$1=‘sportifs’
]]>
$1=‘paysans’
]]>
$1=‘chanteurs’
]]>
$1=‘instrumentistes’
]]>
$1=‘cyclistes’
]]>
$2=‘médicaments et autres’
]]>
$2=‘affaires de toilette’
]]>
$2=‘muscle’
]]>
$2=‘s’arrêter’
]]>
$2=‘continuer à rouler’
]]>
$2=‘se préparer à s’arrêter’
]]>
$2=‘vaisselle’
]]>
$2=‘mains’
]]>
$2=‘verres’
]]>
$2=‘linge’
]]>
$2=‘corps’
]]>
$2=‘autoroute’
]]>
$3=‘peur’
]]>
Syn
]]>
Syn ⊂
]]>
Syn ⊃
]]>
Syn ∩
]]>
Hypo
]]>
Cf
]]>
Syn sex
]]>
Syn ⊂ sex
]]>
Syn ⊃ sex
]]>
Cap Mult
]]>
De_nouveau
]]>
Anc
]]>
Conv 2
]]>
Conv 21
]]>
Conv 21⊂
]]>
Conv 21⊃
]]>
Conv 21∩
]]>
S 2 & Conv 21
]]>
Conv 213
]]>
Conv 23
]]>
Conv 231
]]>
Conv 312
]]>
Conv 32
]]>
Conv 321
]]>
Conv 3214
]]>
Conv 423
]]>
Anti
]]>
Anti ⊃
]]>
Anti ⊂
]]>
Anti ∩
]]>
V 0 Anti
]]>
S 0 Anti
]]>
A 1 Non
]]>
Gener
]]>
Gener ⊃
]]>
Figur
]]>
Contr
]]>
Fem
]]>
Masc
]]>
S 0
]]>
S 0⊂
]]>
S 0⊃
]]>
S 0∩
]]>
S 1 v S 0
]]>
S 2 v S 0
]]>
S 3 v S 0
]]>
S 4 v S 0
]]>
S 0 Conv 21
]]>
S 0 Pred
]]>
S 0 Pred ⊂
]]>
S 0 Pred ∩
]]>
Sing S 0
]]>
S 0 usual
]]>
S 0 Conv 213
]]>
S res v S 0
]]>
S res & S 0
]]>
Magn 1 quant + S 0
]]>
V 0
]]>
V 0⊃
]]>
V 0⊂
]]>
V 0∩
]]>
V 0 Conv 21
]]>
V 0 Conv 213
]]>
V 0 Conv 413
]]>
Magn + V 0
]]>
A 0
]]>
A 0⊃
]]>
A 1 v A 0
]]>
A 0 Mult
]]>
A 0⊂
]]>
A 0∩
]]>
A 0 Real 1
]]>
Adv 0 v A 0
]]>
Adv 0
]]>
Adv 0∩
]]>
Adv 0⊃
]]>
Claus
]]>
Claus ⊃
]]>
Claus Caus 1 Pred
]]>
Pred
]]>
Magn + Pred
]]>
Incep Pred
]]>
Caus Pred
]]>
Caus 1/2 Pred
]]>
Caus 2 Pred
]]>
Liqu Pred
]]>
Caus 1 Pred
]]>
Cont Pred
]]>
Caus 1 De_nouveau Pred
]]>
Caus De_nouveau Pred
]]>
Liqu 1 Pred
]]>
Conv 21 Pred
]]>
S 1
]]>
S 1⊂
]]>
S 1⊃
]]>
S 1∩
]]>
S 1 usual
]]>
S 1⊃ usual
]]>
S 1∩ usual
]]>
S 1/2 usual
]]>
S 1/2
]]>
S 1
]]>
S 1
]]>
S 1 prototyp
]]>
S loc & S 1 prototyp
]]>
S 1.2 prototyp
]]>
Mult S 1 prototyp
]]>
S 3 v S 1
]]>
S 1/2 Perf
]]>
S 1+2
]]>
Sing S 1
]]>
Mult S 1
]]>
S 1 Perf
]]>
Mult S 1/2
]]>
S 1 Caus Oper 1
]]>
Magn + S 1
]]>
S 1[1]
]]>
S 1/2 Pred
]]>
S 1 Pred
]]>
S 1 usual Pred
