| /*M/////////////////////////////////////////////////////////////////////////////////////// | |
| // | |
| // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. | |
| // | |
| // By downloading, copying, installing or using the software you agree to this license. | |
| // If you do not agree to this license, do not download, install, | |
| // copy or use the software. | |
| // | |
| // | |
| // License Agreement | |
| // For Open Source Computer Vision Library | |
| // | |
| // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. | |
| // Copyright (C) 2009, Willow Garage Inc., all rights reserved. | |
| // Copyright (C) 2013, OpenCV Foundation, all rights reserved. | |
| // Third party copyrights are property of their respective owners. | |
| // | |
| // Redistribution and use in source and binary forms, with or without modification, | |
| // are permitted provided that the following conditions are met: | |
| // | |
| // * Redistribution's of source code must retain the above copyright notice, | |
| // this list of conditions and the following disclaimer. | |
| // | |
| // * Redistribution's in binary form must reproduce the above copyright notice, | |
| // this list of conditions and the following disclaimer in the documentation | |
| // and/or other materials provided with the distribution. | |
| // | |
| // * The name of the copyright holders may not be used to endorse or promote products | |
| // derived from this software without specific prior written permission. | |
| // | |
| // This software is provided by the copyright holders and contributors "as is" and | |
| // any express or implied warranties, including, but not limited to, the implied | |
| // warranties of merchantability and fitness for a particular purpose are disclaimed. | |
| // In no event shall the Intel Corporation or contributors be liable for any direct, | |
| // indirect, incidental, special, exemplary, or consequential damages | |
| // (including, but not limited to, procurement of substitute goods or services; | |
| // loss of use, data, or profits; or business interruption) however caused | |
| // and on any theory of liability, whether in contract, strict liability, | |
| // or tort (including negligence or otherwise) arising in any way out of | |
| // the use of this software, even if advised of the possibility of such damage. | |
| // | |
| //M*/ | |
| namespace cv | |
| { | |
| //! @addtogroup core_basic | |
| //! @{ | |
| enum AccessFlag { ACCESS_READ=1<<24, ACCESS_WRITE=1<<25, | |
| ACCESS_RW=3<<24, ACCESS_MASK=ACCESS_RW, ACCESS_FAST=1<<26 }; | |
| CV_ENUM_FLAGS(AccessFlag) | |
| __CV_ENUM_FLAGS_BITWISE_AND(AccessFlag, int, AccessFlag) | |
| CV__DEBUG_NS_BEGIN | |
| class CV_EXPORTS _OutputArray; | |
| //////////////////////// Input/Output Array Arguments ///////////////////////////////// | |
| /** @brief This is the proxy class for passing read-only input arrays into OpenCV functions. | |
| It is defined as: | |
| @code | |
| typedef const _InputArray& InputArray; | |
| @endcode | |
| where \ref cv::_InputArray is a class that can be constructed from \ref cv::Mat, \ref cv::Mat_<T>, | |
| \ref cv::Matx<T, m, n>, std::vector<T>, std::vector<std::vector<T>>, std::vector<Mat>, | |
| std::vector<Mat_<T>>, \ref cv::UMat, std::vector<UMat> or `double`. It can also be constructed from | |
| a matrix expression. | |
| Since this is mostly implementation-level class, and its interface may change in future versions, we | |
| do not describe it in details. There are a few key things, though, that should be kept in mind: | |
| - When you see in the reference manual or in OpenCV source code a function that takes | |
| InputArray, it means that you can actually pass `Mat`, `Matx`, `vector<T>` etc. (see above the | |
| complete list). | |
| - Optional input arguments: If some of the input arrays may be empty, pass cv::noArray() (or | |
| simply cv::Mat() as you probably did before). | |
| - The class is designed solely for passing parameters. That is, normally you *should not* | |
| declare class members, local and global variables of this type. | |
| - If you want to design your own function or a class method that can operate of arrays of | |
| multiple types, you can use InputArray (or OutputArray) for the respective parameters. Inside | |
| a function you should use _InputArray::getMat() method to construct a matrix header for the | |
| array (without copying data). _InputArray::kind() can be used to distinguish Mat from | |
| `vector<>` etc., but normally it is not needed. | |
| Here is how you can use a function that takes InputArray : | |
| @code | |
| std::vector<Point2f> vec; | |
| // points or a circle | |
| for( int i = 0; i < 30; i++ ) | |
| vec.push_back(Point2f((float)(100 + 30*cos(i*CV_PI*2/5)), | |
| (float)(100 - 30*sin(i*CV_PI*2/5)))); | |
| cv::transform(vec, vec, cv::Matx23f(0.707, -0.707, 10, 0.707, 0.707, 20)); | |
| @endcode | |
| That is, we form an STL vector containing points, and apply in-place affine transformation to the | |
| vector using the 2x3 matrix created inline as `Matx<float, 2, 3>` instance. | |
| Here is how such a function can be implemented (for simplicity, we implement a very specific case of | |
| it, according to the assertion statement inside) : | |
| @code | |
| void myAffineTransform(InputArray _src, OutputArray _dst, InputArray _m) | |
| { | |
| // get Mat headers for input arrays. This is O(1) operation, | |
| // unless _src and/or _m are matrix expressions. | |
| Mat src = _src.getMat(), m = _m.getMat(); | |
| CV_Assert( src.type() == CV_32FC2 && m.type() == CV_32F && m.size() == Size(3, 2) ); | |
| // [re]create the output array so that it has the proper size and type. | |
| // In case of Mat it calls Mat::create, in case of STL vector it calls vector::resize. | |
| _dst.create(src.size(), src.type()); | |
| Mat dst = _dst.getMat(); | |
| for( int i = 0; i < src.rows; i++ ) | |
| for( int j = 0; j < src.cols; j++ ) | |
| { | |
| Point2f pt = src.at<Point2f>(i, j); | |
| dst.at<Point2f>(i, j) = Point2f(m.at<float>(0, 0)*pt.x + | |
| m.at<float>(0, 1)*pt.y + | |
| m.at<float>(0, 2), | |
| m.at<float>(1, 0)*pt.x + | |
| m.at<float>(1, 1)*pt.y + | |
| m.at<float>(1, 2)); | |
| } | |
| } | |
| @endcode | |
| There is another related type, InputArrayOfArrays, which is currently defined as a synonym for | |
| InputArray: | |
| @code | |
| typedef InputArray InputArrayOfArrays; | |
| @endcode | |
| It denotes function arguments that are either vectors of vectors or vectors of matrices. A separate | |
| synonym is needed to generate Python/Java etc. wrappers properly. At the function implementation | |
| level their use is similar, but _InputArray::getMat(idx) should be used to get header for the | |
| idx-th component of the outer vector and _InputArray::size().area() should be used to find the | |
| number of components (vectors/matrices) of the outer vector. | |
| In general, type support is limited to cv::Mat types. Other types are forbidden. | |
| But in some cases we need to support passing of custom non-general Mat types, like arrays of cv::KeyPoint, cv::DMatch, etc. | |
| This data is not intended to be interpreted as an image data, or processed somehow like regular cv::Mat. | |
| To pass such custom type use rawIn() / rawOut() / rawInOut() wrappers. | |
| Custom type is wrapped as Mat-compatible `CV_8UC<N>` values (N = sizeof(T), N <= CV_CN_MAX). | |
| */ | |
| class CV_EXPORTS _InputArray | |
| { | |
| public: | |
| enum KindFlag { | |
| KIND_SHIFT = 16, | |
| FIXED_TYPE = 0x8000 << KIND_SHIFT, | |
| FIXED_SIZE = 0x4000 << KIND_SHIFT, | |
| KIND_MASK = 31 << KIND_SHIFT, | |
| NONE = 0 << KIND_SHIFT, | |
| MAT = 1 << KIND_SHIFT, | |
| MATX = 2 << KIND_SHIFT, | |
| STD_VECTOR = 3 << KIND_SHIFT, | |
| STD_VECTOR_VECTOR = 4 << KIND_SHIFT, | |
| STD_VECTOR_MAT = 5 << KIND_SHIFT, | |
| EXPR = 6 << KIND_SHIFT, //!< removed: https://github.com/opencv/opencv/pull/17046 | |
| OPENGL_BUFFER = 7 << KIND_SHIFT, | |
| CUDA_HOST_MEM = 8 << KIND_SHIFT, | |
| CUDA_GPU_MAT = 9 << KIND_SHIFT, | |
| UMAT =10 << KIND_SHIFT, | |
| STD_VECTOR_UMAT =11 << KIND_SHIFT, | |
| STD_BOOL_VECTOR =12 << KIND_SHIFT, | |
| STD_VECTOR_CUDA_GPU_MAT = 13 << KIND_SHIFT, | |
| STD_ARRAY =14 << KIND_SHIFT, //!< removed: https://github.com/opencv/opencv/issues/18897 | |
| STD_ARRAY_MAT =15 << KIND_SHIFT | |
| }; | |
| _InputArray(); | |
| _InputArray(int _flags, void* _obj); | |
| _InputArray(const Mat& m); | |
| _InputArray(const MatExpr& expr); | |
| _InputArray(const std::vector<Mat>& vec); | |
| template<typename _Tp> _InputArray(const Mat_<_Tp>& m); | |
| template<typename _Tp> _InputArray(const std::vector<_Tp>& vec); | |
| _InputArray(const std::vector<bool>& vec); | |
| template<typename _Tp> _InputArray(const std::vector<std::vector<_Tp> >& vec); | |
| _InputArray(const std::vector<std::vector<bool> >&) = delete; // not supported | |
| template<typename _Tp> _InputArray(const std::vector<Mat_<_Tp> >& vec); | |
| template<typename _Tp> _InputArray(const _Tp* vec, int n); | |
| template<typename _Tp, int m, int n> _InputArray(const Matx<_Tp, m, n>& matx); | |
| _InputArray(const double& val); | |
| _InputArray(const cuda::GpuMat& d_mat); | |
| _InputArray(const std::vector<cuda::GpuMat>& d_mat_array); | |
| _InputArray(const ogl::Buffer& buf); | |
| _InputArray(const cuda::HostMem& cuda_mem); | |
| template<typename _Tp> _InputArray(const cudev::GpuMat_<_Tp>& m); | |
| _InputArray(const UMat& um); | |
| _InputArray(const std::vector<UMat>& umv); | |
| template<typename _Tp, std::size_t _Nm> _InputArray(const std::array<_Tp, _Nm>& arr); | |
| template<std::size_t _Nm> _InputArray(const std::array<Mat, _Nm>& arr); | |
| template<typename _Tp> static _InputArray rawIn(const std::vector<_Tp>& vec); | |
| template<typename _Tp, std::size_t _Nm> static _InputArray rawIn(const std::array<_Tp, _Nm>& arr); | |
| Mat getMat(int idx=-1) const; | |
| Mat getMat_(int idx=-1) const; | |
| UMat getUMat(int idx=-1) const; | |
| void getMatVector(std::vector<Mat>& mv) const; | |
| void getUMatVector(std::vector<UMat>& umv) const; | |
| void getGpuMatVector(std::vector<cuda::GpuMat>& gpumv) const; | |
| cuda::GpuMat getGpuMat() const; | |
| ogl::Buffer getOGlBuffer() const; | |
| int getFlags() const; | |
| void* getObj() const; | |
| Size getSz() const; | |
| _InputArray::KindFlag kind() const; | |
| int dims(int i=-1) const; | |
| int cols(int i=-1) const; | |
| int rows(int i=-1) const; | |
| Size size(int i=-1) const; | |
| int sizend(int* sz, int i=-1) const; | |
| bool sameSize(const _InputArray& arr) const; | |
| size_t total(int i=-1) const; | |
| int type(int i=-1) const; | |
| int depth(int i=-1) const; | |
| int channels(int i=-1) const; | |
| bool isContinuous(int i=-1) const; | |
| bool isSubmatrix(int i=-1) const; | |
| bool empty() const; | |
| void copyTo(const _OutputArray& arr) const; | |
| void copyTo(const _OutputArray& arr, const _InputArray & mask) const; | |
| size_t offset(int i=-1) const; | |
| size_t step(int i=-1) const; | |
| bool isMat() const; | |
| bool isUMat() const; | |
| bool isMatVector() const; | |
| bool isUMatVector() const; | |
| bool isMatx() const; | |
| bool isVector() const; | |
| bool isGpuMat() const; | |
| bool isGpuMatVector() const; | |
| ~_InputArray(); | |
| protected: | |
| int flags; | |
