddz7FD/8XdG4X0SknYERgP3AUMiohWyRAIMLi4y\nMzMrNElI2gK4HpiYahTld8j5jjkzswIVdse1pAbgd8AfI+JHqexxoDkiWiUNBW6PiN0rrOvkYWbW\nCdXecd1Qq0A64OfAY20JIpkBnAFcAkwAbqq0YrUHaWZmnVNITULSIcCdwDyyJqUAvgM8AEwDtgcW\nAOMjYmmPB2hmZkCdPuDPzMx6RuFXN1VL0tGSnpD0lKRzio6nWpLmS3pE0sOSHig6ng2RdKWkVklz\nS8rq5qbHnPgnS3pB0uw0HF1kjHnq/abTCvF/NZXXy/lvlHR/+r86T9LkVN7rz387sVd97uuqJiGp\nD/AUcDjwEvAgcHJEPFFoYFWQ9AywX0QsKTqWjpD0IWA58IuI2CeVXQIsiohLU6IeFBGTiowzT078\nk4E3IuL7hQa3AenijaERMSddCfgQ2b1En6UOzn878X+KOjj/AJKaImKlpL7A3cDZwInUx/mvFPtH\nqfLc11tN4kDgLxGxICJWA9eS/dHVE1FH5z0i/gSUJ7S6uekxJ37IPoderd5vOs2J/31pdq8//wAR\nsTKNNpJd6BPUz/mvFDtUee7r5ssqeR/wfMn0C7zzR1cvArhV0oOSziw6mE4avBHc9HiWpDmSruiN\nzQXl6v2m05L4709FdXH+JfWR9DCwELg1Ih6kTs5/TuxQ5bmvtySxMTgkIsYAHyN7ZtWHig6oG9RP\nm2XmJ8DIiBhN9h+oVzd71PtNpxXir5vzHxFrI2JfshrcgZL2pE7Of4XY96AT577eksSLwA4l09ul\nsroRES+nf18FbiRrQqs3rZKGwLp251cKjqcqEfFqyftvLwcOKDKe9qSbTq8HfhkRbfcN1c35rxR/\nPZ3/NhG1suXQAAAEGklEQVTxOtACHE0dnX9YP/bOnPt6SxIPAjtLGi6pH3Ay2Q14dUFSU/pVhaQB\nwFHAo8VG1SFi/XbMtpseoZ2bHnuR9eJP/7HbfJLe/Rm0d9Mp9P7z/6746+X8S3pvW3OMpP7AkWT9\nKr3+/OfE/kRnzn1dXd0E2SWwwI/IEtyVEXFxwSF1mKQRZLWHIOtIurq3xy/pGqAZeA/QCkwGfgNM\npw5uesyJ/zCy9vG1wHzgi21tzL2J6vym03biP5X6OP97k3VM90nDdRFxgaRt6OXnv53Yf0GV577u\nkoSZmfWcemtuMjOzHuQkYWZmuZwkzMwsl5OEmZnlcpIwM7NcThJmZpbLScKshKTvpMcrPyzp7ZJH\nKp9V5XZGSPpUyfQASb+SNDc9uvkOSZt3/xGYdS/fJ2GbJEl9ImLtBpZ5PSIGdnL7RwBfiYhPpOl/\nBrZoe6S0pF2Bv0bEms5sP22jb1fWN+sI1yRso5Me2/K4pP8n6TFJ0yT1l/SspIslzQJOkjRS0h/T\nE3nvSF/c7W13sKRfS3pA0n2SDkzl49JTNWdLmiWpCbgIaC6phQwlewcKABHxVNsXvKTP6p0XUV2Z\nynZU9sKeOcpebDMslf9S0k8k3Q9ckGooV6V4HpL08VqcU9uERYQHDxvVAAwne+zAwWn6CuAfgWeA\nb5YsNxPYKY0fCPxP2XZeL5u+FjiwZB/z0vgfgAPSeBPZc6IOB24oWXcM2YPg/gR8r2S/+wCPAVul\n6a1LtnlyGj8TmJ7Gf1m23UvIHgsBsDXwJNCv6M/Aw8YzNHRTrjHrbZ6LiPvS+NVkb+UCuA7WPWDx\ng8B0SW0P/9tsA9s8Ati1ZPmtJDWSvfXrPyRdDfw6sreBrbdiRMxOz+46iuxhaw+mmsg4sufqLEvL\ntT0D6CCgrVbwC7LE0mZ6yfhRwNGSzk3T/cielPz0Bo7FrEOcJGxT0db5tiL92wdYEtm7PapxQLy7\nH+ACSTcBxwD3SRpXMYCIFWQPeLwxJZqPprgqvSmsvc7CFWXTJ0TEsx2K3qxK7pOwjdUOkg5K46cC\nd5XOjIg3gGclndRWJmmfsm2Uf3nPBL5asvz7078jI+LRyJ7oOxsYBbwBDCxZ9pCSRzc3AruTPUH0\ndmC8pEFp3qC0yn3A+DR+OtnTVCu5mXdqSUganbOcWac4SdjG6kmyN/89BmwF/LTCMp8GPp86hx8F\njiubX/5r/izgkNTJ/CjwhVT+zXRZ6xyy5HAL8DDQN3VGnwXsAtwl6RFgFnB3RMyIiLnApcCdkman\n8bZ9fTFt8++Ar+fE9D1gQNultWSPQjfrNr4E1jY6koYDv4uIvYuOxazeuSZhGyv/+jHrBq5JmJlZ\nLtckzMwsl5OEmZnlcpIwM7NcThJmZpbLScLMzHI5SZiZWa7/D51wnqSb8iEXAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x114fcd090>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": []