]]>
S 1.1 prototyp
]]>
Sing & S 1/2
]]>
S 1+2⊃ Pred
]]>
S 1 prototyp Pred
]]>
S 1.1
]]>
AntiMagn + S 1
]]>
S 1.2⊃
]]>
S 1/2 prototyp
]]>
Sing S 1⊃
]]>
Sing & S 1
]]>
Mult S 1⊃
]]>
S 1⊂ usual
]]>
Sing S 1 prototyp
]]>
S 1∩ Pred
]]>
S 2
]]>
S loc & S 2
]]>
S instr & S 2
]]>
S res & S 2
]]>
S 2/3
]]>
S 2
]]>
S 2.1
]]>
S 2.1 prototyp
]]>
S 2 prototyp
]]>
S 2.2 prototyp
]]>
Sing S 2
]]>
Mult S 2
]]>
AntiBon S 2
]]>
S 2 usual
]]>
S 2⊃
]]>
S 2∩
]]>
S 2[1]
]]>
S 2[1] prototyp
]]>
S 2 Perf
]]>
S loc & S 2 prototyp
]]>
S med & S 2
]]>
S 2/3 Perf
]]>
Cap & S 2
]]>
S 2.2
]]>
AntiMagn quant S 2
]]>
S 2.2⊃
]]>
S 2/4 prototyp
]]>
S 2⊂
]]>
S 2/3 prototyp
]]>
S 3
]]>
S 3 prototyp
]]>
S 3⊂
]]>
S 3⊃
]]>
S 3∩
]]>
S 3/5
]]>
S instr & S 3 prototyp
]]>
S med & S 3
]]>
S med & S 3 prototyp
]]>
S loc & S 3
]]>
S mod & S 3
]]>
S res & S 3
]]>
S 3 usual
]]>
S instr & S 3
]]>
Mult S 3
]]>
S 4
]]>
S 4 prototyp
]]>
S 4 Perf
]]>
S instr & S 4 prototyp
]]>
S loc & S 4
]]>
S med & S 4 prototyp
]]>
S instr & S 4
]]>
S instr
]]>
S instr Caus Func 0
]]>
S instr Fact 0
]]>
S instr Real 1
]]>
S loc
]]>
S loc prototyp
]]>
S loc Incep Func 0
]]>
S loc Non Fact 0
]]>
S loc Fact 0
]]>
S loc Caus Func 0
]]>
S loc temp
]]>
S loc temp Func 0
]]>
S loc Real 1 usual
]]>
S loc temp Real 1
]]>
S loc temp prototyp Real 1
]]>
S loc temp Fact 0
]]>
S loc Pred
]]>
S med
]]>
S med Incep Real 2
]]>
S med Real 3
]]>
S med Fact 0
]]>
S mod
]]>
S res
]]>
S res Real 2
]]>
S loc S res
]]>
Sing
]]>
Sing ⊂
]]>
Sing ⊃
]]>
Sing ∩
]]>
Sing prototyp
]]>
Mero
]]>
Mero Sing
]]>
Mult
]]>
Mult ⊃
]]>
Mult ⊂
]]>
Mult ∩
]]>
Holo
]]>
Incep Pred Mult
]]>
Cap
]]>
Pred Cap
]]>
Equip
]]>
Sing Equip
]]>
A 1
]]>
A 1’
]]>
A 1⊂
]]>
A 1⊃
]]>
A 1∩
]]>
A 1/2
]]>
A 1/2⊂
]]>
A 1/3
]]>
A 1/2[1]
]]>
A 1 usual
]]>
A 1 Perf
]]>
A 1/2 Perf
]]>
Able 1 v A 1
]]>
Adv 1 v A 1
]]>
A 2 Involv v A 1
]]>
Magn + A 1
]]>
Magn quant + A 1
]]>
AntiMagn + A 1
]]>
Bon + A 1
]]>
A 1 Pred
]]>
S 0 A 1
]]>