| void* obj; | |
| Size sz; | |
| void init(int _flags, const void* _obj); | |
| void init(int _flags, const void* _obj, Size _sz); | |
| }; | |
| CV_ENUM_FLAGS(_InputArray::KindFlag) | |
| __CV_ENUM_FLAGS_BITWISE_AND(_InputArray::KindFlag, int, _InputArray::KindFlag) | |
| /** @brief This type is very similar to InputArray except that it is used for input/output and output function | |
| parameters. | |
| Just like with InputArray, OpenCV users should not care about OutputArray, they just pass `Mat`, | |
| `vector<T>` etc. to the functions. The same limitation as for `InputArray`: *Do not explicitly | |
| create OutputArray instances* applies here too. | |
| If you want to make your function polymorphic (i.e. accept different arrays as output parameters), | |
| it is also not very difficult. Take the sample above as the reference. Note that | |
| _OutputArray::create() needs to be called before _OutputArray::getMat(). This way you guarantee | |
| that the output array is properly allocated. | |
| Optional output parameters. If you do not need certain output array to be computed and returned to | |
| you, pass cv::noArray(), just like you would in the case of optional input array. At the | |
| implementation level, use _OutputArray::needed() to check if certain output array needs to be | |
| computed or not. | |
| There are several synonyms for OutputArray that are used to assist automatic Python/Java/... wrapper | |
| generators: | |
| @code | |
| typedef OutputArray OutputArrayOfArrays; | |
| typedef OutputArray InputOutputArray; | |
| typedef OutputArray InputOutputArrayOfArrays; | |
| @endcode | |
| */ | |
| class CV_EXPORTS _OutputArray : public _InputArray | |
| { | |
| public: | |
| enum DepthMask | |
| { | |
| DEPTH_MASK_8U = 1 << CV_8U, | |
| DEPTH_MASK_8S = 1 << CV_8S, | |
| DEPTH_MASK_16U = 1 << CV_16U, | |
| DEPTH_MASK_16S = 1 << CV_16S, | |
| DEPTH_MASK_32S = 1 << CV_32S, | |
| DEPTH_MASK_32F = 1 << CV_32F, | |
| DEPTH_MASK_64F = 1 << CV_64F, | |
| DEPTH_MASK_16F = 1 << CV_16F, | |
| DEPTH_MASK_ALL = (DEPTH_MASK_64F<<1)-1, | |
| DEPTH_MASK_ALL_BUT_8S = DEPTH_MASK_ALL & ~DEPTH_MASK_8S, | |
| DEPTH_MASK_ALL_16F = (DEPTH_MASK_16F<<1)-1, | |
| DEPTH_MASK_FLT = DEPTH_MASK_32F + DEPTH_MASK_64F | |
| }; | |
| _OutputArray(); | |
| _OutputArray(int _flags, void* _obj); | |
| _OutputArray(Mat& m); | |
| _OutputArray(std::vector<Mat>& vec); | |
| _OutputArray(cuda::GpuMat& d_mat); | |
| _OutputArray(std::vector<cuda::GpuMat>& d_mat); | |
| _OutputArray(ogl::Buffer& buf); | |
| _OutputArray(cuda::HostMem& cuda_mem); | |
| template<typename _Tp> _OutputArray(cudev::GpuMat_<_Tp>& m); | |
| template<typename _Tp> _OutputArray(std::vector<_Tp>& vec); | |
| _OutputArray(std::vector<bool>& vec) = delete; // not supported | |
| template<typename _Tp> _OutputArray(std::vector<std::vector<_Tp> >& vec); | |
| _OutputArray(std::vector<std::vector<bool> >&) = delete; // not supported | |
| template<typename _Tp> _OutputArray(std::vector<Mat_<_Tp> >& vec); | |
| template<typename _Tp> _OutputArray(Mat_<_Tp>& m); | |
| template<typename _Tp> _OutputArray(_Tp* vec, int n); | |
| template<typename _Tp, int m, int n> _OutputArray(Matx<_Tp, m, n>& matx); | |
| _OutputArray(UMat& m); | |
| _OutputArray(std::vector<UMat>& vec); | |
| _OutputArray(const Mat& m); | |
| _OutputArray(const std::vector<Mat>& vec); | |
| _OutputArray(const cuda::GpuMat& d_mat); | |
| _OutputArray(const std::vector<cuda::GpuMat>& d_mat); | |
| _OutputArray(const ogl::Buffer& buf); | |
| _OutputArray(const cuda::HostMem& cuda_mem); | |
| template<typename _Tp> _OutputArray(const cudev::GpuMat_<_Tp>& m); | |
| template<typename _Tp> _OutputArray(const std::vector<_Tp>& vec); | |
| template<typename _Tp> _OutputArray(const std::vector<std::vector<_Tp> >& vec); | |
| template<typename _Tp> _OutputArray(const std::vector<Mat_<_Tp> >& vec); | |
| template<typename _Tp> _OutputArray(const Mat_<_Tp>& m); | |
| template<typename _Tp> _OutputArray(const _Tp* vec, int n); | |
| template<typename _Tp, int m, int n> _OutputArray(const Matx<_Tp, m, n>& matx); | |
| _OutputArray(const UMat& m); | |
| _OutputArray(const std::vector<UMat>& vec); | |
| template<typename _Tp, std::size_t _Nm> _OutputArray(std::array<_Tp, _Nm>& arr); | |
| template<typename _Tp, std::size_t _Nm> _OutputArray(const std::array<_Tp, _Nm>& arr); | |
| template<std::size_t _Nm> _OutputArray(std::array<Mat, _Nm>& arr); | |
| template<std::size_t _Nm> _OutputArray(const std::array<Mat, _Nm>& arr); | |
| template<typename _Tp> static _OutputArray rawOut(std::vector<_Tp>& vec); | |
| template<typename _Tp, std::size_t _Nm> static _OutputArray rawOut(std::array<_Tp, _Nm>& arr); | |
| bool fixedSize() const; | |
| bool fixedType() const; | |
| bool needed() const; | |
| Mat& getMatRef(int i=-1) const; | |
| UMat& getUMatRef(int i=-1) const; | |
| cuda::GpuMat& getGpuMatRef() const; | |
| std::vector<cuda::GpuMat>& getGpuMatVecRef() const; | |
| ogl::Buffer& getOGlBufferRef() const; | |
| cuda::HostMem& getHostMemRef() const; | |
| void create(Size sz, int type, int i=-1, bool allowTransposed=false, _OutputArray::DepthMask fixedDepthMask=static_cast<_OutputArray::DepthMask>(0)) const; | |
| void create(int rows, int cols, int type, int i=-1, bool allowTransposed=false, _OutputArray::DepthMask fixedDepthMask=static_cast<_OutputArray::DepthMask>(0)) const; | |
| void create(int dims, const int* size, int type, int i=-1, bool allowTransposed=false, _OutputArray::DepthMask fixedDepthMask=static_cast<_OutputArray::DepthMask>(0)) const; | |
| void createSameSize(const _InputArray& arr, int mtype) const; | |
| void release() const; | |
| void clear() const; | |
| void setTo(const _InputArray& value, const _InputArray & mask = _InputArray()) const; | |
| void assign(const UMat& u) const; | |
| void assign(const Mat& m) const; | |
| void assign(const std::vector<UMat>& v) const; | |
| void assign(const std::vector<Mat>& v) const; | |
| void move(UMat& u) const; | |
| void move(Mat& m) const; | |
| }; | |
| class CV_EXPORTS _InputOutputArray : public _OutputArray | |
| { | |
| public: | |
| _InputOutputArray(); | |
| _InputOutputArray(int _flags, void* _obj); | |
| _InputOutputArray(Mat& m); | |
| _InputOutputArray(std::vector<Mat>& vec); | |
| _InputOutputArray(cuda::GpuMat& d_mat); | |
| _InputOutputArray(ogl::Buffer& buf); | |
| _InputOutputArray(cuda::HostMem& cuda_mem); | |
| template<typename _Tp> _InputOutputArray(cudev::GpuMat_<_Tp>& m); | |
| template<typename _Tp> _InputOutputArray(std::vector<_Tp>& vec); | |
| _InputOutputArray(std::vector<bool>& vec) = delete; // not supported | |
| template<typename _Tp> _InputOutputArray(std::vector<std::vector<_Tp> >& vec); | |
| template<typename _Tp> _InputOutputArray(std::vector<Mat_<_Tp> >& vec); | |
| template<typename _Tp> _InputOutputArray(Mat_<_Tp>& m); | |
| template<typename _Tp> _InputOutputArray(_Tp* vec, int n); | |
| template<typename _Tp, int m, int n> _InputOutputArray(Matx<_Tp, m, n>& matx); | |
| _InputOutputArray(UMat& m); | |
| _InputOutputArray(std::vector<UMat>& vec); | |
| _InputOutputArray(const Mat& m); | |
| _InputOutputArray(const std::vector<Mat>& vec); | |
| _InputOutputArray(const cuda::GpuMat& d_mat); | |
| _InputOutputArray(const std::vector<cuda::GpuMat>& d_mat); | |
| _InputOutputArray(const ogl::Buffer& buf); | |
| _InputOutputArray(const cuda::HostMem& cuda_mem); | |
| template<typename _Tp> _InputOutputArray(const cudev::GpuMat_<_Tp>& m); | |
| template<typename _Tp> _InputOutputArray(const std::vector<_Tp>& vec); | |
| template<typename _Tp> _InputOutputArray(const std::vector<std::vector<_Tp> >& vec); | |
| template<typename _Tp> _InputOutputArray(const std::vector<Mat_<_Tp> >& vec); | |
| template<typename _Tp> _InputOutputArray(const Mat_<_Tp>& m); | |
| template<typename _Tp> _InputOutputArray(const _Tp* vec, int n); | |
| template<typename _Tp, int m, int n> _InputOutputArray(const Matx<_Tp, m, n>& matx); | |
| _InputOutputArray(const UMat& m); | |
| _InputOutputArray(const std::vector<UMat>& vec); | |
| template<typename _Tp, std::size_t _Nm> _InputOutputArray(std::array<_Tp, _Nm>& arr); | |
| template<typename _Tp, std::size_t _Nm> _InputOutputArray(const std::array<_Tp, _Nm>& arr); | |
| template<std::size_t _Nm> _InputOutputArray(std::array<Mat, _Nm>& arr); | |
| template<std::size_t _Nm> _InputOutputArray(const std::array<Mat, _Nm>& arr); | |
| template<typename _Tp> static _InputOutputArray rawInOut(std::vector<_Tp>& vec); | |
| template<typename _Tp, std::size_t _Nm> _InputOutputArray rawInOut(std::array<_Tp, _Nm>& arr); | |
| }; | |
| /** Helper to wrap custom types. @see InputArray */ | |
| template<typename _Tp> static inline _InputArray rawIn(_Tp& v); | |
| /** Helper to wrap custom types. @see InputArray */ | |
| template<typename _Tp> static inline _OutputArray rawOut(_Tp& v); | |
| /** Helper to wrap custom types. @see InputArray */ | |
| template<typename _Tp> static inline _InputOutputArray rawInOut(_Tp& v); | |
| CV__DEBUG_NS_END | |
| typedef const _InputArray& InputArray; | |
| typedef InputArray InputArrayOfArrays; | |
| typedef const _OutputArray& OutputArray; | |
| typedef OutputArray OutputArrayOfArrays; | |
| typedef const _InputOutputArray& InputOutputArray; | |
| typedef InputOutputArray InputOutputArrayOfArrays; | |
| /** @brief Returns an empty InputArray or OutputArray. | |
| This function is used to provide an "empty" or "null" array when certain functions | |
| take optional input or output arrays that you don't want to provide. | |
| Many OpenCV functions accept optional arguments as `cv::InputArray` or `cv::OutputArray`. | |
| When you don't want to pass any data for these optional parameters, you can use `cv::noArray()` | |
| to indicate that you are omitting them. | |
| @return An empty `cv::InputArray` or `cv::OutputArray` that can be used as a placeholder. | |
| @note This is often used when a function has optional arrays, and you do not want to | |
| provide a specific input or output array. | |
| @see cv::InputArray, cv::OutputArray | |
| */ | |
| CV_EXPORTS InputOutputArray noArray(); | |
| /////////////////////////////////// MatAllocator ////////////////////////////////////// | |
| /** @brief Usage flags for allocator | |
| @warning All flags except `USAGE_DEFAULT` are experimental. | |
| @warning For the OpenCL allocator, `USAGE_ALLOCATE_SHARED_MEMORY` depends on | |
| OpenCV's optional, experimental integration with OpenCL SVM. To enable this | |
| integration, build OpenCV using the `WITH_OPENCL_SVM=ON` CMake option and, at | |
| runtime, call `cv::ocl::Context::getDefault().setUseSVM(true);` or similar | |
| code. Note that SVM is incompatible with OpenCL 1.x. | |
| */ | |
| enum UMatUsageFlags | |
| { | |
| USAGE_DEFAULT = 0, | |
| // buffer allocation policy is platform and usage specific | |
| USAGE_ALLOCATE_HOST_MEMORY = 1 << 0, | |
| USAGE_ALLOCATE_DEVICE_MEMORY = 1 << 1, | |
| USAGE_ALLOCATE_SHARED_MEMORY = 1 << 2, // It is not equal to: USAGE_ALLOCATE_HOST_MEMORY | USAGE_ALLOCATE_DEVICE_MEMORY | |
| __UMAT_USAGE_FLAGS_32BIT = 0x7fffffff // Binary compatibility hint | |
| }; | |
| struct CV_EXPORTS UMatData; | |
| /** @brief Custom array allocator | |
| */ | |
| class CV_EXPORTS MatAllocator | |
| { | |
| public: | |
| MatAllocator() {} | |
| virtual ~MatAllocator() {} | |