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Step 4. Create a Scatterplot of preTestScore and postTestScore.\n",
    "### This time the size should be 4.5 times the postTestScore and the color determined by sex"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<matplotlib.text.Text at 0x11608c250>"
      ]
     },
     "execution_count": 10,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEZCAYAAABiu9n+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYHWWZ/vHv3enuLJ2FDpDEmI0tGCAQVllEGkTEEdlF\nFBEQFRfWGWWZGSdhfoMsM6Kicrkhxh1QkIAiIYZGWQNZAEkIIZCAJGlImiydjST9/P6oajg0Xb2c\nPienD7k/13Wu1PrWU3U69Zy33qq3FBGYmZm1paLUAZiZWc/lJGFmZpmcJMzMLJOThJmZZXKSMDOz\nTE4SZmaWyUnCzMwyOUlY3iStkbQ6/WyRtC5n2qe6Ue4jkj7datqpkp6UtFJSg6SpkoZ3fy/Kl6SP\nSFqQM35zzvHfKOmNnO/nD93YzkWS7mo1bWdJUyQtl9QoaZakU7qzP9YzVZY6AOu5JPWKiC1Z8yNi\nQM6yLwDnRsT9RYhjHPAT4LiIeEhSf+BYoLmA2xBAlNfTpQLejDcizgHOAZB0NbB9RHyxQNtqfVx+\nD0wBTiH5HvYFBrReqTs6+vuzrcM1iW2MpBclXS7pGUkrJN0kqTqdd4SklyVdKmkp8LN0+nGSZkt6\nXdKDksa3VXT6yd1WhaRvSFoo6VVJv5Q0MJ3XT9Jv0xheT2sPgyT9H3Ag8NP0F/D/AvsB8yLiIYCI\naIqI30fEsrSsXpImpttZKekxSUNy9mlmuo2HJR2QE98jkq6U9CiwFniPpFpJkyUtlbRY0n+1cyyn\nSfqfnPE/Svp+xrJXS/qNpN+n+/WYpD1y5o+X9Lc0zjmSjs2Zd4Kkeel6iyWdL2kwcDuwc07toTYr\n1pyyjpI0I93ODEkH5cz7alr+aknPSfq4pIOBa4Fj0+28IKkSmAD8LCI2RcSWiHgi9weCpA+n5a9M\n1zk5nb69pFslvSbpeUkX56xzkaR7JP1IUiNwUTr9Aknz01rLHyUN7Wg/rYAiwp9t6AO8CDwFDAe2\nAx4E/juddwSwCfgmUAX0JvmF2AAcQJIEzkzLqGqj3KNaTbsMeAAYClSTJJ2b0nkXArem0yuA/YG+\n6bxHgE/llLM7sB64Lo2xX6vtfAOYCeyUju8DDAR2BFaR/NqtAM4CXgUG5GzneWBXoFf6+TPwnXTf\nh6blnplxLEek5R0KnAvMA3pnLHs1sAH4WLqd/wCeTY9pb2AxcHE67xhgDTA6XXc5sH86XAvskw5/\nBHiune39uNW03dKyDk/HTwCWAjXpvr4GjEznDQd2S4cvAqa0KmsGcF96bIe3mrdHGv/H0v3bEdgz\nnTcF+EW6z7sDLwEn5WznDeCMnONyFjAHGJ0em2uBP5f6/9G29Cl5AP5s5S88OZl/IWf8o8CCdPiI\n9ERWlTP/RuDKVmU823KiaVVu6yTxAnBIzvhOwNp0+MvA/S0nj1brPQJ8utW0Q4Hb0pPyWpLLT73T\neYuAo9so5/NAfatps4DTcrZzec68UenJrVfOtLPbOykBn0r3/c0TecZyVwPTc8Z7pSfl/YGjgRdb\nLX87cGk6vCw9WfZvtUxXk8Q3ge+2mvYo8HFgCLAi/XuobrVMW0liB+D/SBLj5rSclkRwDemPgVbr\n9Ce5NDU0Z9qlwO0525nTap2HSZNIOt4P2EKa6P0p/seXm7ZN/8wZXkzyq7HFaxGxKWd8NPBvaeNk\no6TXSX5Bd6