A 1 Oper 1
]]>
A 1/2 Oper 1/2
]]>
A 1 Caus
]]>
A 2 Fact 1
]]>
A 1 Non Fact 2
]]>
Magn 2 quant + A 1 Fact 2
]]>
A 2
]]>
A 2∩
]]>
A 2.1
]]>
A 2/3
]]>
A 1 Real 2
]]>
A 2 Perf
]]>
A 2/3 Perf
]]>
A 2 Manif
]]>
Adv 2 v A 2
]]>
Magn quant + A 2 Fact 1
]]>
A 2 Fact 2
]]>
A 2 Involv
]]>
A 3
]]>
A 3 Perf
]]>
A 4
]]>
Able 1
]]>
Able 1∩
]]>
Able 2 v Able 1
]]>
Able 3 v Able 1
]]>
Able 4 v Able 1
]]>
Anti Able 2 v Anti Able 1
]]>
Able 1/2
]]>
Able 1[1]
]]>
Able 2
]]>
Able 3 v Able 2
]]>
AntiBon Able 2
]]>
Anti Able 2
]]>
Pred Able 2
]]>
Able 3
]]>
Able 4
]]>
Qual 1
]]>
Qual 1[1]
]]>
Qual 2
]]>
Qual 3
]]>
Germ
]]>
Culm
]]>
Epit
]]>
Redun
]]>
Redun ⊃
]]>
Magn
]]>
Magn quant
]]>
Magn 1 quant
]]>
Magn 2
]]>
Magn 2 quant
]]>
Ver + Magn 2 quant
]]>
Magn 3 quant
]]>
Magn effet
]]>
Magn hauteur
]]>
Magn taille
]]>
Magn vitesse
]]>
Magn temp
]]>
Magn comportement
]]>
Magn épaisseur
]]>
Magn largeur
]]>
Magn longueur
]]>
Magn puissance
]]>
Bon + Magn
]]>
Bon + Magn quant
]]>
AntiBon + Magn
]]>
AntiBon + Magn temp
]]>
AntiBon + Magn quant
]]>
AntiMagn quant + Magn vitesse
]]>
Magn vitesse + Magn quant
]]>
Incep Pred Plus
]]>
Caus Pred Plus
]]>
Incep Pred Plus taille
]]>
AntiMagn temp
]]>
AntiMagn
]]>
Bon + AntiMagn
]]>
AntiMagn épaisseur
]]>
AntiMagn largeur
]]>
AntiMagn longueur
]]>
AntiBon + AntiMagn largeur
]]>
AntiMagn 1 quant
]]>
AntiMagn 2 quant
]]>
AntiMagn vitesse
]]>
AntiBon + AntiMagn vitesse
]]>
AntiMagn hauteur
]]>
AntiBon + AntiMagn taille
]]>
AntiMagn puissance
]]>
AntiMagn quant
]]>
AntiBon + AntiMagn
]]>
AntiMagn taille
]]>
Incep Pred Minus
]]>
Caus Pred Minus
]]>
Ver
]]>
Ver finalité
]]>
Bon + Ver
]]>
AntiBon 2 + Ver
]]>
Caus Pred Ver
]]>
Cont Pred Ver
]]>
S instr Caus Pred Ver
]]>
AntiVer
]]>
AntiVer finalité
]]>
AntiVer utilisation
]]>
Bon 2 + AntiVer
]]>
AntiBon + AntiVer
]]>
Caus Pred AntiVer
]]>
Bon
]]>
Bon ⊃
]]>
Bon ∩
]]>
Bon 1
]]>
Bon 2
]]>
Caus Pred Bon
]]>
Claus Pred Bon
]]>
AntiBon
]]>
AntiBon ∩
]]>
AntiBon 1