| // let's comment it off for now to detect and fix all the uses of allocator | |
| //virtual void allocate(int dims, const int* sizes, int type, int*& refcount, | |
| // uchar*& datastart, uchar*& data, size_t* step) = 0; | |
| //virtual void deallocate(int* refcount, uchar* datastart, uchar* data) = 0; | |
| virtual UMatData* allocate(int dims, const int* sizes, int type, | |
| void* data, size_t* step, AccessFlag flags, UMatUsageFlags usageFlags) const = 0; | |
| virtual bool allocate(UMatData* data, AccessFlag accessflags, UMatUsageFlags usageFlags) const = 0; | |
| virtual void deallocate(UMatData* data) const = 0; | |
| virtual void map(UMatData* data, AccessFlag accessflags) const; | |
| virtual void unmap(UMatData* data) const; | |
| virtual void download(UMatData* data, void* dst, int dims, const size_t sz[], | |
| const size_t srcofs[], const size_t srcstep[], | |
| const size_t dststep[]) const; | |
| virtual void upload(UMatData* data, const void* src, int dims, const size_t sz[], | |
| const size_t dstofs[], const size_t dststep[], | |
| const size_t srcstep[]) const; | |
| virtual void copy(UMatData* srcdata, UMatData* dstdata, int dims, const size_t sz[], | |
| const size_t srcofs[], const size_t srcstep[], | |
| const size_t dstofs[], const size_t dststep[], bool sync) const; | |
| // default implementation returns DummyBufferPoolController | |
| virtual BufferPoolController* getBufferPoolController(const char* id = NULL) const; | |
| }; | |
| //////////////////////////////// MatCommaInitializer ////////////////////////////////// | |
| /** @brief Comma-separated Matrix Initializer | |
| The class instances are usually not created explicitly. | |
| Instead, they are created on "matrix << firstValue" operator. | |
| The sample below initializes 2x2 rotation matrix: | |
| \code | |
| double angle = 30, a = cos(angle*CV_PI/180), b = sin(angle*CV_PI/180); | |
| Mat R = (Mat_<double>(2,2) << a, -b, b, a); | |
| \endcode | |
| */ | |
| template<typename _Tp> class MatCommaInitializer_ | |
| { | |
| public: | |
| //! the constructor, created by "matrix << firstValue" operator, where matrix is cv::Mat | |
| MatCommaInitializer_(Mat_<_Tp>* _m); | |
| //! the operator that takes the next value and put it to the matrix | |
| template<typename T2> MatCommaInitializer_<_Tp>& operator , (T2 v); | |
| //! another form of conversion operator | |
| operator Mat_<_Tp>() const; | |
| protected: | |
| MatIterator_<_Tp> it; | |
| }; | |
| /////////////////////////////////////// Mat /////////////////////////////////////////// | |
| // note that umatdata might be allocated together | |
| // with the matrix data, not as a separate object. | |
| // therefore, it does not have constructor or destructor; | |
| // it should be explicitly initialized using init(). | |
| struct CV_EXPORTS UMatData | |
| { | |
| enum MemoryFlag { COPY_ON_MAP=1, HOST_COPY_OBSOLETE=2, | |
| DEVICE_COPY_OBSOLETE=4, TEMP_UMAT=8, TEMP_COPIED_UMAT=24, | |
| USER_ALLOCATED=32, DEVICE_MEM_MAPPED=64, | |
| ASYNC_CLEANUP=128 | |
| }; | |
| UMatData(const MatAllocator* allocator); | |
| ~UMatData(); | |
| // provide atomic access to the structure | |
| void lock(); | |
| void unlock(); | |
| bool hostCopyObsolete() const; | |
| bool deviceCopyObsolete() const; | |
| bool deviceMemMapped() const; | |
| bool copyOnMap() const; | |
| bool tempUMat() const; | |
| bool tempCopiedUMat() const; | |
| void markHostCopyObsolete(bool flag); | |
| void markDeviceCopyObsolete(bool flag); | |
| void markDeviceMemMapped(bool flag); | |
| const MatAllocator* prevAllocator; | |
| const MatAllocator* currAllocator; | |
| int urefcount; | |
| int refcount; | |
| uchar* data; | |
| uchar* origdata; | |
| size_t size; | |
| UMatData::MemoryFlag flags; | |
| void* handle; | |
| void* userdata; | |
| int allocatorFlags_; | |
| int mapcount; | |
| UMatData* originalUMatData; | |
| std::shared_ptr<void> allocatorContext; | |
| }; | |
| CV_ENUM_FLAGS(UMatData::MemoryFlag) | |
| struct CV_EXPORTS MatSize | |
| { | |
| explicit MatSize(int* _p) CV_NOEXCEPT; | |
| int dims() const CV_NOEXCEPT; | |
| Size operator()() const; | |
| const int& operator[](int i) const; | |
| int& operator[](int i); | |
| operator const int*() const CV_NOEXCEPT; // TODO OpenCV 4.0: drop this | |
| bool operator == (const MatSize& sz) const CV_NOEXCEPT; | |
| bool operator != (const MatSize& sz) const CV_NOEXCEPT; | |
| int* p; | |
| }; | |
| struct CV_EXPORTS MatStep | |
| { | |
| MatStep() CV_NOEXCEPT; | |
| explicit MatStep(size_t s) CV_NOEXCEPT; | |
| const size_t& operator[](int i) const CV_NOEXCEPT; | |
| size_t& operator[](int i) CV_NOEXCEPT; | |
| operator size_t() const; | |
| MatStep& operator = (size_t s); | |
| size_t* p; | |
| size_t buf[2]; | |
| protected: | |
| MatStep& operator = (const MatStep&); | |
| }; | |
| /** @example samples/cpp/cout_mat.cpp | |
| An example demonstrating the serial out capabilities of cv::Mat | |
| */ | |
| /** @brief n-dimensional dense array class \anchor CVMat_Details | |
| The class Mat represents an n-dimensional dense numerical single-channel or multi-channel array. It | |
| can be used to store real or complex-valued vectors and matrices, grayscale or color images, voxel | |
| volumes, vector fields, point clouds, tensors, histograms (though, very high-dimensional histograms | |
| may be better stored in a SparseMat ). The data layout of the array `M` is defined by the array | |
| `M.step[]`, so that the address of element \f$(i_0,...,i_{M.dims-1})\f$, where \f$0\leq i_k<M.size[k]\f$, is | |
| computed as: | |
| \f[addr(M_{i_0,...,i_{M.dims-1}}) = M.data + M.step[0]*i_0 + M.step[1]*i_1 + ... + M.step[M.dims-1]*i_{M.dims-1}\f] | |
| In case of a 2-dimensional array, the above formula is reduced to: | |
| \f[addr(M_{i,j}) = M.data + M.step[0]*i + M.step[1]*j\f] | |
| Note that `M.step[i] >= M.step[i+1]` (in fact, `M.step[i] >= M.step[i+1]*M.size[i+1]` ). This means | |
| that 2-dimensional matrices are stored row-by-row, 3-dimensional matrices are stored plane-by-plane, | |
| and so on. M.step[M.dims-1] is minimal and always equal to the element size M.elemSize() . | |
| So, the data layout in Mat is compatible with the majority of dense array types from the standard | |
| toolkits and SDKs, such as Numpy (ndarray), Win32 (independent device bitmaps), and others, | |
| that is, with any array that uses *steps* (or *strides*) to compute the position of a pixel. | |
| Due to this compatibility, it is possible to make a Mat header for user-allocated data and process | |
| it in-place using OpenCV functions. | |
| There are many different ways to create a Mat object. The most popular options are listed below: | |
| - Use the create(nrows, ncols, type) method or the similar Mat(nrows, ncols, type[, fillValue]) | |
| constructor. A new array of the specified size and type is allocated. type has the same meaning as | |
| in the cvCreateMat method. For example, CV_8UC1 means a 8-bit single-channel array, CV_32FC2 | |
| means a 2-channel (complex) floating-point array, and so on. | |
| @code | |
| // make a 7x7 complex matrix filled with 1+3j. | |
| Mat M(7,7,CV_32FC2,Scalar(1,3)); | |
| // and now turn M to a 100x60 15-channel 8-bit matrix. | |
| // The old content will be deallocated | |
| M.create(100,60,CV_8UC(15)); | |
| @endcode | |
| As noted in the introduction to this chapter, create() allocates only a new array when the shape | |
| or type of the current array are different from the specified ones. | |
| - Create a multi-dimensional array: | |
| @code | |
| // create a 100x100x100 8-bit array | |
| int sz[] = {100, 100, 100}; | |
| Mat bigCube(3, sz, CV_8U, Scalar::all(0)); | |
| @endcode | |
| It passes the number of dimensions =1 to the Mat constructor but the created array will be | |
| 2-dimensional with the number of columns set to 1. So, Mat::dims is always \>= 2 (can also be 0 | |
| when the array is empty). | |
| - Use a copy constructor or assignment operator where there can be an array or expression on the | |
| right side (see below). As noted in the introduction, the array assignment is an O(1) operation | |
| because it only copies the header and increases the reference counter. The Mat::clone() method can | |
| be used to get a full (deep) copy of the array when you need it. | |
| - Construct a header for a part of another array. It can be a single row, single column, several | |
| rows, several columns, rectangular region in the array (called a *minor* in algebra) or a | |
| diagonal. Such operations are also O(1) because the new header references the same data. You can | |
| actually modify a part of the array using this feature, for example: | |
| @code | |
| // add the 5-th row, multiplied by 3 to the 3rd row | |
| M.row(3) = M.row(3) + M.row(5)*3; | |
| // now copy the 7-th column to the 1-st column | |
| // M.col(1) = M.col(7); // this will not work | |
| Mat M1 = M.col(1); | |
| M.col(7).copyTo(M1); | |
| // create a new 320x240 image | |
| Mat img(Size(320,240),CV_8UC3); | |
| // select a ROI | |
| Mat roi(img, Rect(10,10,100,100)); | |
| // fill the ROI with (0,255,0) (which is green in RGB space); | |
| // the original 320x240 image will be modified | |
| roi = Scalar(0,255,0); | |
| @endcode | |
| Due to the additional datastart and dataend members, it is possible to compute a relative | |
| sub-array position in the main *container* array using locateROI(): | |
| @code | |
| Mat A = Mat::eye(10, 10, CV_32S); | |
| // extracts A columns, 1 (inclusive) to 3 (exclusive). | |
| Mat B = A(Range::all(), Range(1, 3)); | |
| // extracts B rows, 5 (inclusive) to 9 (exclusive). | |
| // that is, C \~ A(Range(5, 9), Range(1, 3)) | |
| Mat C = B(Range(5, 9), Range::all()); | |
| Size size; Point ofs; | |
| C.locateROI(size, ofs); | |
| // size will be (width=10,height=10) and the ofs will be (x=1, y=5) | |
| @endcode | |
| As in case of whole matrices, if you need a deep copy, use the `clone()` method of the extracted | |
| sub-matrices. | |
| - Make a header for user-allocated data. It can be useful to do the following: | |
| -# Process "foreign" data using OpenCV (for example, when you implement a DirectShow\* filter or | |
| a processing module for gstreamer, and so on). For example: | |
| @code | |
| Mat process_video_frame(const unsigned char* pixels, | |
| int width, int height, int step) | |
| { | |
| // wrap input buffer | |
| Mat img(height, width, CV_8UC3, (unsigned char*)pixels, step); | |
| Mat result; | |
| GaussianBlur(img, result, Size(7, 7), 1.5, 1.5); | |
| return result; | |
| } | |
| @endcode | |
| -# Quickly initialize small matrices and/or get a super-fast element access. | |
| @code | |
| double m[3][3] = {{a, b, c}, {d, e, f}, {g, h, i}}; | |
| Mat M = Mat(3, 3, CV_64F, m).inv(); | |
| @endcode | |
| . | |
| - Use MATLAB-style array initializers, zeros(), ones(), eye(), for example: | |
| @code | |
| // create a double-precision identity matrix and add it to M. | |
| M += Mat::eye(M.rows, M.cols, CV_64F); | |
| @endcode | |
| - Use a comma-separated initializer: | |
| @code | |
| // create a 3x3 double-precision identity matrix | |
| Mat M = (Mat_<double>(3,3) << 1, 0, 0, 0, 1, 0, 0, 0, 1); | |
| @endcode | |
| With this approach, you first call a constructor of the Mat class with the proper parameters, and | |
