$1=‘sportifs’ ]]> $1=‘paysans’ ]]> $1=‘chanteurs’ ]]> $1=‘instrumentistes’ ]]> $1=‘cyclistes’ ]]> $2=‘médicaments et autres’ ]]> $2=‘affaires de toilette’ ]]> $2=‘muscle’ ]]> $2=‘s’arrêter’ ]]> $2=‘continuer à rouler’ ]]> $2=‘se préparer à s’arrêter’ ]]> $2=‘vaisselle’ ]]> $2=‘mains’ ]]> $2=‘verres’ ]]> $2=‘linge’ ]]> $2=‘corps’ ]]> $2=‘autoroute’ ]]> $3=‘peur’ ]]> Syn ]]> Syn ]]> Syn ]]> Syn ]]> Hypo ]]> Cf ]]> Syn sex ]]> Syn sex ]]> Syn sex ]]> Cap Mult ]]> De_nouveau ]]> Anc ]]> Conv 2 ]]> Conv 21 ]]> Conv 21⊂ ]]> Conv 21⊃ ]]> Conv 21∩ ]]> S 2 & Conv 21 ]]> Conv 213 ]]> Conv 23 ]]> Conv 231 ]]> Conv 312 ]]> Conv 32 ]]> Conv 321 ]]> Conv 3214 ]]> Conv 423 ]]> Anti ]]> Anti ]]> Anti ]]> Anti ]]> V 0 Anti ]]> S 0 Anti ]]> A 1 Non ]]> Gener ]]> Gener ]]> Figur ]]> Contr ]]> Fem ]]> Masc ]]> S 0 ]]> S 0⊂ ]]> S 0⊃ ]]> S 0∩ ]]> S 1 v S 0 ]]> S 2 v S 0 ]]> S 3 v S 0 ]]> S 4 v S 0 ]]> S 0 Conv 21 ]]> S 0 Pred ]]> S 0 Pred ]]> S 0 Pred ]]> Sing S 0 ]]> S 0 usual ]]> S 0 Conv 213 ]]> S res v S 0 ]]> S res & S 0 ]]> Magn 1 quant + S 0 ]]> V 0 ]]> V 0⊃ ]]> V 0⊂ ]]> V 0∩ ]]> V 0 Conv 21 ]]> V 0 Conv 213 ]]> V 0 Conv 413 ]]> Magn + V 0 ]]> A 0 ]]> A 0⊃ ]]> A 1 v A 0 ]]> A 0 Mult ]]> A 0⊂ ]]> A 0∩ ]]> A 0 Real 1 ]]> Adv 0 v A 0 ]]> Adv 0 ]]> Adv 0∩ ]]> Adv 0⊃ ]]> Claus ]]> Claus ]]> Claus Caus 1 Pred ]]> Pred ]]> Magn + Pred ]]> Incep Pred ]]> Caus Pred ]]> Caus 1/2 Pred ]]> Caus 2 Pred ]]> Liqu Pred ]]> Caus 1 Pred ]]> Cont Pred ]]> Caus 1 De_nouveau Pred ]]> Caus De_nouveau Pred ]]> Liqu 1 Pred ]]> Conv 21 Pred ]]> S 1 ]]> S 1⊂ ]]> S 1⊃ ]]> S 1∩ ]]> S 1 usual ]]> S 1⊃ usual ]]> S 1∩ usual ]]> S 1/2 usual ]]> S 1/2 ]]> S 1 ]]> S 1 ]]> S 1 prototyp ]]> S loc & S 1 prototyp ]]> S 1.2 prototyp ]]> Mult S 1 prototyp ]]> S 3 v S 1 ]]> S 1/2 Perf ]]> S 1+2 ]]> Sing S 1 ]]> Mult S 1 ]]> S 1 Perf ]]> Mult S 1/2 ]]> S 1 Caus Oper 1 ]]> Magn + S 1 ]]> S 1[1] ]]> S 1/2 Pred ]]> S 1 Pred ]]> S 1 usual Pred ]]> S 1.1 prototyp ]]> Sing & S 1/2 ]]> S 1+2⊃ Pred ]]> S 1 prototyp Pred ]]> S 1.1 ]]> AntiMagn + S 1 ]]> S 1.2⊃ ]]> S 1/2 prototyp ]]> Sing S 1⊃ ]]> Sing & S 1 ]]> Mult S 1⊃ ]]> S 1⊂ usual ]]> Sing S 1 prototyp ]]> S 1∩ Pred ]]> S 2 ]]> S loc & S 2 ]]> S instr & S 2 ]]> S res & S 2 ]]> S 2/3 ]]> S 2 ]]> S 2.1 ]]> S 2.1 prototyp ]]> S 2 prototyp ]]> S 2.2 prototyp ]]> Sing S 2 ]]> Mult S 2 ]]> AntiBon S 2 ]]> S 2 usual ]]> S 2⊃ ]]> S 2∩ ]]> S 2[1] ]]> S 2[1] prototyp ]]> S 2 Perf ]]> S loc & S 2 prototyp ]]> S med & S 2 ]]> S 2/3 Perf ]]> Cap & S 2 ]]> S 2.2 ]]> AntiMagn quant S 2 ]]> S 2.2⊃ ]]> S 2/4 prototyp ]]> S 2⊂ ]]> S 2/3 prototyp ]]> S 3 ]]> S 3 prototyp ]]> S 3⊂ ]]> S 3⊃ ]]> S 3∩ ]]> S 3/5 ]]> S instr & S 3 prototyp ]]> S med & S 3 ]]> S med & S 3 prototyp ]]> S loc & S 3 ]]> S mod & S 3 ]]> S res & S 3 ]]> S 3 usual ]]> S instr & S 3 ]]> Mult S 3 ]]> S 4 ]]> S 4 prototyp ]]> S 4 Perf ]]> S instr & S 4 prototyp ]]> S loc & S 4 ]]> S med & S 4 prototyp ]]> S instr & S 4 ]]> S instr ]]> S instr Caus Func 0 ]]> S instr Fact 0 ]]> S instr Real 1 ]]> S loc ]]> S loc prototyp ]]> S loc Incep Func 0 ]]> S loc Non Fact 0 ]]> S loc Fact 0 ]]> S loc Caus Func 0 ]]> S loc temp ]]> S loc temp Func 0 ]]> S loc Real 1 usual ]]> S loc temp Real 1 ]]> S loc temp prototyp Real 1 ]]> S loc temp Fact 0 ]]> S loc Pred ]]> S med ]]> S med Incep Real 2 ]]> S med Real 3 ]]> S med Fact 0 ]]> S mod ]]> S res ]]> S res Real 2 ]]> S loc S res ]]> Sing ]]> Sing ]]> Sing ]]> Sing ]]> Sing prototyp ]]> Mero ]]> Mero Sing ]]> Mult ]]> Mult ]]> Mult ]]> Mult ]]> Holo ]]> Incep Pred Mult ]]> Cap ]]> Pred Cap ]]> Equip ]]> Sing Equip ]]> A 1 ]]> A 1’ ]]> A 1⊂ ]]> A 1⊃ ]]> A 1∩ ]]> A 1/2 ]]> A 1/2⊂ ]]> A 1/3 ]]> A 1/2[1] ]]> A 1 usual ]]> A 1 Perf ]]> A 1/2 Perf ]]> Able 1 v A 1 ]]> Adv 1 v A 1 ]]> A 2 Involv v A 1 ]]> Magn + A 1 ]]> Magn quant + A 1 ]]> AntiMagn + A 1 ]]> Bon + A 1 ]]> A 1 Pred ]]> S 0 A 1 ]]> A 1 Oper 1 ]]> A 1/2 Oper 1/2 ]]> A 1 Caus ]]> A 2 Fact 1 ]]> A 1 Non Fact 2 ]]> Magn 2 quant + A 1 Fact 2 ]]> A 2 ]]> A 2∩ ]]> A 2.1 ]]> A 2/3 ]]> A 1 Real 2 ]]> A 2 Perf ]]> A 2/3 Perf ]]> A 2 Manif ]]> Adv 2 v A 2 ]]> Magn quant + A 2 Fact 1 ]]> A 2 Fact 2 ]]> A 2 Involv ]]> A 3 ]]> A 3 Perf ]]> A 4 ]]> Able 1 ]]> Able 1∩ ]]> Able 2 v Able 1 ]]> Able 3 v Able 1 ]]> Able 4 v Able 1 ]]> Anti Able 2 v Anti Able 1 ]]> Able 1/2 ]]> Able 1[1] ]]> Able 2 ]]> Able 3 v Able 2 ]]> AntiBon Able 2 ]]> Anti Able 2 ]]> Pred Able 2 ]]> Able 3 ]]> Able 4 ]]> Qual 1 ]]> Qual 1[1] ]]> Qual 2 ]]> Qual 3 ]]> Germ ]]> Culm ]]> Epit ]]> Redun ]]> Redun ]]> Magn ]]> Magn quant ]]> Magn 1 quant ]]> Magn 2 ]]> Magn 2 quant ]]> Ver + Magn 2 quant ]]> Magn 3 quant ]]> Magn effet ]]> Magn hauteur ]]> Magn