]]>
AntiBon 2
]]>
Adv 1
]]>
Adv 2
]]>
Instr
]]>
Loc in temp
]]>
Loc in
]]>
Loc ad
]]>
Loc ab
]]>
Propt
]]>
Copul
]]>
Caus 1 Copul
]]>
Oper 0
]]>
Oper 1
]]>
Oper 1 usual
]]>
Magn + Oper 1
]]>
Magn quant + Oper 1
]]>
AntiMagn + Oper 1
]]>
Non Oper 1
]]>
Incep Oper 1
]]>
Cont Oper 1
]]>
Fin Oper 1
]]>
Caus 1 Oper 1
]]>
Caus Oper 1
]]>
Liqu 1 Oper 1
]]>
Liqu Oper 1
]]>
De_nouveau Oper 1
]]>
Caus 2 Oper 1
]]>
Oper 1’
]]>
Oper 1/2
]]>
Oper {1}
]]>
S 1’ Oper 1
]]>
Caus 1 Non Oper 1
]]>
Oper 1[1]
]]>
Caus 3 Oper 1
]]>
Prepar Ω Oper 1
]]>
Claus Caus Oper 1
]]>
Oper 1/3
]]>
Incep Excess Oper 1
]]>
Oper 2
]]>
Incep Oper 2
]]>
Fin Oper 2
]]>
Caus 2 Oper 2
]]>
Cont Oper 2
]]>
Oper 2/3
]]>
Caus Oper 2
]]>
Caus 1 Oper 2
]]>
Oper 3
]]>
Incep Oper 3
]]>
Oper 4
]]>
Func 0
]]>
De_nouveau Func 0
]]>
Incep Func 0
]]>
Fin Func 0
]]>
Caus Cont Func 0
]]>
Cont Func 0
]]>
S 0 Fin Func 0
]]>
Caus 1 Func 0
]]>
Caus Func 0
]]>
Caus De_nouveau Func 0
]]>
S 1 Caus Func 0
]]>
S 1 usual Caus Func 0
]]>
S med Caus Func 0
]]>
Perm 2 Func 0
]]>
Non Perm 2 Func 1
]]>
Magn + Func 0
]]>
Ver Caus Func 0
]]>
AntiVer Caus Func 0
]]>
S loc Fin Func 0
]]>
Caus 2 Func 0
]]>
S 0 Caus 2 Func 0
]]>
Prox Func 0
]]>
Magn + Caus Func 0
]]>
Claus Incep Func 0
]]>
Claus Non Perm Func 0
]]>
Non Perm 1 Func 0
]]>
A 1 Non Perm Func 0
]]>
Func 1
]]>
Func 1+2
]]>
Incep Func 1
]]>
Magn + Func 1
]]>
Magn quant • Func 1
]]>
Caus Func 1
]]>
Caus 2 Func 1
]]>
Liqu Func 1
]]>
Liqu 2 Func 1
]]>
Func 2
]]>
Func 2.1
]]>
Caus 1 Func 2
]]>
Caus Func 2
]]>
Caus 2 Func 2
]]>
Func 23
]]>
Magn + Func 2
]]>
Incep Func 2 v Func 2
]]>
Incep Func 2
]]>
Liqu Func 2
]]>
Func 3
]]>
Perm Func 3
]]>
Labor 12
]]>
Magn quant + Labor 12
]]>
Labor 13
]]>
Labor 21
]]>
Caus 2 Labor 21
]]>
Real 1
]]>
Real 1 I
]]>
Real 1 II
]]>
Real 1 III
]]>
Real 1/2
]]>
Real 1 usual
]]>
Real 1[1]
]]>
Real 1[1] I
]]>
Real 1[1] II
]]>
Bon Real 1
]]>
AntiBon Real 1
]]>
Anti Real 1
]]>
A 1 Real 1
]]>