| then you just put `<< operator` followed by comma-separated values that can be constants, | |
| variables, expressions, and so on. Also, note the extra parentheses required to avoid compilation | |
| errors. | |
| Once the array is created, it is automatically managed via a reference-counting mechanism. If the | |
| array header is built on top of user-allocated data, you should handle the data by yourself. The | |
| array data is deallocated when no one points to it. If you want to release the data pointed by a | |
| array header before the array destructor is called, use Mat::release(). | |
| The next important thing to learn about the array class is element access. This manual already | |
| described how to compute an address of each array element. Normally, you are not required to use the | |
| formula directly in the code. If you know the array element type (which can be retrieved using the | |
| method Mat::type() ), you can access the element \f$M_{ij}\f$ of a 2-dimensional array as: | |
| @code | |
| M.at<double>(i,j) += 1.f; | |
| @endcode | |
| assuming that `M` is a double-precision floating-point array. There are several variants of the method | |
| at for a different number of dimensions. | |
| If you need to process a whole row of a 2D array, the most efficient way is to get the pointer to | |
| the row first, and then just use the plain C operator [] : | |
| @code | |
| // compute sum of positive matrix elements | |
| // (assuming that M is a double-precision matrix) | |
| double sum=0; | |
| for(int i = 0; i < M.rows; i++) | |
| { | |
| const double* Mi = M.ptr<double>(i); | |
| for(int j = 0; j < M.cols; j++) | |
| sum += std::max(Mi[j], 0.); | |
| } | |
| @endcode | |
| Some operations, like the one above, do not actually depend on the array shape. They just process | |
| elements of an array one by one (or elements from multiple arrays that have the same coordinates, | |
| for example, array addition). Such operations are called *element-wise*. It makes sense to check | |
| whether all the input/output arrays are continuous, namely, have no gaps at the end of each row. If | |
| yes, process them as a long single row: | |
| @code | |
| // compute the sum of positive matrix elements, optimized variant | |
| double sum=0; | |
| int cols = M.cols, rows = M.rows; | |
| if(M.isContinuous()) | |
| { | |
| cols *= rows; | |
| rows = 1; | |
| } | |
| for(int i = 0; i < rows; i++) | |
| { | |
| const double* Mi = M.ptr<double>(i); | |
| for(int j = 0; j < cols; j++) | |
| sum += std::max(Mi[j], 0.); | |
| } | |
| @endcode | |
| In case of the continuous matrix, the outer loop body is executed just once. So, the overhead is | |
| smaller, which is especially noticeable in case of small matrices. | |
| Finally, there are STL-style iterators that are smart enough to skip gaps between successive rows: | |
| @code | |
| // compute sum of positive matrix elements, iterator-based variant | |
| double sum=0; | |
| MatConstIterator_<double> it = M.begin<double>(), it_end = M.end<double>(); | |
| for(; it != it_end; ++it) | |
| sum += std::max(*it, 0.); | |
| @endcode | |
| The matrix iterators are random-access iterators, so they can be passed to any STL algorithm, | |
| including std::sort(). | |
| @note Matrix Expressions and arithmetic see MatExpr | |
| */ | |
| class CV_EXPORTS Mat | |
| { | |
| public: | |
| /** | |
| These are various constructors that form a matrix. As noted in the AutomaticAllocation, often | |
| the default constructor is enough, and the proper matrix will be allocated by an OpenCV function. | |
| The constructed matrix can further be assigned to another matrix or matrix expression or can be | |
| allocated with Mat::create . In the former case, the old content is de-referenced. | |
| */ | |
| Mat() CV_NOEXCEPT; | |
| /** @overload | |
| @param rows Number of rows in a 2D array. | |
| @param cols Number of columns in a 2D array. | |
| @param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or | |
| CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices. | |
| */ | |
| Mat(int rows, int cols, int type); | |
| /** @overload | |
| @param size 2D array size: Size(cols, rows) . In the Size() constructor, the number of rows and the | |
| number of columns go in the reverse order. | |
| @param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or | |
| CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices. | |
| */ | |
| Mat(Size size, int type); | |
| /** @overload | |
| @param rows Number of rows in a 2D array. | |
| @param cols Number of columns in a 2D array. | |
| @param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or | |
| CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices. | |
| @param s An optional value to initialize each matrix element with. To set all the matrix elements to | |
| the particular value after the construction, use the assignment operator | |
| Mat::operator=(const Scalar& value) . | |
| */ | |
| Mat(int rows, int cols, int type, const Scalar& s); | |
| /** @overload | |
| @param size 2D array size: Size(cols, rows) . In the Size() constructor, the number of rows and the | |
| number of columns go in the reverse order. | |
| @param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or | |
| CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices. | |
| @param s An optional value to initialize each matrix element with. To set all the matrix elements to | |
| the particular value after the construction, use the assignment operator | |
| Mat::operator=(const Scalar& value) . | |
| */ | |
| Mat(Size size, int type, const Scalar& s); | |
| /** @overload | |
| @param ndims Array dimensionality. | |
| @param sizes Array of integers specifying an n-dimensional array shape. | |
| @param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or | |
| CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices. | |
| */ | |
| Mat(int ndims, const int* sizes, int type); | |
| /** @overload | |
| @param sizes Array of integers specifying an n-dimensional array shape. | |
| @param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or | |
| CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices. | |
| */ | |
| Mat(const std::vector<int>& sizes, int type); | |
| /** @overload | |
| @param ndims Array dimensionality. | |
| @param sizes Array of integers specifying an n-dimensional array shape. | |
| @param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or | |
| CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices. | |
| @param s An optional value to initialize each matrix element with. To set all the matrix elements to | |
| the particular value after the construction, use the assignment operator | |
| Mat::operator=(const Scalar& value) . | |
| */ | |
| Mat(int ndims, const int* sizes, int type, const Scalar& s); | |
| /** @overload | |
| @param sizes Array of integers specifying an n-dimensional array shape. | |
| @param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or | |
| CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices. | |
| @param s An optional value to initialize each matrix element with. To set all the matrix elements to | |
| the particular value after the construction, use the assignment operator | |
| Mat::operator=(const Scalar& value) . | |
| */ | |
| Mat(const std::vector<int>& sizes, int type, const Scalar& s); | |
| /** @overload | |
| @param m Array that (as a whole or partly) is assigned to the constructed matrix. No data is copied | |
| by these constructors. Instead, the header pointing to m data or its sub-array is constructed and | |
| associated with it. The reference counter, if any, is incremented. So, when you modify the matrix | |
| formed using such a constructor, you also modify the corresponding elements of m . If you want to | |
| have an independent copy of the sub-array, use Mat::clone() . | |
| */ | |
| Mat(const Mat& m); | |
| /** @overload | |
| @param rows Number of rows in a 2D array. | |
| @param cols Number of columns in a 2D array. | |
| @param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or | |
| CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices. | |
| @param data Pointer to the user data. Matrix constructors that take data and step parameters do not | |
| allocate matrix data. Instead, they just initialize the matrix header that points to the specified | |
| data, which means that no data is copied. This operation is very efficient and can be used to | |
| process external data using OpenCV functions. The external data is not automatically deallocated, so | |
| you should take care of it. | |
| @param step Number of bytes each matrix row occupies. The value should include the padding bytes at | |
| the end of each row, if any. If the parameter is missing (set to AUTO_STEP ), no padding is assumed | |
| and the actual step is calculated as cols*elemSize(). See Mat::elemSize. | |
| */ | |
| Mat(int rows, int cols, int type, void* data, size_t step=AUTO_STEP); | |
| /** @overload | |
| @param size 2D array size: Size(cols, rows) . In the Size() constructor, the number of rows and the | |
| number of columns go in the reverse order. | |
| @param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or | |
| CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices. | |
| @param data Pointer to the user data. Matrix constructors that take data and step parameters do not | |
| allocate matrix data. Instead, they just initialize the matrix header that points to the specified | |
| data, which means that no data is copied. This operation is very efficient and can be used to | |
| process external data using OpenCV functions. The external data is not automatically deallocated, so | |
| you should take care of it. | |
| @param step Number of bytes each matrix row occupies. The value should include the padding bytes at | |
| the end of each row, if any. If the parameter is missing (set to AUTO_STEP ), no padding is assumed | |
| and the actual step is calculated as cols*elemSize(). See Mat::elemSize. | |
| */ | |
| Mat(Size size, int type, void* data, size_t step=AUTO_STEP); | |
| /** @overload | |
| @param ndims Array dimensionality. | |
| @param sizes Array of integers specifying an n-dimensional array shape. | |
| @param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or | |
| CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices. | |
| @param data Pointer to the user data. Matrix constructors that take data and step parameters do not | |
| allocate matrix data. Instead, they just initialize the matrix header that points to the specified | |
| data, which means that no data is copied. This operation is very efficient and can be used to | |
| process external data using OpenCV functions. The external data is not automatically deallocated, so | |
| you should take care of it. | |
| @param steps Array of ndims-1 steps in case of a multi-dimensional array (the last step is always | |
| set to the element size). If not specified, the matrix is assumed to be continuous. | |
| */ | |
| Mat(int ndims, const int* sizes, int type, void* data, const size_t* steps=0); | |
| /** @overload | |
| @param sizes Array of integers specifying an n-dimensional array shape. | |
| @param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or | |
| CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices. | |