taille ]]> Magn vitesse ]]> Magn temp ]]> Magn comportement ]]> Magn épaisseur ]]> Magn largeur ]]> Magn longueur ]]> Magn puissance ]]> Bon + Magn ]]> Bon + Magn quant ]]> AntiBon + Magn ]]> AntiBon + Magn temp ]]> AntiBon + Magn quant ]]> AntiMagn quant + Magn vitesse ]]> Magn vitesse + Magn quant ]]> Incep Pred Plus ]]> Caus Pred Plus ]]> Incep Pred Plus taille ]]> AntiMagn temp ]]> AntiMagn ]]> Bon + AntiMagn ]]> AntiMagn épaisseur ]]> AntiMagn largeur ]]> AntiMagn longueur ]]> AntiBon + AntiMagn largeur ]]> AntiMagn 1 quant ]]> AntiMagn 2 quant ]]> AntiMagn vitesse ]]> AntiBon + AntiMagn vitesse ]]> AntiMagn hauteur ]]> AntiBon + AntiMagn taille ]]> AntiMagn puissance ]]> AntiMagn quant ]]> AntiBon + AntiMagn ]]> AntiMagn taille ]]> Incep Pred Minus ]]> Caus Pred Minus ]]> Ver ]]> Ver finalité ]]> Bon + Ver ]]> AntiBon 2 + Ver ]]> Caus Pred Ver ]]> Cont Pred Ver ]]> S instr Caus Pred Ver ]]> AntiVer ]]> AntiVer finalité ]]> AntiVer utilisation ]]> Bon 2 + AntiVer ]]> AntiBon + AntiVer ]]> Caus Pred AntiVer ]]> Bon ]]> Bon ]]> Bon ]]> Bon 1 ]]> Bon 2 ]]> Caus Pred Bon ]]> Claus Pred Bon ]]> AntiBon ]]> AntiBon ]]> AntiBon 1 ]]> AntiBon 2 ]]> Adv 1 ]]> Adv 2 ]]> Instr ]]> Loc in temp ]]> Loc in ]]> Loc ad ]]> Loc ab ]]> Propt ]]> Copul ]]> Caus 1 Copul ]]> Oper 0 ]]> Oper 1 ]]> Oper 1 usual ]]> Magn + Oper 1 ]]> Magn quant + Oper 1 ]]> AntiMagn + Oper 1 ]]> Non Oper 1 ]]> Incep Oper 1 ]]> Cont Oper 1 ]]> Fin Oper 1 ]]> Caus 1 Oper 1 ]]> Caus Oper 1 ]]> Liqu 1 Oper 1 ]]> Liqu Oper 1 ]]> De_nouveau Oper 1 ]]> Caus 2 Oper 1 ]]> Oper 1’ ]]> Oper 1/2 ]]> Oper {1} ]]> S 1’ Oper 1 ]]> Caus 1 Non Oper 1 ]]> Oper 1[1] ]]> Caus 3 Oper 1 ]]> Prepar Ω Oper 1 ]]> Claus Caus Oper 1 ]]> Oper 1/3 ]]> Incep Excess Oper 1 ]]> Oper 2 ]]> Incep Oper 2 ]]> Fin Oper 2 ]]> Caus 2 Oper 2 ]]> Cont Oper 2 ]]> Oper 2/3 ]]> Caus Oper 2 ]]> Caus 1 Oper 2 ]]> Oper 3 ]]> Incep Oper 3 ]]> Oper 4 ]]> Func 0 ]]> De_nouveau Func 0 ]]> Incep Func 0 ]]> Fin Func 0 ]]> Caus Cont Func 0 ]]> Cont Func 0 ]]> S 0 Fin Func 0 ]]> Caus 1 Func 0 ]]> Caus Func 0 ]]> Caus De_nouveau Func 0 ]]> S 1 Caus Func 0 ]]> S 1 usual Caus Func 0 ]]> S med Caus Func 0 ]]> Perm 2 Func 0 ]]> Non Perm 2 Func 1 ]]> Magn + Func 0 ]]> Ver Caus Func 0 ]]> AntiVer Caus Func 0 ]]> S loc Fin Func 0 ]]> Caus 2 Func 0 ]]> S 0 Caus 2 Func 0 ]]> Prox Func 0 ]]> Magn + Caus Func 0 ]]> Claus Incep Func 0 ]]> Claus Non Perm Func 0 ]]> Non Perm 1 Func 0 ]]> A 1 Non Perm Func 0 ]]> Func 1 ]]> Func 1+2 ]]> Incep Func 1 ]]> Magn + Func 1 ]]> Magn quant Func 1 ]]> Caus Func 1 ]]> Caus 2 Func 1 ]]> Liqu Func 1 ]]> Liqu 2 Func 1 ]]> Func 2 ]]> Func 2.1 ]]> Caus 1 Func 2 ]]> Caus Func 2 ]]> Caus 2 Func 2 ]]> Func 23 ]]> Magn + Func 2 ]]> Incep Func 2 v Func 2 ]]> Incep Func 2 ]]> Liqu Func 2 ]]> Func 3 ]]> Perm Func 3 ]]> Labor 12 ]]> Magn quant + Labor 12 ]]> Labor 13 ]]> Labor 21 ]]> Caus 2 Labor 21 ]]> Real 1 ]]> Real 1 I ]]> Real 1 II ]]> Real 1 III ]]> Real 1/2 ]]> Real 1 usual ]]> Real 1[1] ]]> Real 1[1] I ]]> Real 1[1] II ]]> Bon Real 1 ]]> AntiBon Real 1 ]]> Anti Real 1 ]]> A 1 Real 1 ]]> A 1 Anti Real 1 ]]> A 2 Anti Real 1 ]]> S 0 Real 1 ]]> S 0 Real 1+2 ]]> S 0 Real 1 usual ]]> S 0 Real 1 I ]]> S 0 Real 1 II ]]> S 0 Sing Real 1 ]]> S 1 usual Real 1 ]]> S res Real 1 ]]> Incep Real 1 ]]> Caus 1 Real 1 ]]> Caus Real 1 ]]> Liqu 1 Real 1 ]]> Liqu Real 1 ]]> Prepar Real 1 ]]> Perm 1 Real 1 ]]> Claus 1 Real 1 ]]> S res Caus 1 Real 1 ]]> S med Real 1 ]]> Caus 1 Plus Real 1 ]]> Prepar 1 Real 1 ]]> Fin Real 1 ]]> AntiVer Real 1 ]]> A 2 Real 1 ]]> S instr Prepar Real 1 ]]> Prepar Liqu 1 Real 1 ]]> A 1 AntiBon Real 1 ]]> Cont Real 1 ]]> Magn + Real 1 ]]> AntiBon Real 1 usual ]]> Prepar Real 1 I ]]> Magn 2 quant + Real 1 ]]> Prepar Real 1 II ]]> Perf Real 1 ]]> S instr Real 1 I ]]> S instr Real 1 II ]]> S instr Real 1[1] ]]> S loc Real 1 ]]> S loc Real 1 III ]]> S loc prototyp Real 1 ]]> Liqu 1 Real 1[1] ]]> A 1 Magn temp Real 1 ]]> Real 2 ]]> Real 2.1 ]]> Real 2.2 ]]> Real 2 usual ]]> Bon Real 2 ]]> Real 2 I ]]> Real 2 II ]]> Real 2 III ]]> Adv 1 Real 2 III ]]> Anti Real 2 ]]> S 0 Real 2 ]]> Anti Real 2 I ]]> Caus 1 Real 2 ]]> Fin Real 2 ]]> Incep Real 2 ]]> Liqu 1 Real 2 ]]> Prepar 1 Real 2 ]]> Real 3 ]]> Real 3 I ]]> Real 3 II ]]> Real 3 III ]]> Liqu Real 3 ]]> A 1 Real 3 ]]> Real 4 ]]> Real Ω ]]> Real Ω I ]]> Real Ω II ]]> Real Ω III ]]> Real Ω S 0 ]]> Anti Real Ω ]]> Anti Real Ω III ]]> AntiBon Real Ω ]]> Caus 1 Real Ω ]]> S 0 Real Ω ]]> S 1 Real Ω ]]> S 1 usual Real Ω ]]> S 1 Real Ω I/II ]]> S res Real Ω ]]> S loc Real Ω ]]> Prepar Real Ω ]]> A 1 Real Ω ]]> Able 2 Real Ω ]]> Anti Able 2 Real Ω II ]]> Fact 0 ]]> Fact 0 I ]]> Fact 0 II ]]> S 0 Fact 0 ]]> S 0 Incep Fact 0 ]]> S res Fact 0 ]]> S res Perf Fact 0 ]]> AntiVer Fact 0 ]]> AntiBon Fact 0 ]]> Incep Fact 0 ]]> A 1 Incep Fact 0 ]]> A 1 Perf Incep Fact 0 ]]> Fin Fact 0 ]]> A 1 Fin Fact 0 ]]> A 1 Perf Fin Fact 0 ]]> Liqu Fact 0 ]]> S 0 Liqu Fact 0 ]]> Liqu 1 Fact 0 ]]> S 0 AntiBon Fact 0 ]]> Caus Fact 0 ]]> Caus 1 Fact 0 ]]> Caus Cont Fact 0 ]]> Liqu 3 Fact 0 ]]> Bon Fact 0 ]]> Caus 1 Minus Fact 0 ]]> Caus 1 De_nouveau Fact 0 ]]> S 1’ Fact 0 ]]> S 1 Caus Fact 0 ]]> Perm 1 Fact 0 ]]> Perm Fact 0 ]]> Anti Perm 1 Fact 0 ]]> Anti Perm Fact 0 ]]> Mult + Fact 0 ]]> AntiBon A 1 Fact 0 ]]> Caus Able 1 Fact 0 ]]> Magn Fact 0 ]]> S 0 Sing Fact 0 ]]> Anti Fact 0 ]]> Prox Fact 0 ]]> Caus 1 Plus Fact 0 ]]> S res Fact 0 III ]]> A 1 Fact 0 ]]> A 1 Non Fact 0 ]]> Able 1 Fact 0 ]]> Anti Able 1 Fact 0 ]]> Fact 1 ]]> Magn + Fact 1 ]]> AntiMagn Fact 1 ]]> AntiBon Fact 1 ]]> Incep Fact 1 ]]> S 0 Incep Fact 1 ]]> Caus Fact 1 ]]> Liqu Fact 1 ]]> Liqu 3 Fact 1 ]]> Prepar Fact 1 ]]> Fact 2 ]]> Fact 2 I ]]> Fact 2 II ]]> Fact 2 usual ]]> Magn 2 quant + Fact 2 ]]> AntiBon Fact 2 ]]> AntiBon Liqu 1 Fact 2 ]]> Fact 2/3 ]]> Fact 23 ]]> S 0 Fact 2 ]]> Magn quant + S 0 Fact 2 ]]> S res Fact 2 ]]> Incep Fact 2 v Fact 2 ]]> Incep Fact 2 ]]> Caus Fact 2 ]]> Prepar 1 Fact 2 ]]> Fact 3 ]]> Fact Ω ]]> Fin Fact Ω ]]> S 0 Fin Fact Ω ]]> Labreal 12 II ]]> Labreal 12 ]]> Anti Labreal 12 ]]> Labreal 12 I ]]> Labreal 123 ]]> S 0 Labreal 12 ]]> Labreal 13 ]]> Labreal ]]> Labreal 21 ]]> Labreal 23 ]]> Incep ]]> Cont ]]> Fin ]]> Caus ]]> Caus ]]> Caus ]]> Caus 1 ]]> Caus 1/2 ]]> Caus Conv 21 ]]> Caus Conv 231 ]]> S 0 Caus ]]> Claus Caus ]]> Liqu ]]> Liqu Func 0 ]]> Liqu 1 Func 0 ]]> S instr Liqu Func 0 ]]> Involv ]]> Involv Mult ]]> Conv 21 Involv ]]> AntiBon Involv ]]> S res AntiBon Involv ]]> S instr AntiBon Involv ]]> Caus 1 AntiBon Involv ]]> Caus 1 Involv ]]> Non Conv 21 Involv ]]> Adv 1 Anti Able 2 Involv ]]> AntiBon + A 1 Involv ]]> Manif ]]> Incep Manif ]]> Non Perm 1 Manif ]]> S 0 Sing Manif ]]> S 2 Manif ]]> S 2 prototyp Manif ]]> Prepar 1 ]]> A 2 Perf Prepar 1 ]]> Prepar ]]> Prepar I ]]> Prepar II ]]> Anti Prepar ]]> Degrad ]]> Caus Degrad ]]> S 1 Caus Degrad ]]> Son ]]> S 0 Son ]]> Claus Son ]]> Result 1 ]]> Result 2 ]]> Result 3 ]]> Obstr ]]> Conv 21 Obstr ]]> Caus Obstr ]]>