bReCTw55Z1SU7QpJdKbgL+Bvxe0kuSrmppF2hLRDwcEZ+IiCHAUSQnyEvT2e8lSUit\nDU/3L9fidPkWL7fa177Aazn7+h2SX8JZ7iD5JT47Ima2s9zbthXJtfalaYzDSX5RZ8V5AnAq8FJ6\niesA8jMa+EKr73JPkprAqyTtGV8HGiT9QdLorIIiYnlEfC0ixqXxv0xSM4Tke1/YxmrDgU0R0ZCx\nn/D276Ml5p/n/A29QlKrHNHJfbZucpLYNo3MGR4NLMkZb91A+TJwVUQMTj+1EdE/Im7pxHb+SVK7\nyF23JiIaI+KNiJiYnmQ+CHwCOD0jhreJiMeAO4G90kmvALu0segSYEyraaPS5d8srtW+rmkV73YR\ncWA74fwv8AQwVtKJ7cVNznGXVEFy0lySflqfkN+MMyIei4iWX/v3Ab9pI/bOeBn4Xqv9GxARP0q3\nMyUijkrjWg7c0JntpAnmO8Duknql29m1jUWXAJWShrW1nxnbegk4vY2/v3md22XrLieJbdNXJb03\n/UX/78Dv2ln2J8CXWho4JdVI+hdJNZ3Yzo+AayWNSNcdIum4dPhDksaltYcmkksWLXeyNAA7txQi\nqU7SOZJ2SMf3JLne/Ui6yE+Bb0raKZ0/QUkD+RRggqST08btz5KcqO9pK9iIWAQ8Kuk6Sf2V2FXS\nYW0tL+kYkl/4nwU+B/xQUnu1jkPTY1dJ0l6znKR29fekOF2Yxvlh4MPArUoa+D8paUB6fJpaHach\nnfwuAG4GPiPpg+m+9U0bmLeXNErJLbV9SNql1vLW3WMNwKg0ASCpSklD/FglNydsB5wHPJHWkCYD\np6T7WpF+73tGRBPwJ+CadNtjga8Cv2wn5h8BkyTtmm57sKSTOrm/Vgilvt7lz9b9kFw/vwx4Bmgk\naUzuk847AnipjXWOIWmobKnu3wLUtFrmBd7ZJiGSyxfPkTQgPwd8I5332XR8DckvzOty1vsgsIDk\nGvk1wN4kJ5dlwGqSxuYrAaXLVwKT0n1bRZI8dszZp1nA6yTXzQ/M2c7DvLPtYzvgxyS1oEaSWsJJ\nbRyT7Uh+5X48Z9q3gT9mHPergV+T3Dq6Jj2ee+bMH0+SLFYCTwLHptP7Afemx2Jlum+5+/ALkmTT\nCGzXans/biOOw4GH0uWXkrR9bE+SlB9Kt7EC+AtvNZzXkNRgGtPvRSQ/Hp5Pv49l6X6NydnOh0ka\n/VeTXHpqaZzekaRtaXn6N3NxzjrvaPtIp3+R5O91ZbrOd0r9/2hb+rT8JysKSTcBxwENEbF3Oq2W\n5CQzmqTB8bSIWJXOu4LkF9lm4KKImFq04LZRkl4keZ5heqlj2Zao8M8tmG0Vxb7cdDNJA2Ouy4Fp\nEbE7MB24AkDJPeOnAeNI7rC4sb2GTDMzK76iJomIeJCkmp/rBJJrlqT/tjT2HQ/8LiI2R3JteAFw\nEFZo5fREsZmVWCm65RgS6S1wEbFM6ZOxJLfBPZKz3Cu8/dY4K4CI2LnjpazQIuKKUsdglo+ecHeT\nf9mamfVQpahJNEgaGhEN6f3Sr6bTX+Ht9++P4O33T79JkhOLmVkeIqJLbb1boybRuuO3KSRdHUDS\n1cCdOdNPl1Sd3u++K8ltgm0q9W1h3flMnDix5DE4/tLHsS3GX86xvxviz0dRaxKSfgPUAdtLegmY\nSHLf+22SPkfySP5pABExV9KtwFySh3m+EvnulZmZFURRk0REfDpj1tEZy19N8hCQmZn1AD2h4Xqb\nU1dXV+oQusXxl1Y5x1/OsUP5x5+Poj5xXSySfCXKrMSam5tZuHAhs2bNYtmyZUhizJgx7L///gwf\nPhw/C9vzSCK62HDt15eaWZc0NjZy4w9+wI033MDm9esZXlFBvzfeAGB17968/MYbjHjve7no0ks5\n66yz6N27d4kjtu5wTcLMOu2OO+7gi+ecw5iNG9lvw4Y2XyrSTNIL38yaGpqHDOHXt93G/vvvv5Uj\ntbbkU5NwkjCzTpn4jW/ww+uv52Pr1r3j5RdtCeBp4K/9+nHTL37BKaecUuQIrSNOEmZWFN/99re5\n7j//k0+vW0f/Lq67FLilb19u/9OfOPLII4sRnnWSk4SZFdy8efM4eP/9OWf9emrzLGMBcP+OOzLv\n+ecZOHBgIcOzLsgnSfgWWDNr11c+/3k+sGFD3gkCYDfgvWvW8D9XXlmosGwrcU3CzDLNnz+fg/fd\nl/PXr+/2rZArgF/178+S116jT58+hQjPusg