| @param data Pointer to the user data. Matrix constructors that take data and step parameters do not | |
| allocate matrix data. Instead, they just initialize the matrix header that points to the specified | |
| data, which means that no data is copied. This operation is very efficient and can be used to | |
| process external data using OpenCV functions. The external data is not automatically deallocated, so | |
| you should take care of it. | |
| @param steps Array of ndims-1 steps in case of a multi-dimensional array (the last step is always | |
| set to the element size). If not specified, the matrix is assumed to be continuous. | |
| */ | |
| Mat(const std::vector<int>& sizes, int type, void* data, const size_t* steps=0); | |
| /** @overload | |
| @param m Array that (as a whole or partly) is assigned to the constructed matrix. No data is copied | |
| by these constructors. Instead, the header pointing to m data or its sub-array is constructed and | |
| associated with it. The reference counter, if any, is incremented. So, when you modify the matrix | |
| formed using such a constructor, you also modify the corresponding elements of m . If you want to | |
| have an independent copy of the sub-array, use Mat::clone() . | |
| @param rowRange Range of the m rows to take. As usual, the range start is inclusive and the range | |
| end is exclusive. Use Range::all() to take all the rows. | |
| @param colRange Range of the m columns to take. Use Range::all() to take all the columns. | |
| */ | |
| Mat(const Mat& m, const Range& rowRange, const Range& colRange=Range::all()); | |
| /** @overload | |
| @param m Array that (as a whole or partly) is assigned to the constructed matrix. No data is copied | |
| by these constructors. Instead, the header pointing to m data or its sub-array is constructed and | |
| associated with it. The reference counter, if any, is incremented. So, when you modify the matrix | |
| formed using such a constructor, you also modify the corresponding elements of m . If you want to | |
| have an independent copy of the sub-array, use Mat::clone() . | |
| @param roi Region of interest. | |
| */ | |
| Mat(const Mat& m, const Rect& roi); | |
| /** @overload | |
| @param m Array that (as a whole or partly) is assigned to the constructed matrix. No data is copied | |
| by these constructors. Instead, the header pointing to m data or its sub-array is constructed and | |
| associated with it. The reference counter, if any, is incremented. So, when you modify the matrix | |
| formed using such a constructor, you also modify the corresponding elements of m . If you want to | |
| have an independent copy of the sub-array, use Mat::clone() . | |
| @param ranges Array of selected ranges of m along each dimensionality. | |
| */ | |
| Mat(const Mat& m, const Range* ranges); | |
| /** @overload | |
| @param m Array that (as a whole or partly) is assigned to the constructed matrix. No data is copied | |
| by these constructors. Instead, the header pointing to m data or its sub-array is constructed and | |
| associated with it. The reference counter, if any, is incremented. So, when you modify the matrix | |
| formed using such a constructor, you also modify the corresponding elements of m . If you want to | |
| have an independent copy of the sub-array, use Mat::clone() . | |
| @param ranges Array of selected ranges of m along each dimensionality. | |
| */ | |
| Mat(const Mat& m, const std::vector<Range>& ranges); | |
| /** @overload | |
| @param vec STL vector whose elements form the matrix. The matrix has a single column and the number | |
| of rows equal to the number of vector elements. Type of the matrix matches the type of vector | |
| elements. The constructor can handle arbitrary types, for which there is a properly declared | |
| DataType . This means that the vector elements must be primitive numbers or uni-type numerical | |
| tuples of numbers. Mixed-type structures are not supported. The corresponding constructor is | |
| explicit. Since STL vectors are not automatically converted to Mat instances, you should write | |
| Mat(vec) explicitly. Unless you copy the data into the matrix ( copyData=true ), no new elements | |
| will be added to the vector because it can potentially yield vector data reallocation, and, thus, | |
| the matrix data pointer will be invalid. | |
| @param copyData Flag to specify whether the underlying data of the STL vector should be copied | |
| to (true) or shared with (false) the newly constructed matrix. When the data is copied, the | |
| allocated buffer is managed using Mat reference counting mechanism. While the data is shared, | |
| the reference counter is NULL, and you should not deallocate the data until the matrix is | |
| destructed. | |
| */ | |
| template<typename _Tp> explicit Mat(const std::vector<_Tp>& vec, bool copyData=false); | |
| /** @overload | |
| */ | |
| template<typename _Tp, typename = typename std::enable_if<std::is_arithmetic<_Tp>::value>::type> | |
| explicit Mat(const std::initializer_list<_Tp> list); | |
| /** @overload | |
| */ | |
| template<typename _Tp> explicit Mat(const std::initializer_list<int> sizes, const std::initializer_list<_Tp> list); | |
| /** @overload | |
| */ | |
| template<typename _Tp, size_t _Nm> explicit Mat(const std::array<_Tp, _Nm>& arr, bool copyData=false); | |
| /** @overload | |
| */ | |
| template<typename _Tp, int n> explicit Mat(const Vec<_Tp, n>& vec, bool copyData=true); | |
| /** @overload | |
| */ | |
| template<typename _Tp, int m, int n> explicit Mat(const Matx<_Tp, m, n>& mtx, bool copyData=true); | |
| /** @overload | |
| */ | |
| template<typename _Tp> explicit Mat(const Point_<_Tp>& pt, bool copyData=true); | |
| /** @overload | |
| */ | |
| template<typename _Tp> explicit Mat(const Point3_<_Tp>& pt, bool copyData=true); | |
| /** @overload | |
| */ | |
| template<typename _Tp> explicit Mat(const MatCommaInitializer_<_Tp>& commaInitializer); | |
| //! download data from GpuMat | |
| explicit Mat(const cuda::GpuMat& m); | |
| //! destructor - calls release() | |
| ~Mat(); | |
| /** @brief assignment operators | |
| These are available assignment operators. Since they all are very different, make sure to read the | |
| operator parameters description. | |
| @param m Assigned, right-hand-side matrix. Matrix assignment is an O(1) operation. This means that | |
| no data is copied but the data is shared and the reference counter, if any, is incremented. Before | |
| assigning new data, the old data is de-referenced via Mat::release . | |
| */ | |
| Mat& operator = (const Mat& m); | |
| /** @overload | |
| @param expr Assigned matrix expression object. As opposite to the first form of the assignment | |
| operation, the second form can reuse already allocated matrix if it has the right size and type to | |
| fit the matrix expression result. It is automatically handled by the real function that the matrix | |
| expressions is expanded to. For example, C=A+B is expanded to add(A, B, C), and add takes care of | |
| automatic C reallocation. | |
| */ | |
| Mat& operator = (const MatExpr& expr); | |
| //! retrieve UMat from Mat | |
| UMat getUMat(AccessFlag accessFlags, UMatUsageFlags usageFlags = USAGE_DEFAULT) const; | |
| /** @brief Creates a matrix header for the specified matrix row. | |
| The method makes a new header for the specified matrix row and returns it. This is an O(1) | |
| operation, regardless of the matrix size. The underlying data of the new matrix is shared with the | |
| original matrix. Here is the example of one of the classical basic matrix processing operations, | |
| axpy, used by LU and many other algorithms: | |
| @code | |
| inline void matrix_axpy(Mat& A, int i, int j, double alpha) | |
| { | |
| A.row(i) += A.row(j)*alpha; | |
| } | |
| @endcode | |
| @note In the current implementation, the following code does not work as expected: | |
| @code | |
| Mat A; | |
| ... | |
| A.row(i) = A.row(j); // will not work | |
| @endcode | |
| This happens because A.row(i) forms a temporary header that is further assigned to another header. | |
| Remember that each of these operations is O(1), that is, no data is copied. Thus, the above | |
| assignment is not true if you may have expected the j-th row to be copied to the i-th row. To | |
| achieve that, you should either turn this simple assignment into an expression or use the | |
| Mat::copyTo method: | |
| @code | |
| Mat A; | |
| ... | |
| // works, but looks a bit obscure. | |
| A.row(i) = A.row(j) + 0; | |
| // this is a bit longer, but the recommended method. | |
| A.row(j).copyTo(A.row(i)); | |
| @endcode | |
| @param y A 0-based row index. | |
| */ | |
| Mat row(int y) const; | |
| /** @brief Creates a matrix header for the specified matrix column. | |
| The method makes a new header for the specified matrix column and returns it. This is an O(1) | |
| operation, regardless of the matrix size. The underlying data of the new matrix is shared with the | |
| original matrix. See also the Mat::row description. | |
| @param x A 0-based column index. | |
| */ | |
| Mat col(int x) const; | |
| /** @brief Creates a matrix header for the specified row span. | |
| The method makes a new header for the specified row span of the matrix. Similarly to Mat::row and | |
| Mat::col , this is an O(1) operation. | |
| @param startrow An inclusive 0-based start index of the row span. | |
| @param endrow An exclusive 0-based ending index of the row span. | |
| */ | |
| Mat rowRange(int startrow, int endrow) const; | |
| /** @overload | |
| @param r Range structure containing both the start and the end indices. | |
| */ | |
| Mat rowRange(const Range& r) const; | |
| /** @brief Creates a matrix header for the specified column span. | |
| The method makes a new header for the specified column span of the matrix. Similarly to Mat::row and | |
| Mat::col , this is an O(1) operation. | |
| @param startcol An inclusive 0-based start index of the column span. | |
| @param endcol An exclusive 0-based ending index of the column span. | |
| */ | |
| Mat colRange(int startcol, int endcol) const; | |
| /** @overload | |
| @param r Range structure containing both the start and the end indices. | |
| */ | |
| Mat colRange(const Range& r) const; | |
| /** @brief Extracts a diagonal from a matrix | |
| The method makes a new header for the specified matrix diagonal. The new matrix is represented as a | |
| single-column matrix. Similarly to Mat::row and Mat::col, this is an O(1) operation. | |
| @param d index of the diagonal, with the following values: | |
| - `d=0` is the main diagonal. | |
| - `d<0` is a diagonal from the lower half. For example, d=-1 means the diagonal is set | |
| immediately below the main one. | |
| - `d>0` is a diagonal from the upper half. For example, d=1 means the diagonal is set | |
| immediately above the main one. | |
| For example: | |
| @code | |
| Mat m = (Mat_<int>(3,3) << | |
| 1,2,3, | |
| 4,5,6, | |
| 7,8,9); | |
| Mat d0 = m.diag(0); | |
| Mat d1 = m.diag(1); | |
| Mat d_1 = m.diag(-1); | |
| @endcode | |
| The resulting matrices are | |
| @code | |
| d0 = | |
| [1; | |
| 5; | |
| 9] | |
| d1 = | |
| [2; | |
| 6] | |
| d_1 = | |
| [4; | |
| 8] | |
| @endcode | |
| */ | |
| Mat diag(int d=0) const; | |
| /** @brief creates a diagonal matrix | |