A 1 Anti Real 1
]]>
A 2 Anti Real 1
]]>
S 0 Real 1
]]>
S 0 Real 1+2
]]>
S 0 Real 1 usual
]]>
S 0 Real 1 I
]]>
S 0 Real 1 II
]]>
S 0 Sing Real 1
]]>
S 1 usual Real 1
]]>
S res Real 1
]]>
Incep Real 1
]]>
Caus 1 Real 1
]]>
Caus Real 1
]]>
Liqu 1 Real 1
]]>
Liqu Real 1
]]>
Prepar Real 1
]]>
Perm 1 Real 1
]]>
Claus 1 Real 1
]]>
S res Caus 1 Real 1
]]>
S med Real 1
]]>
Caus 1 Plus Real 1
]]>
Prepar 1 Real 1
]]>
Fin Real 1
]]>
AntiVer Real 1
]]>
A 2 Real 1
]]>
S instr Prepar Real 1
]]>
Prepar Liqu 1 Real 1
]]>
A 1 AntiBon Real 1
]]>
Cont Real 1
]]>
Magn + Real 1
]]>
AntiBon Real 1 usual
]]>
Prepar Real 1 I
]]>
Magn 2 quant + Real 1
]]>
Prepar Real 1 II
]]>
Perf Real 1
]]>
S instr Real 1 I
]]>
S instr Real 1 II
]]>
S instr Real 1[1]
]]>
S loc Real 1
]]>
S loc Real 1 III
]]>
S loc prototyp Real 1
]]>
Liqu 1 Real 1[1]
]]>
A 1 Magn temp Real 1
]]>
Real 2
]]>
Real 2.1
]]>
Real 2.2
]]>
Real 2 usual
]]>
Bon Real 2
]]>
Real 2 I
]]>
Real 2 II
]]>
Real 2 III
]]>
Adv 1 Real 2 III
]]>
Anti Real 2
]]>
S 0 Real 2
]]>
Anti Real 2 I
]]>
Caus 1 Real 2
]]>
Fin Real 2
]]>
Incep Real 2
]]>
Liqu 1 Real 2
]]>
Prepar 1 Real 2
]]>
Real 3
]]>
Real 3 I
]]>
Real 3 II
]]>
Real 3 III
]]>
Liqu Real 3
]]>
A 1 Real 3
]]>
Real 4
]]>
Real Ω
]]>
Real Ω I
]]>
Real Ω II
]]>
Real Ω III
]]>
Real Ω S 0
]]>
Anti Real Ω
]]>
Anti Real Ω III
]]>
AntiBon Real Ω
]]>
Caus 1 Real Ω
]]>
S 0 Real Ω
]]>
S 1 Real Ω
]]>
S 1 usual Real Ω
]]>
S 1 Real Ω I/II
]]>
S res Real Ω
]]>
S loc Real Ω
]]>
Prepar Real Ω
]]>
A 1 Real Ω
]]>
Able 2 Real Ω
]]>
Anti Able 2 Real Ω II
]]>
Fact 0
]]>
Fact 0 I
]]>
Fact 0 II
]]>
S 0 Fact 0
]]>
S 0 Incep Fact 0
]]>
S res Fact 0
]]>
S res Perf Fact 0
]]>
AntiVer Fact 0
]]>
AntiBon Fact 0
]]>
Incep Fact 0
]]>
A 1 Incep Fact 0
]]>
A 1 Perf Incep Fact 0
]]>
Fin Fact 0
]]>
A 1 Fin Fact 0
]]>
A 1 Perf Fin Fact 0
]]>
Liqu Fact 0
]]>
S 0 Liqu Fact 0
]]>
Liqu 1 Fact 0
]]>
S 0 AntiBon Fact 0
]]>
Caus Fact 0
]]>
Caus 1 Fact 0
]]>
Caus Cont Fact 0
]]>