1CTMrqN/99rfsuWlTQe6V3x7YsaKCv/71rwUozbYW\nJwkzy/RwfT3DN28uWHnD1q7l8RmZ/XZaD+QkYWaZ5s+fz5COF+u07bds4amZMwtYohWbk4SZZdpY\noEtNLSqBjRs2FLBEKzYnCTPLNGjAANYXsLz1QO3gwQUs0YrNScLMMk3Ybz+WFrC85b17c+BhhxWw\nRCs2Jwkzy3TkMcfwcr9+BSmrGVhcVcWhhx5akPJs6/BzEmaWadWqVYwYNozzNmxgQDfLWgg8sfPO\nPPP88+5GvET8nISZFdSgQYM4++yzeaCbD79tAR6oqeHyiROdIMqMaxJm1q6mpibG7borhzY0sEee\nZdxfWUnlIYdw3wMPOEmUUFnVJCRdJOnp9HNhOq1W0lRJ8yXdK2lQqeIzs0T//v25/a67mFpTw3Nd\nXDeAR3v14oUdduBXt97qBFGGSpIkJO0JnAscAEwAjpO0C3A5MC0idgemA1eUIj4ze7sDDzyQP993\nH1MHDeKv1dVs6sQ6TcAd/frx4qhRPDRjBsOGDSt2mFYEpapJjAMei4iNEbEF+BtwMnA8MDldZjJw\nYoniM7NWDjnkEOYuWMCOH/kIP+jbl/rKSpYAuZ12bAQWAff06cMP+/ThmPPOY87cuYwcObIkMVv3\nlaRNQtL7gD8Ch5D8XU0DngA+ExGDc5ZrzB3Pme42CbMSmjdvHj+44Qbuu+ceFr/yCjXV1UQE6zdv\nZvddduGk007jvC9/2bWHHqasXjok6RzgqyS10meAN4CzWiWJFRGxfRvrOkmY9RDr169n+fLlVFRU\nMGTIEKqqqkodkmXIJ0kUsluWLomIm4GbASRdBbwMNEgaGhENkoYBr2atP2nSpDeH6+rqqKurK2q8\nZta2vn37+nJSD1VfX099fX23yihlTWLHiHhN0ijgL8DBwH8AjRFxraTLgNqIuLyNdV2TMDPronK7\n3PQ3YDCwCbgkIuolDQZuBUYCi4HTImJlG+s6SZiZdVFZJYnucJIwM+u6snqYzszMej4nCTMzy+Qk\nYWZmmZwkzMwsk5OEmZllcpIwM7NMThJmZpbJScLMzDI5SZiZWSYnCTMzy+QkYWZmmZwkzMwsk5OE\nmZllcpIwM7NMThJmZpbJScLMzDI5SZiZWSYnCTMzy+QkYWZmmUqWJCRdIukfkp6S9GtJ1ZJqJU2V\nNF/SvZIGlSo+MzMrUZKQNBy4ANgvIvYGKoFPAZcD0yJid2A6cEUp4jMzs0QpLzf1AmokVQJ9gVeA\nE4DJ6fzJwIklis3MzChRkoiIJcC3gJdIksOqiJgGDI2IhnSZZcCQUsRnZmaJylJsVNJ2JLWG0cAq\n4DZJZwDRatHW42+aNGnSm8N1dXXU1dUVPE4zs3JWX19PfX19t8pQROZ5uGgknQp8JCK+kI6fCRwM\nHAXURUSDpGHA/RExro31oxRxm5mVM0lEhLqyTqnaJF4CDpbUR5KADwFzgSnA2ekyZwF3liY8MzOD\nEtUkACRNBE4HNgGzgc8DA4BbgZHAYuC0iFjZxrquSZiZdVE+NYmSJYnucJIwM+u6crrcZGZmZcBJ\nwszMMjlJmJlZJicJMzPL5CRhZmaZnCTMzCyTk4SZmWVykjAzs0xOEmZmlslJwszMMjlJmJlZJicJ\nMzPL5CRhZmaZSvJmunISEaxduxaAmpoaktdfmJltG1yTaENzczPTpk3juGOOoU91NTvU1rJDbS29\nq6r4yJFHcs8999Dc3FzqMM3Mis7vk2jlrrvu4sIvfYktq1ezT1MTewF90nkbgWeAJ/v3p7mmhm99\n73t84hOfKEocZmaF5pcOddMPvv99/uvSSzlu/Xp2ArKOZJC8f3VK375c9l//xdcvv7zgsZiZFZqT\nRDf89re/5YJzz+Uz69dT28l1VgG/6tePq2+4gXPPPbeg8ZiZFZqTRJ5WrlzJqOHDOWP9eoZ1cd3l\nwM/79GHh4sUMGTKkYDGZmRVa2by+VNJYSbMlzUr/XSXpQkm1kqZKmi/pXkmDtkY8kydPZlepywkC\nYAdgHPDTn/ykwFGZmZVeyWsSkiqAfwLvB84HVkTEdZIuA2oj4h0X/AtZk4gIdhk5krpXXmF0nmUs\nAe7eYQdeWraMXr16FSQuM7NCK2pNQlK1pF27HlaHjgYWRsTLwAnA5HT6ZODEImzvbWbOnMnGVasY\n1Y0yhgNVGzfy4IMPFiosM7MeoVNJQtLHgKeB+9LxCZLuKFAMnwR+kw4PjYgGgIhYBhT9Iv+SJUvY\nvlevzDuZOmswsHTp0kKEZGbWY3T2iev/JrkcdD9ARMwpRK1CUhVwPHBZOqn1NaTMa0qTJk16c7iu\nro66urq8YtiwYQOVBXgwrldzM+vXr+92OWZmhVJfX099fX23yuhsktgUEStbdUlRiEaBjwIzI2J5\nOt4gaWhENEgaBryatWJukuiOQYMGsaGi++33m3r1YrvttitARGZmhdH6B/SVV17Z5TI6e3acJ+k0\noELSTpK+DTza5a2906eA3+aMTwHOTofPAu4swDbaNX78eF7euJGN3ShjE7DojTfYe++9CxWWmVmP\n0NkkcT6wP9AM3E7SQ8XF3dmwpH4kjda350y+FviwpPnAh4BrurONzhg+fDhHHH44T3ejjLnAfvvt\nxy677FKosMzMeoQOb4GV1Au4qq1bUUul0A/TTZs2jc+ddBKfa2rKqwH7lwMGcP2vfsXxxx9fsJjM\nzAqtaE9cS3osIt6fd2QFVugk0dzczH577cWQBQs4bPPmLq07o1cvnh81irkLFvgZCTPr0YqZJG4E\nhgG3AWtbpkfElK4GWQjF6LtpyZIlHLDPPkxobOT9nbzbaVZFBY8OGsSM2bMZPTrfR/HMzLaOYiaJ\nX7YxOSLis13ZWKEUqxfYRYsW8eG6OmpefZUD1q9nBG33BPsKMLNPH1YMHsx99fXstttuBY/FzKzQ\n3MFfAaxatYqf/PjH3HD99VQ0NTG2qYkakmSxFlgwYAAbe/fmqxdfzJe/8hVqazvbZ6yZWWkVsyYx\nHPgu8IF00t+ASyJiSZejLIBiJokWzc3NTJ06lSl33MFry5YBsMPQoXzs+OP56Ec/6vYHMys7xUwS\n9wK/B36RTjoT+EREfKTLURbA1kgSZmbvNsVMEnMiYkJH07YWJwkzs64rZi+wjZJO11s+CTR2PUQz\nMysnna1JjAFuJOnkL0i65Dg/IhYVMbb24ul2TWL16tW89NJLNDU1MWDAAMaMGUNNTU2BIjQz63l8\nd1MnzJgxg29967tMmXIn1dW1SNU0N29k8+bVnH766VxyyQWMHz++wBGbmZVeMdskbgL+LSJWpuO1\nwHUR8YW8Iu2mfJJEY2Mjxx13Ek899Szr10+guXkfILfmsJrKyjlUV8/hiCMO57bbfu2ahZm9qxQz\nScyOiH1bTZsVEft1McaC6GqSWL58OQcccChLlw7jjTeOpP2mmM306XMPu+0GDz9cT//+/bsZrZlZ\nz1DMhusKSYNyNlQLVHVlQ6WyZcsWjj76X1iy5D288caH6HiXK9mw4TgWLKjgpJNOoxwvx5mZFUpn\nk8R3gEckTZQ0CXgI+FbRoiqgP/3pTyxcuJxNm+q6sJbYsOFYHnlkFjNmzChWaGZmPV6nG64l7Q0c\nRXJ30/0R8VQxA+sglk5fbjrssKN4+OHtgH26vJ2Kioc5+eTtue2233S8sJlZD1fwy02S+qTvkyBN\nCneTvHhoTL5Bbk0LFy5k1qxZwB55rd/cvA933TWFFStWFDYwM7My0dHlpnuBXQAk7QLMIDnj/quk\nq4ocW7fNnj2b6uox5N98UkOfPu9h3rx5BYzKzKx8dJQkBkfEc+nwWcDvIuLLwEeAHv8attWrV7Nl\nS3U3S+nDqlWrChKPmVm56ShJ5F74Pwq4DyAiNpJcdurR+vXrR0VF1940906b/LyEmW2zKjuY/4yk\na4AlwFhgKkB6O2w+r4N+U1rGT4G9SBLO54DngFuA0cAi4LSIyPtn/C677ELEMpJcl0+4m9m4cRk7\n7bRTviGYmZW1jmoSnweaSBLEsRHR8urSvYDru7nt7wJ/johxJLcePQtcDkyLiN2B6cAV3dnAAQcc\nwI47DgJezLOEuUyYsI9fTWpm26x2k0RErI2I/wGejYhZOdMfAvJ+FFnSQODwiLg5LW9zWmM4AZic\nLjYZODHfbaTb4etfv5CamifzWn/AgKe49NKLuxOCmVlZ62y3HO/ogqOtrjo6vVFpH+DHwFySWsQT\nwMXAKxFRm7NcY0QMbmP9Tj8nsWbNGnbaaTdWrPggsGenY6yoeIIRI+axcOGzVFZ2dFXOzKzny+c5\niXbPful7I04HdpJ0e86sgcDKrof4tu3uB3w1Ip6Q9G2SS02tz/yZmWDSpElvDtfV1VFXV9fmcgMG\nDGDatL9w+OFH0tQkOvPMhDSLgQMfY/r0R5wgzKxDCxYs4Ac33MCU22/n9dWr6VVRwXuGDuVzX/oS\nZ59zDrW