| The method creates a square diagonal matrix from specified main diagonal. | |
| @param d One-dimensional matrix that represents the main diagonal. | |
| */ | |
| CV_NODISCARD_STD static Mat diag(const Mat& d); | |
| /** @brief Creates a full copy of the array and the underlying data. | |
| The method creates a full copy of the array. The original step[] is not taken into account. So, the | |
| array copy is a continuous array occupying total()*elemSize() bytes. | |
| */ | |
| CV_NODISCARD_STD Mat clone() const; | |
| /** @brief Copies the matrix to another one. | |
| The method copies the matrix data to another matrix. Before copying the data, the method invokes : | |
| @code | |
| m.create(this->size(), this->type()); | |
| @endcode | |
| so that the destination matrix is reallocated if needed. While m.copyTo(m); works flawlessly, the | |
| function does not handle the case of a partial overlap between the source and the destination | |
| matrices. | |
| When the operation mask is specified, if the Mat::create call shown above reallocates the matrix, | |
| the newly allocated matrix is initialized with all zeros before copying the data. | |
| @param m Destination matrix. If it does not have a proper size or type before the operation, it is | |
| reallocated. | |
| */ | |
| void copyTo( OutputArray m ) const; | |
| /** @overload | |
| @param m Destination matrix. If it does not have a proper size or type before the operation, it is | |
| reallocated. | |
| @param mask Operation mask of the same size as \*this. Its non-zero elements indicate which matrix | |
| elements need to be copied. The mask has to be of type CV_8U and can have 1 or multiple channels. | |
| */ | |
| void copyTo( OutputArray m, InputArray mask ) const; | |
| /** @brief Converts an array to another data type with optional scaling. | |
| The method converts source pixel values to the target data type. saturate_cast\<\> is applied at | |
| the end to avoid possible overflows: | |
| \f[m(x,y) = saturate \_ cast<rType>( \alpha (*this)(x,y) + \beta )\f] | |
| @param m output matrix; if it does not have a proper size or type before the operation, it is | |
| reallocated. | |
| @param rtype desired output matrix type or, rather, the depth since the number of channels are the | |
| same as the input has; if rtype is negative, the output matrix will have the same type as the input. | |
| @param alpha optional scale factor. | |
| @param beta optional delta added to the scaled values. | |
| */ | |
| void convertTo( OutputArray m, int rtype, double alpha=1, double beta=0 ) const; | |
| /** @brief Provides a functional form of convertTo. | |
| This is an internally used method called by the @ref MatrixExpressions engine. | |
| @param m Destination array. | |
| @param type Desired destination array depth (or -1 if it should be the same as the source type). | |
| */ | |
| void assignTo( Mat& m, int type=-1 ) const; | |
| /** @brief Sets all or some of the array elements to the specified value. | |
| @param s Assigned scalar converted to the actual array type. | |
| */ | |
| Mat& operator = (const Scalar& s); | |
| /** @brief Sets all or some of the array elements to the specified value. | |
| This is an advanced variant of the Mat::operator=(const Scalar& s) operator. | |
| @param value Assigned scalar converted to the actual array type. | |
| @param mask Operation mask of the same size as \*this. Its non-zero elements indicate which matrix | |
| elements need to be copied. The mask has to be of type CV_8U and can have 1 or multiple channels | |
| */ | |
| Mat& setTo(InputArray value, InputArray mask=noArray()); | |
| /** @brief Changes the shape and/or the number of channels of a 2D matrix without copying the data. | |
| The method makes a new matrix header for \*this elements. The new matrix may have a different size | |
| and/or different number of channels. Any combination is possible if: | |
| - No extra elements are included into the new matrix and no elements are excluded. Consequently, | |
| the product rows\*cols\*channels() must stay the same after the transformation. | |
| - No data is copied. That is, this is an O(1) operation. Consequently, if you change the number of | |
| rows, or the operation changes the indices of elements row in some other way, the matrix must be | |
| continuous. See Mat::isContinuous . | |
| For example, if there is a set of 3D points stored as an STL vector, and you want to represent the | |
| points as a 3xN matrix, do the following: | |
| @code | |
| std::vector<Point3f> vec; | |
| ... | |
| Mat pointMat = Mat(vec). // convert vector to Mat, O(1) operation | |
| reshape(1). // make Nx3 1-channel matrix out of Nx1 3-channel. | |
| // Also, an O(1) operation | |
| t(); // finally, transpose the Nx3 matrix. | |
| // This involves copying all the elements | |
| @endcode | |
| 3-channel 2x2 matrix reshaped to 1-channel 4x3 matrix, each column has values from one of original channels: | |
| @code | |
| Mat m(Size(2, 2), CV_8UC3, Scalar(1, 2, 3)); | |
| vector<int> new_shape {4, 3}; | |
| m = m.reshape(1, new_shape); | |
| @endcode | |
| or: | |
| @code | |
| Mat m(Size(2, 2), CV_8UC3, Scalar(1, 2, 3)); | |
| const int new_shape[] = {4, 3}; | |
| m = m.reshape(1, 2, new_shape); | |
| @endcode | |
| @param cn New number of channels. If the parameter is 0, the number of channels remains the same. | |
| @param rows New number of rows. If the parameter is 0, the number of rows remains the same. | |
| */ | |
| Mat reshape(int cn, int rows=0) const; | |
| /** @overload | |
| * @param cn New number of channels. If the parameter is 0, the number of channels remains the same. | |
| * @param newndims New number of dimentions. | |
| * @param newsz Array with new matrix size by all dimentions. If some sizes are zero, | |
| * the original sizes in those dimensions are presumed. | |
| */ | |
| Mat reshape(int cn, int newndims, const int* newsz) const; | |
| /** @overload | |
| * @param cn New number of channels. If the parameter is 0, the number of channels remains the same. | |
| * @param newshape Vector with new matrix size by all dimentions. If some sizes are zero, | |
| * the original sizes in those dimensions are presumed. | |
| */ | |
| Mat reshape(int cn, const std::vector<int>& newshape) const; | |
| /** @brief Transposes a matrix. | |
| The method performs matrix transposition by means of matrix expressions. It does not perform the | |
| actual transposition but returns a temporary matrix transposition object that can be further used as | |
| a part of more complex matrix expressions or can be assigned to a matrix: | |
| @code | |
| Mat A1 = A + Mat::eye(A.size(), A.type())*lambda; | |
| Mat C = A1.t()*A1; // compute (A + lambda*I)^t * (A + lamda*I) | |
| @endcode | |
| */ | |
| MatExpr t() const; | |
| /** @brief Inverses a matrix. | |
| The method performs a matrix inversion by means of matrix expressions. This means that a temporary | |
| matrix inversion object is returned by the method and can be used further as a part of more complex | |
| matrix expressions or can be assigned to a matrix. | |
| @param method Matrix inversion method. One of cv::DecompTypes | |
| */ | |
| MatExpr inv(int method=DECOMP_LU) const; | |
| /** @brief Performs an element-wise multiplication or division of the two matrices. | |
| The method returns a temporary object encoding per-element array multiplication, with optional | |
| scale. Note that this is not a matrix multiplication that corresponds to a simpler "\*" operator. | |
| Example: | |
| @code | |
| Mat C = A.mul(5/B); // equivalent to divide(A, B, C, 5) | |
| @endcode | |
| @param m Another array of the same type and the same size as \*this, or a matrix expression. | |
| @param scale Optional scale factor. | |
| */ | |
| MatExpr mul(InputArray m, double scale=1) const; | |
| /** @brief Computes a cross-product of two 3-element vectors. | |
| The method computes a cross-product of two 3-element vectors. The vectors must be 3-element | |
| floating-point vectors of the same shape and size. The result is another 3-element vector of the | |
| same shape and type as operands. | |
| @param m Another cross-product operand. | |
| */ | |
| Mat cross(InputArray m) const; | |
| /** @brief Computes a dot-product of two vectors. | |
| The method computes a dot-product of two matrices. If the matrices are not single-column or | |
| single-row vectors, the top-to-bottom left-to-right scan ordering is used to treat them as 1D | |
| vectors. The vectors must have the same size and type. If the matrices have more than one channel, | |
| the dot products from all the channels are summed together. | |
| @param m another dot-product operand. | |
| */ | |
| double dot(InputArray m) const; | |
| /** @brief Returns a zero array of the specified size and type. | |
| The method returns a Matlab-style zero array initializer. It can be used to quickly form a constant | |
| array as a function parameter, part of a matrix expression, or as a matrix initializer: | |
| @code | |
| Mat A; | |
| A = Mat::zeros(3, 3, CV_32F); | |
| @endcode | |
| In the example above, a new matrix is allocated only if A is not a 3x3 floating-point matrix. | |
| Otherwise, the existing matrix A is filled with zeros. | |
| @param rows Number of rows. | |
| @param cols Number of columns. | |
| @param type Created matrix type. | |
| */ | |
| CV_NODISCARD_STD static MatExpr zeros(int rows, int cols, int type); | |
| /** @overload | |
| @param size Alternative to the matrix size specification Size(cols, rows) . | |
| @param type Created matrix type. | |
| */ | |
| CV_NODISCARD_STD static MatExpr zeros(Size size, int type); | |
| /** @overload | |
| @param ndims Array dimensionality. | |
| @param sz Array of integers specifying the array shape. | |
| @param type Created matrix type. | |
| */ | |
| CV_NODISCARD_STD static MatExpr zeros(int ndims, const int* sz, int type); | |
| /** @brief Returns an array of all 1's of the specified size and type. | |
| The method returns a Matlab-style 1's array initializer, similarly to Mat::zeros. Note that using | |
| this method you can initialize an array with an arbitrary value, using the following Matlab idiom: | |
| @code | |
| Mat A = Mat::ones(100, 100, CV_8U)*3; // make 100x100 matrix filled with 3. | |
| @endcode | |
| The above operation does not form a 100x100 matrix of 1's and then multiply it by 3. Instead, it | |
| just remembers the scale factor (3 in this case) and use it when actually invoking the matrix | |
| initializer. | |
| @note In case of multi-channels type, only the first channel will be initialized with 1's, the | |
| others will be set to 0's. | |
| @param rows Number of rows. | |
| @param cols Number of columns. | |
| @param type Created matrix type. | |
| */ | |
| CV_NODISCARD_STD static MatExpr ones(int rows, int cols, int type); | |
| /** @overload | |
| @param size Alternative to the matrix size specification Size(cols, rows) . | |
| @param type Created matrix type. | |
| */ | |
| CV_NODISCARD_STD static MatExpr ones(Size size, int type); | |
| /** @overload | |
| @param ndims Array dimensionality. | |
| @param sz Array of integers specifying the array shape. | |
| @param type Created matrix type. | |
| */ | |
| CV_NODISCARD_STD static MatExpr ones(int ndims, const int* sz, int type); | |