Liqu 3 Fact 0
]]>
Bon Fact 0
]]>
Caus 1 Minus Fact 0
]]>
Caus 1 De_nouveau Fact 0
]]>
S 1’ Fact 0
]]>
S 1 Caus Fact 0
]]>
Perm 1 Fact 0
]]>
Perm Fact 0
]]>
Anti Perm 1 Fact 0
]]>
Anti Perm Fact 0
]]>
Mult + Fact 0
]]>
AntiBon A 1 Fact 0
]]>
Caus Able 1 Fact 0
]]>
Magn Fact 0
]]>
S 0 Sing Fact 0
]]>
Anti Fact 0
]]>
Prox Fact 0
]]>
Caus 1 Plus Fact 0
]]>
S res Fact 0 III
]]>
A 1 Fact 0
]]>
A 1 Non Fact 0
]]>
Able 1 Fact 0
]]>
Anti Able 1 Fact 0
]]>
Fact 1
]]>
Magn + Fact 1
]]>
AntiMagn Fact 1
]]>
AntiBon Fact 1
]]>
Incep Fact 1
]]>
S 0 Incep Fact 1
]]>
Caus Fact 1
]]>
Liqu Fact 1
]]>
Liqu 3 Fact 1
]]>
Prepar Fact 1
]]>
Fact 2
]]>
Fact 2 I
]]>
Fact 2 II
]]>
Fact 2 usual
]]>
Magn 2 quant + Fact 2
]]>
AntiBon Fact 2
]]>
AntiBon Liqu 1 Fact 2
]]>
Fact 2/3
]]>
Fact 23
]]>
S 0 Fact 2
]]>
Magn quant + S 0 Fact 2
]]>
S res Fact 2
]]>
Incep Fact 2 v Fact 2
]]>
Incep Fact 2
]]>
Caus Fact 2
]]>
Prepar 1 Fact 2
]]>
Fact 3
]]>
Fact Ω
]]>
Fin Fact Ω
]]>
S 0 Fin Fact Ω
]]>
Labreal 12 II
]]>
Labreal 12
]]>
Anti Labreal 12
]]>
Labreal 12 I
]]>
Labreal 123
]]>
S 0 Labreal 12
]]>
Labreal 13
]]>
Labreal 1Ω
]]>
Labreal 21
]]>
Labreal 23
]]>
Incep
]]>
Cont
]]>
Fin
]]>
Caus
]]>
Caus ⊃
]]>
Caus ∩
]]>
Caus 1
]]>
Caus 1/2
]]>
Caus Conv 21
]]>
Caus Conv 231
]]>
S 0 Caus
]]>
Claus Caus
]]>
Liqu
]]>
Liqu Func 0
]]>
Liqu 1 Func 0
]]>
S instr Liqu Func 0
]]>
Involv
]]>
Involv Mult
]]>
Conv 21 Involv
]]>
AntiBon Involv
]]>
S res AntiBon Involv
]]>
S instr AntiBon Involv
]]>
Caus 1 AntiBon Involv
]]>
Caus 1 Involv
]]>
Non Conv 21 Involv
]]>
Adv 1 Anti Able 2 Involv
]]>
AntiBon + A 1 Involv
]]>
Manif
]]>
Incep Manif
]]>
Non Perm 1 Manif
]]>
S 0 Sing Manif
]]>
S 2 Manif
]]>
S 2 prototyp Manif
]]>
Prepar 1
]]>
A 2 Perf Prepar 1
]]>
Prepar
]]>
Prepar I
]]>
Prepar II
]]>
Anti Prepar
]]>
Degrad
]]>
Caus Degrad
]]>
S 1 Caus Degrad
]]>
Son
]]>
S 0 Son
]]>
Claus Son
]]>
Result 1
]]>
Result 2
]]>
Result 3
]]>
Obstr
]]>
Conv 21 Obstr
]]>
Caus Obstr
]]>