1tR0XUgT19fXU19d3q4x2axKSdiJ5TuJqkpN4izXA7IjYlNdGpaHAIxGxczr+gbT8XYC6\niGiQNIzkye5xbazf5V5gZ82axdFHf5SNG0ewbt2+wAje3pgdwIvU1Mxh4MCV1Nffx9ixY/PZPTPb\nRixevJhzzjiDWbNmsc/mzeyxaRP9Se7EWQE83a8fzzU3c+ZnPsO3v/99evfuXdJ4i9kLbD9gfURE\n+lDd7sDUiMj7/lJJDwBfiIjnJE0E+qWzGiPiWkmXAbURcXkb6+b1PonGxkZuuulnXH/9DaxdKzZv\nfg+bNlVSVbWZioqX2HHHAXz96xdx5plnMmDAgHx3zcy2Ac888wxHHX44E1av5qAtWzIvyzQBU/v2\npWaPPbjvgQdKekt9MZPEE8AHgUEkb6WbBayJiM/mE2ha5j4kt8BWAS8A5wC9gFuBkcBikltg33FZ\nq7tvpmtubub+++9nwYIFrFmzhoEDB7LXXntx6KGHInXrzl4z2wYsW7aM/caP5+DlyzvVK1wz8Kc+\nfdjxsMP409SpVFR0tm/VwipmkpgVEftJOh/oHxHXSJoTERPyDbY7CvH6UjOzfF18wQU8/qMfccym\nzl9x3wxM7t+fn/7hDxxzzDHFC64dxX6fxIHAGSSd/EHyq9/MbJuybt06fn7zzRzYhQQByd06E5qa\n+M511xUnsCLpbJL4V+BK4O6I+IeknYG/Fy8sM7Oe6ZZbbmGkRD73K40HHnzoIV5++eVCh1U0nbq/\nMyKmA9Ml9U7HXwC+UszAzMx6osceeogRTU15rVsNjK6u5sknn2TkyJGFDaxIOlWTkHSQpKeBBen4\nPpK+V9TIzMx6oJWNjXTnRtbq5mZWr15dsHiKrbOXm24AjiO59ZeIeBI4slhBmZn1VP0HDiSvB8RS\nmyoqyqpn6U43XEfE4lbTthQ6GDOznm78vvuytF+/jhdsw2bgn5s28b73va+wQRVRZ5PEy5IOAkJS\nL0kXk3TrbWa2TfnsZz/LguZm8mmVeBZ43x57sPvuuxc6rKLpbJL4MskdTqOABuDgdJqZ2TaltraW\nk08+mVldfCAugDn9+3PJZZcVJ7Ai6ajvpvMj4vtbMZ5O8cN0ZlZKzz33HAfvvz/HNzXR2VeSPVBV\nxeu77caMOXOoqqoqanxZivEw3ee6EY+Z2bvS2LFj+cOUKdxZU8Nc2umumqQdYnp1NYuGDuUv06eX\nLEHkqzQdiJiZlbkjjzySqfffz4zhw/n5gAHMBN7Imb8KqK+s5Ad9+1L1/vfz+Jw5DB06tETR5q+j\ny02bgXVtzQIiIgYWK7D2+HKTmfUUzc3NTJs2je9cdx331ddTVVHB5uZmeldX85kzzuCCSy5hjz06\nfo/N1lDwDv668/a5YnKSMLOeKCJYs2YNlZWV9O3bt8f1Kl3wN9OZmVnnSWLgwJJcYCmajtokbtsq\nUZiZWY/UbpKIiG8CSBor6a+S/pGO7y3pP7dGgGZmVjqdvbvpJ8AVkHRZEhFPAacXKygzM+sZOpsk\n+kXEjFbT8n6/tZmZlYfOJonlknYhfWZE0qnA0qJFZWZmPUJn33G9M/Bj4FDgdeBF4Iw2eobt/Ial\nRSTPmzQDmyLiIEm1wC3AaGARcFpErGpjXd8Ca2bWRQV/TiIttAI4NSJulVRD0m34mm7E2VLuC8D+\nEfF6zrRrgRURcZ2ky4DaiLi8jXWdJMzMuqgoSSIt+ImIOCDvyNou80XggIhYkTPtWeCIiGiQNAyo\nj4h3dLzuJGFm1nXF6OCvxTRJX5M0UtLglk8eMeYK4D5Jj0v6fDptaEQ0AETEMmBIN7dhZmbd0Nkn\nrj9JclL/SqvpO3dj24dFxFJJOwJTJc3nnZ0pZlYXJk2a9OZwXV0ddXV13QjFzOzdp76+nvr6+m6V\n0dnLTX1JEsQHSE7cfwd+GBHru7X1t8qfCDQBnwfqci433R8R49pY3pebzMy6qJiXmyYD44AbgO8B\ne6TT8iKpn6T+6XANcAzwNDAFODtd7Czgzny3YWZm3dfZmsTciNijo2md3qi0E3AHSa2kEvh1RFyT\ntnPcCowEFpPcAruyjfVdkzAz66Ji9gI7S9LBEfFouqH3A090NcAWEfEiMKGN6Y3A0fmWa2ZmhdXZ\nmsQ8YHfgpXTSKGA+SdccERF7Fy3CtuNxTcLMrIuKWZM4No94zMyszHWqJtHTuCZhZtZ1xby7yczM\ntkFOEmZmlslJwszMMjlJmJlZJicJMzPL