| /** @brief Returns an identity matrix of the specified size and type. | |
| The method returns a Matlab-style identity matrix initializer, similarly to Mat::zeros. Similarly to | |
| Mat::ones, you can use a scale operation to create a scaled identity matrix efficiently: | |
| @code | |
| // make a 4x4 diagonal matrix with 0.1's on the diagonal. | |
| Mat A = Mat::eye(4, 4, CV_32F)*0.1; | |
| @endcode | |
| @note In case of multi-channels type, identity matrix will be initialized only for the first channel, | |
| the others will be set to 0's | |
| @param rows Number of rows. | |
| @param cols Number of columns. | |
| @param type Created matrix type. | |
| */ | |
| CV_NODISCARD_STD static MatExpr eye(int rows, int cols, int type); | |
| /** @overload | |
| @param size Alternative matrix size specification as Size(cols, rows) . | |
| @param type Created matrix type. | |
| */ | |
| CV_NODISCARD_STD static MatExpr eye(Size size, int type); | |
| /** @brief Allocates new array data if needed. | |
| This is one of the key Mat methods. Most new-style OpenCV functions and methods that produce arrays | |
| call this method for each output array. The method uses the following algorithm: | |
| -# If the current array shape and the type match the new ones, return immediately. Otherwise, | |
| de-reference the previous data by calling Mat::release. | |
| -# Initialize the new header. | |
| -# Allocate the new data of total()\*elemSize() bytes. | |
| -# Allocate the new, associated with the data, reference counter and set it to 1. | |
| Such a scheme makes the memory management robust and efficient at the same time and helps avoid | |
| extra typing for you. This means that usually there is no need to explicitly allocate output arrays. | |
| That is, instead of writing: | |
| @code | |
| Mat color; | |
| ... | |
| Mat gray(color.rows, color.cols, color.depth()); | |
| cvtColor(color, gray, COLOR_BGR2GRAY); | |
| @endcode | |
| you can simply write: | |
| @code | |
| Mat color; | |
| ... | |
| Mat gray; | |
| cvtColor(color, gray, COLOR_BGR2GRAY); | |
| @endcode | |
| because cvtColor, as well as the most of OpenCV functions, calls Mat::create() for the output array | |
| internally. | |
| @param rows New number of rows. | |
| @param cols New number of columns. | |
| @param type New matrix type. | |
| */ | |
| void create(int rows, int cols, int type); | |
| /** @overload | |
| @param size Alternative new matrix size specification: Size(cols, rows) | |
| @param type New matrix type. | |
| */ | |
| void create(Size size, int type); | |
| /** @overload | |
| @param ndims New array dimensionality. | |
| @param sizes Array of integers specifying a new array shape. | |
| @param type New matrix type. | |
| */ | |
| void create(int ndims, const int* sizes, int type); | |
| /** @overload | |
| @param sizes Array of integers specifying a new array shape. | |
| @param type New matrix type. | |
| */ | |
| void create(const std::vector<int>& sizes, int type); | |
| /** @brief Increments the reference counter. | |
| The method increments the reference counter associated with the matrix data. If the matrix header | |
| points to an external data set (see Mat::Mat ), the reference counter is NULL, and the method has no | |
| effect in this case. Normally, to avoid memory leaks, the method should not be called explicitly. It | |
| is called implicitly by the matrix assignment operator. The reference counter increment is an atomic | |
| operation on the platforms that support it. Thus, it is safe to operate on the same matrices | |
| asynchronously in different threads. | |
| */ | |
| void addref(); | |
| /** @brief Decrements the reference counter and deallocates the matrix if needed. | |
| The method decrements the reference counter associated with the matrix data. When the reference | |
| counter reaches 0, the matrix data is deallocated and the data and the reference counter pointers | |
| are set to NULL's. If the matrix header points to an external data set (see Mat::Mat ), the | |
| reference counter is NULL, and the method has no effect in this case. | |
| This method can be called manually to force the matrix data deallocation. But since this method is | |
| automatically called in the destructor, or by any other method that changes the data pointer, it is | |
| usually not needed. The reference counter decrement and check for 0 is an atomic operation on the | |
| platforms that support it. Thus, it is safe to operate on the same matrices asynchronously in | |
| different threads. | |
| */ | |
| void release(); | |
| //! internal use function, consider to use 'release' method instead; deallocates the matrix data | |
| void deallocate(); | |
| //! internal use function; properly re-allocates _size, _step arrays | |
| void copySize(const Mat& m); | |
| /** @brief Reserves space for the certain number of rows. | |
| The method reserves space for sz rows. If the matrix already has enough space to store sz rows, | |
| nothing happens. If the matrix is reallocated, the first Mat::rows rows are preserved. The method | |
| emulates the corresponding method of the STL vector class. | |
| @param sz Number of rows. | |
| */ | |
| void reserve(size_t sz); | |
| /** @brief Reserves space for the certain number of bytes. | |
| The method reserves space for sz bytes. If the matrix already has enough space to store sz bytes, | |
| nothing happens. If matrix has to be reallocated its previous content could be lost. | |
| @param sz Number of bytes. | |
| */ | |
| void reserveBuffer(size_t sz); | |
| /** @brief Changes the number of matrix rows. | |
| The methods change the number of matrix rows. If the matrix is reallocated, the first | |
| min(Mat::rows, sz) rows are preserved. The methods emulate the corresponding methods of the STL | |
| vector class. | |
| @param sz New number of rows. | |
| */ | |
| void resize(size_t sz); | |
| /** @overload | |
| @param sz New number of rows. | |
| @param s Value assigned to the newly added elements. | |
| */ | |
| void resize(size_t sz, const Scalar& s); | |
| //! internal function | |
| void push_back_(const void* elem); | |
| /** @brief Adds elements to the bottom of the matrix. | |
| The methods add one or more elements to the bottom of the matrix. They emulate the corresponding | |
| method of the STL vector class. When elem is Mat , its type and the number of columns must be the | |
| same as in the container matrix. | |
| @param elem Added element(s). | |
| */ | |
| template<typename _Tp> void push_back(const _Tp& elem); | |
| /** @overload | |
| @param elem Added element(s). | |
| */ | |
| template<typename _Tp> void push_back(const Mat_<_Tp>& elem); | |
| /** @overload | |
| @param elem Added element(s). | |
| */ | |
| template<typename _Tp> void push_back(const std::vector<_Tp>& elem); | |
| /** @overload | |
| @param m Added line(s). | |
| */ | |
| void push_back(const Mat& m); | |
| /** @brief Removes elements from the bottom of the matrix. | |
| The method removes one or more rows from the bottom of the matrix. | |
| @param nelems Number of removed rows. If it is greater than the total number of rows, an exception | |
| is thrown. | |
| */ | |
| void pop_back(size_t nelems=1); | |
| /** @brief Locates the matrix header within a parent matrix. | |
| After you extracted a submatrix from a matrix using Mat::row, Mat::col, Mat::rowRange, | |
| Mat::colRange, and others, the resultant submatrix points just to the part of the original big | |
| matrix. However, each submatrix contains information (represented by datastart and dataend | |
| fields) that helps reconstruct the original matrix size and the position of the extracted | |
| submatrix within the original matrix. The method locateROI does exactly that. | |
| @param wholeSize Output parameter that contains the size of the whole matrix containing *this* | |
| as a part. | |
| @param ofs Output parameter that contains an offset of *this* inside the whole matrix. | |
| */ | |
| void locateROI( Size& wholeSize, Point& ofs ) const; | |
| /** @brief Adjusts a submatrix size and position within the parent matrix. | |
| The method is complimentary to Mat::locateROI . The typical use of these functions is to determine | |
| the submatrix position within the parent matrix and then shift the position somehow. Typically, it | |
| can be required for filtering operations when pixels outside of the ROI should be taken into | |
| account. When all the method parameters are positive, the ROI needs to grow in all directions by the | |
| specified amount, for example: | |
| @code | |
| A.adjustROI(2, 2, 2, 2); | |
| @endcode | |
| In this example, the matrix size is increased by 4 elements in each direction. The matrix is shifted | |
| by 2 elements to the left and 2 elements up, which brings in all the necessary pixels for the | |
| filtering with the 5x5 kernel. | |
| adjustROI forces the adjusted ROI to be inside of the parent matrix that is boundaries of the | |
| adjusted ROI are constrained by boundaries of the parent matrix. For example, if the submatrix A is | |
| located in the first row of a parent matrix and you called A.adjustROI(2, 2, 2, 2) then A will not | |
| be increased in the upward direction. | |
| The function is used internally by the OpenCV filtering functions, like filter2D , morphological | |
| operations, and so on. | |
| @param dtop Shift of the top submatrix boundary upwards. | |
| @param dbottom Shift of the bottom submatrix boundary downwards. | |
| @param dleft Shift of the left submatrix boundary to the left. | |
| @param dright Shift of the right submatrix boundary to the right. | |
| @sa copyMakeBorder | |
| */ | |
| Mat& adjustROI( int dtop, int dbottom, int dleft, int dright ); | |
| /** @brief Extracts a rectangular submatrix. | |
| The operators make a new header for the specified sub-array of \*this . They are the most | |
| generalized forms of Mat::row, Mat::col, Mat::rowRange, and Mat::colRange . For example, | |
| `A(Range(0, 10), Range::all())` is equivalent to `A.rowRange(0, 10)`. Similarly to all of the above, | |
| the operators are O(1) operations, that is, no matrix data is copied. | |
| @param rowRange Start and end row of the extracted submatrix. The upper boundary is not included. To | |
| select all the rows, use Range::all(). | |
| @param colRange Start and end column of the extracted submatrix. The upper boundary is not included. | |
| To select all the columns, use Range::all(). | |
| */ | |
| Mat operator()( Range rowRange, Range colRange ) const; | |
| /** @overload | |
| @param roi Extracted submatrix specified as a rectangle. | |
| */ | |
| Mat operator()( const Rect& roi ) const; | |
| /** @overload | |
| @param ranges Array of selected ranges along each array dimension. | |
| */ | |
| Mat operator()( const Range* ranges ) const; | |
| /** @overload | |
| @param ranges Array of selected ranges along each array dimension. | |
| */ | |
| Mat operator()(const std::vector<Range>& ranges) const; | |
| template<typename _Tp> operator std::vector<_Tp>() const; | |
| template<typename _Tp, int n> operator Vec<_Tp, n>() const; | |
| template<typename _Tp, int m, int n> operator Matx<_Tp, m, n>() const; | |
| template<typename _Tp, std::size_t _Nm> operator std::array<_Tp, _Nm>() const; | |
| /** @brief Reports whether the matrix is continuous or not. | |