5CRhZmaZnCTMzCyTk4SZmWVykjAzs0xOEmZmlslJwszM\nMjlJmJlZJicJMzPL5CRhZmaZnCTMzCyTk4SZmWUqaZKQVCFplqQp6XitpKmS5ku6V9KgUsZnZrat\nK3VN4iJgbs745cC0iNgdmA5cUZKozMwMKGGSkDQC+BfgpzmTTwAmp8OTgRO3dlxmZvaWUtYkvg18\nHch9WfXQiGgAiIhlwJBSBGZmZonKUmxU0seAhoiYI6munUUja8akSZPeHK6rq6Ourr1izMy2PfX1\n9dTX13erDEVknoeLRtI3gc8Am4G+wADgDuAAoC4iGiQNA+6PiHFtrB+liNvMrJxJIiLUlXVKcrkp\nIv49IkZFxM7A6cD0iDgTuAs4O13sLODOUsRnZmaJUt/d1No1wIclzQc+lI6bmVmJlORyU3f5cpOZ\nWdeVzeUR2R4DAAAKeElEQVQmMzMrD04SZmaWyUnCzMwyOUmYmVkmJwkzM8vkJGFmZpmcJMzMLJOT\nhJmZZXKSMDOzTE4SZmaWyUnCzMwyOUmYmVkmJwkzM8vkJGFmZpmcJMzMLJOThJmZZXKSMDOzTE4S\nZmaWqSRJQlJvSY9Jmi3paUkT0+m1kqZKmi/pXkmDShGfmZklSvaOa0n9ImKdpF7AQ8CFwCnAioi4\nTtJlQG1EXN7Gun7HtZlZF5XVO64jYl062BuoBAI4AZicTp8MnFiC0MzMLFWyJCGpQtJsYBlwX0Q8\nDgyNiAaAiFgGDClVfGZmVtqaRHNE7AuMAA6StCdJbeJti239yMzMrEVlqQOIiNWS6oFjgQZJQyOi\nQdIw4NWs9SZNmvTmcF1dHXV1dUWO1MysvNTX11NfX9+tMkrScC1pB2BTRKyS1Be4F7gGOAJojIhr\n3XBtZlZY+TRclypJjCdpmK5IP7dExFWSBgO3AiOBxcBpEbGyjfWdJMzMuqhskkR3OUmYmXVdWd0C\na2ZmPZ+ThJmZZXKSMDOzTE4SZmaWyUmim5YsWcI3vjGR4cPH0Ldvf7bf/j2cd95XmDdvXqlDMzPr\nNt/d1A1/+ctfOPXUT7F58/vYuHFvoBZYS2XlP6iqms011/w/LrzwglKHaWYG+BbYrerJJ5/k0EPr\nWLfuZGBUG0u8Tr9+v2Hy5Bs59dRTt3Z4Zmbv4CSxFR1//CncffdaIg5pZ6mFjBnzGC+88CxSl74X\nM7OC83MSW0ljYyNTp95LxIQOltyZ5cubePTRR7dKXGZmheYkkYdFixbRu/cOQN8OlhQwnAULFmyF\nqMzMCs9JIg9VVVVEbO7UstIWqqqqihyRmVlxOEnkYezYscB6YHkHS77Bpk3Pc8gh7bVbmJn1XE4S\neejduzdf/OK5VFe339YgzeLggw9hzJgxWycwM7MC891NeWpsbGTChANZunQMmzd/gLfn2wCeZsCA\neh577EHGjRtXoijNzN7iW2C3sqVLl/Lxj5/CvHkL2LBhPM3Ng4C19O//LLW11dx99+3svffepQ7T\nzAxwkiiZmTNn8vOf/5J//nMpgwdvx6c+9QmOOuooKip8Nc/Meg4nCTMzy+SH6czMrKCcJMzMLFNJ\nkoSkEZKmS3pG0tOSLkyn10qaKmm+pHslDSpFfGZmlihVTWIz8K8RsSdwCPBVSe8DLgemRcTuwHTg\nihLFV1T19fWlDqFbHH9plXP85Rw7lH/8+ShJkoiIZRExJx1uAuYBI4ATgMnpYpOBE0sRX7GV+x+a\n4y+tco6/nGOH8o8/HyVvk5A0BpgAPAoMjYgGSBIJMKR0kZmZWUmThKT+wO+Bi9IaRev7Wn2fq5lZ\nCZXsOQlJlcDdwD0R8d102jygLiIaJA0D7o+Id/RpIcnJw8wsD119TqKyWIF0ws+AuS0JIjUFOBu4\nFjgLuLOtFbu6k2Zmlp+S1CQkHQb8DXia5JJSAP8OzABuBUYCi4HTImLlVg/QzMyAMu2Ww8zMto6S\n393UVZKOlfSspOckXVbqeLpK0iJJT0qaLWlGqePpiKSbJDVIeipnWtk89JgR/0RJ/5Q0K/0cW8oY\ns5T7Q6dtxH9BOr1cjn9vSY+l/1efljQxnd7jj387sXf52JdVTUJSBfAc8CFgCfA4cHpEPFvSwLpA\n0gvA/hHxeqlj6QxJHwCagF9ExN7ptGuBFRFxXZqoayPi8lLGmSUj/onAmoi4vqTBdSC9eWNYRMxJ\n7wScSfIs0TmUwfFvJ/5PUgbHH0BSv4hYJ6kX8BBwIXAK5XH824r9o3Tx2JdbTeIgYEFELI6ITcDv\nSP7oyokoo+MeEQ8CrRNa2Tz0mBE/JN9Dj1buD51mxP/edHaPP/4AEbEuHexNcqNPUD7Hv63YoYvH\nvmxOVqn3Ai/njP+Tt/7oykUA90l6XNIXSh1Mnoa8Cx56PF/SHEk/7YmXC1or94dOc+J/LJ1UFsdf\nUoWk2cAy4L6IeJwyOf4ZsUMXj325JYl3g8MiYj/gX0j6rPpAqQMqgPK5Zpm4Edg5IiaQ/Afq0Zc9\nyv2h0zbiL5vjHxHNEbEvSQ3uIEl7UibHv43Y9yCPY19uSeIVYFTO+Ih0WtmIiKXpv68Bd5BcQis3\nDZKGwpvXnV8tcTxdEhGv5by16ifAgaWMpz3pQ6e/B34ZES3PDZXN8W8r/nI6/i0iYjVQDxxLGR1/\neHvs+Rz7cksSjwO7ShotqRo4neQBvLIgqV/6qwpJNcAxwD9KG1WniLdfx2x56BHaeeixB3lb/Ol/\n7BYn07O/g/YeOoWef/zfEX+5HH9JO7RcjpHUF/gwSbtKjz/+GbE/m8+xL6u7myC5BRb4LkmCuyki\nrilxSJ0maSeS2kOQNCT9uqfHL+k3QB2wPdAATAT+CNxGGTz0mBH/kSTXx5uBRcB5LdeYexKV+UOn\n7cT/acrj+I8naZiuSD+3RMRVkgbTw49/O7H/gi4e+7JLEmZmtvWU2+UmMzPbipwkzMwsk5OEmZll\ncpIwM7NMThJmZpbJScLMzDI5SZjlkPTvaffKsyVtzulS+fwulrOTpE/mjNdI+q2kp9Kumx+Q1Kfw\ne2BWWH5OwrZJkioiormDZVZHxMA8yz8a+GpEnJSO/yfQv6VLaUljgYURsSWf8tMyenVnfbPOcE3C\n3nXSblvmSfqVpLmSbpXUV9KLkq6R9ARwqqSdJd2T9sj7QHribq/cIZL+IGmGpEclHZROPyrtVXOW\npCck9QOuBupyaiHDSN6BAkBEPNdygpd0jt56EdVN6bQxSl7YM0fJi22Gp9N/KelGSY8BV6U1lJvT\neGZK+lgxjqltwyLCH3/eVR9gNEm3Awen4z8F/g14AfhaznLTgF3S4YOAv7YqZ3Wr8d8BB+Vs4+l0\n+M/AgelwP5J+oj4E3J6z7n4kHcE9CPx3znb3BuYCg9Lx7XLKPD0d/gJwWzr8y1blXkvSLQTAdsB8\noLrU34E/755PZYFyjVlP81JEPJoO/5rkrVwAt8CbHSweCtwmqaXzv6oOyjwaGJuz/CBJvUne+nWD\npF8Df4jkbWBvWzEiZqV9dx1D0tna42lN5CiSfnVWpcu19AH0fqClVvALksTS4rac4WOAYyVdkY5X\nk/SU/HwH+2LWKU4Stq1oaXxbm/5bAbweybs9uuLAeGc7wFWS7gSOAx6VdFSbAUSsJeng8Y400Xw0\njautN4W111i4ttX4iRHxYqeiN+sit0nYu9UoSe9Phz8N/D13ZkSsAV6UdGrLNEl7tyqj9cl7GnBB\nzvL7pP/uHBH/iKRH31nA7sAaYGDOsofldN3cGxhH0oPo/cBpkmrTebXpKo8Cp6XDZ5L0ptqWe3mr\nloSkCRnLmeXFScLereaTvPlvLjAI+GEby5wBnJs2Dv8DOL7V/Na/5s8HDksbmf8BfD6d/rX0ttY5\nJMlhKjAb6JU2Rp8P7Ab8XdKTwBPAQxExJSKeAq4D/iZpVjrcsq3z0jI/AVySEdN/AzUtt9aSdIVu\nVjC+BdbedSSNBu6OiPGljsWs3LkmYe9W/vVjVgCuSZiZWSbXJMzMLJOThJmZZXKSMDOzTE4SZmaW\nyUnCzMwyOUmYmVmm/w+eYh5l4kpEgwAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x11573c590>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": []
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### BONUS: Create your own question and answer it."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 2",
   "language": "python",
   "name": "python2"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.11"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}