| The method returns true if the matrix elements are stored continuously without gaps at the end of | |
| each row. Otherwise, it returns false. Obviously, 1x1 or 1xN matrices are always continuous. | |
| Matrices created with Mat::create are always continuous. But if you extract a part of the matrix | |
| using Mat::col, Mat::diag, and so on, or constructed a matrix header for externally allocated data, | |
| such matrices may no longer have this property. | |
| The continuity flag is stored as a bit in the Mat::flags field and is computed automatically when | |
| you construct a matrix header. Thus, the continuity check is a very fast operation, though | |
| theoretically it could be done as follows: | |
| @code | |
| // alternative implementation of Mat::isContinuous() | |
| bool myCheckMatContinuity(const Mat& m) | |
| { | |
| //return (m.flags & Mat::CONTINUOUS_FLAG) != 0; | |
| return m.rows == 1 || m.step == m.cols*m.elemSize(); | |
| } | |
| @endcode | |
| The method is used in quite a few of OpenCV functions. The point is that element-wise operations | |
| (such as arithmetic and logical operations, math functions, alpha blending, color space | |
| transformations, and others) do not depend on the image geometry. Thus, if all the input and output | |
| arrays are continuous, the functions can process them as very long single-row vectors. The example | |
| below illustrates how an alpha-blending function can be implemented: | |
| @code | |
| template<typename T> | |
| void alphaBlendRGBA(const Mat& src1, const Mat& src2, Mat& dst) | |
| { | |
| const float alpha_scale = (float)std::numeric_limits<T>::max(), | |
| inv_scale = 1.f/alpha_scale; | |
| CV_Assert( src1.type() == src2.type() && | |
| src1.type() == CV_MAKETYPE(traits::Depth<T>::value, 4) && | |
| src1.size() == src2.size()); | |
| Size size = src1.size(); | |
| dst.create(size, src1.type()); | |
| // here is the idiom: check the arrays for continuity and, | |
| // if this is the case, | |
| // treat the arrays as 1D vectors | |
| if( src1.isContinuous() && src2.isContinuous() && dst.isContinuous() ) | |
| { | |
| size.width *= size.height; | |
| size.height = 1; | |
| } | |
| size.width *= 4; | |
| for( int i = 0; i < size.height; i++ ) | |
| { | |
| // when the arrays are continuous, | |
| // the outer loop is executed only once | |
| const T* ptr1 = src1.ptr<T>(i); | |
| const T* ptr2 = src2.ptr<T>(i); | |
| T* dptr = dst.ptr<T>(i); | |
| for( int j = 0; j < size.width; j += 4 ) | |
| { | |
| float alpha = ptr1[j+3]*inv_scale, beta = ptr2[j+3]*inv_scale; | |
| dptr[j] = saturate_cast<T>(ptr1[j]*alpha + ptr2[j]*beta); | |
| dptr[j+1] = saturate_cast<T>(ptr1[j+1]*alpha + ptr2[j+1]*beta); | |
| dptr[j+2] = saturate_cast<T>(ptr1[j+2]*alpha + ptr2[j+2]*beta); | |
| dptr[j+3] = saturate_cast<T>((1 - (1-alpha)*(1-beta))*alpha_scale); | |
| } | |
| } | |
| } | |
| @endcode | |
| This approach, while being very simple, can boost the performance of a simple element-operation by | |
| 10-20 percents, especially if the image is rather small and the operation is quite simple. | |
| Another OpenCV idiom in this function, a call of Mat::create for the destination array, that | |
| allocates the destination array unless it already has the proper size and type. And while the newly | |
| allocated arrays are always continuous, you still need to check the destination array because | |
| Mat::create does not always allocate a new matrix. | |
| */ | |
| bool isContinuous() const; | |
| //! returns true if the matrix is a submatrix of another matrix | |
| bool isSubmatrix() const; | |
| /** @brief Returns the matrix element size in bytes. | |
| The method returns the matrix element size in bytes. For example, if the matrix type is CV_16SC3 , | |
| the method returns 3\*sizeof(short) or 6. | |
| */ | |
| size_t elemSize() const; | |
| /** @brief Returns the size of each matrix element channel in bytes. | |
| The method returns the matrix element channel size in bytes, that is, it ignores the number of | |
| channels. For example, if the matrix type is CV_16SC3 , the method returns sizeof(short) or 2. | |
| */ | |
| size_t elemSize1() const; | |
| /** @brief Returns the type of a matrix element. | |
| The method returns a matrix element type. This is an identifier compatible with the CvMat type | |
| system, like CV_16SC3 or 16-bit signed 3-channel array, and so on. | |
| */ | |
| int type() const; | |
| /** @brief Returns the depth of a matrix element. | |
| The method returns the identifier of the matrix element depth (the type of each individual channel). | |
| For example, for a 16-bit signed element array, the method returns CV_16S . A complete list of | |
| matrix types contains the following values: | |
| - CV_8U - 8-bit unsigned integers ( 0..255 ) | |
| - CV_8S - 8-bit signed integers ( -128..127 ) | |
| - CV_16U - 16-bit unsigned integers ( 0..65535 ) | |
| - CV_16S - 16-bit signed integers ( -32768..32767 ) | |
| - CV_32S - 32-bit signed integers ( -2147483648..2147483647 ) | |
| - CV_32F - 32-bit floating-point numbers ( -FLT_MAX..FLT_MAX, INF, NAN ) | |
| - CV_64F - 64-bit floating-point numbers ( -DBL_MAX..DBL_MAX, INF, NAN ) | |
| */ | |
| int depth() const; | |
| /** @brief Returns the number of matrix channels. | |
| The method returns the number of matrix channels. | |
| */ | |
| int channels() const; | |
| /** @brief Returns a normalized step. | |
| The method returns a matrix step divided by Mat::elemSize1() . It can be useful to quickly access an | |
| arbitrary matrix element. | |
| */ | |
| size_t step1(int i=0) const; | |
| /** @brief Returns true if the array has no elements. | |
| The method returns true if Mat::total() is 0 or if Mat::data is NULL. Because of pop_back() and | |
| resize() methods `M.total() == 0` does not imply that `M.data == NULL`. | |
| */ | |
| bool empty() const; | |
| /** @brief Returns the total number of array elements. | |
| The method returns the number of array elements (a number of pixels if the array represents an | |
| image). | |
| */ | |
| size_t total() const; | |
| /** @brief Returns the total number of array elements. | |
| The method returns the number of elements within a certain sub-array slice with startDim <= dim < endDim | |
| */ | |
| size_t total(int startDim, int endDim=INT_MAX) const; | |
| /** | |
| * @param elemChannels Number of channels or number of columns the matrix should have. | |
| * For a 2-D matrix, when the matrix has only 1 column, then it should have | |
| * elemChannels channels; When the matrix has only 1 channel, | |
| * then it should have elemChannels columns. | |
| * For a 3-D matrix, it should have only one channel. Furthermore, | |
| * if the number of planes is not one, then the number of rows | |
| * within every plane has to be 1; if the number of rows within | |
| * every plane is not 1, then the number of planes has to be 1. | |
| * @param depth The depth the matrix should have. Set it to -1 when any depth is fine. | |
| * @param requireContinuous Set it to true to require the matrix to be continuous | |
| * @return -1 if the requirement is not satisfied. | |
| * Otherwise, it returns the number of elements in the matrix. Note | |
| * that an element may have multiple channels. | |
| * | |
| * The following code demonstrates its usage for a 2-d matrix: | |
| * @snippet snippets/core_mat_checkVector.cpp example-2d | |
| * | |
| * The following code demonstrates its usage for a 3-d matrix: | |
| * @snippet snippets/core_mat_checkVector.cpp example-3d | |
| */ | |
| int checkVector(int elemChannels, int depth=-1, bool requireContinuous=true) const; | |
| /** @brief Returns a pointer to the specified matrix row. | |
| The methods return `uchar*` or typed pointer to the specified matrix row. See the sample in | |
| Mat::isContinuous to know how to use these methods. | |
| @param i0 A 0-based row index. | |
| */ | |
| uchar* ptr(int i0=0); | |
| /** @overload */ | |
| const uchar* ptr(int i0=0) const; | |
| /** @overload | |
| @param row Index along the dimension 0 | |
| @param col Index along the dimension 1 | |
| */ | |
| uchar* ptr(int row, int col); | |
| /** @overload | |
| @param row Index along the dimension 0 | |
| @param col Index along the dimension 1 | |
| */ | |
| const uchar* ptr(int row, int col) const; | |
| /** @overload */ | |
| uchar* ptr(int i0, int i1, int i2); | |
| /** @overload */ | |
| const uchar* ptr(int i0, int i1, int i2) const; | |
| /** @overload */ | |
| uchar* ptr(const int* idx); | |
| /** @overload */ | |
| const uchar* ptr(const int* idx) const; | |
| /** @overload */ | |
| template<int n> uchar* ptr(const Vec<int, n>& idx); | |
| /** @overload */ | |
| template<int n> const uchar* ptr(const Vec<int, n>& idx) const; | |
| /** @overload */ | |
| template<typename _Tp> _Tp* ptr(int i0=0); | |
| /** @overload */ | |
| template<typename _Tp> const _Tp* ptr(int i0=0) const; | |
| /** @overload | |
| @param row Index along the dimension 0 | |
| @param col Index along the dimension 1 | |
| */ | |
| template<typename _Tp> _Tp* ptr(int row, int col); | |
| /** @overload | |
| @param row Index along the dimension 0 | |
| @param col Index along the dimension 1 | |
| */ | |
| template<typename _Tp> const _Tp* ptr(int row, int col) const; | |
| /** @overload */ | |
| template<typename _Tp> _Tp* ptr(int i0, int i1, int i2); | |
| /** @overload */ | |
| template<typename _Tp> const _Tp* ptr(int i0, int i1, int i2) const; | |
| /** @overload */ | |
| template<typename _Tp> _Tp* ptr(const int* idx); | |
| /** @overload */ | |
| template<typename _Tp> const _Tp* ptr(const int* idx) const; | |
| /** @overload */ | |
| template<typename _Tp, int n> _Tp* ptr(const Vec<int, n>& idx); | |
| /** @overload */ | |
| template<typename _Tp, int n> const _Tp* ptr(const Vec<int, n>& idx) const; | |
| /** @brief Returns a reference to the specified array element. | |
| The template methods return a reference to the specified array element. For the sake of higher | |
| performance, the index range checks are only performed in the Debug configuration. | |
| Note that the variants with a single index (i) can be used to access elements of single-row or | |
| single-column 2-dimensional arrays. That is, if, for example, A is a 1 x N floating-point matrix and | |
| B is an M x 1 integer matrix, you can simply write `A.at<float>(k+4)` and `B.at<int>(2*i+1)` | |
| instead of `A.at<float>(0,k+4)` and `B.at<int>(2*i+1,0)`, respectively. | |
| The example below initializes a Hilbert matrix: | |
| @code | |
| Mat H(100, 100, CV_64F); | |
| for(int i = 0; i < H.rows; i++) | |
| for(int j = 0; j < H.cols; j++) | |
| H.at<double>(i,j)=1./(i+j+1); | |
| @endcode | |
| Keep in mind that the size identifier used in the at operator cannot be chosen at random. It depends | |
| on the image from which you are trying to retrieve the data. The table below gives a better insight in this: | |
| - If matrix is of type `CV_8U` then use `Mat.at<uchar>(y,x)`. | |
| - If matrix is of type `CV_8S` then use `Mat.at<schar>(y,x)`. | |
| - If matrix is of type `CV_16U` then use `Mat.at<ushort>(y,x)`. | |
| - If matrix is of type `CV_16S` then use `Mat.at<short>(y,x)`. | |
| - If matrix is of type `CV_32S` then use `Mat.at<int>(y,x)`. | |
| - If matrix is of type `CV_32F` then use `Mat.at<float>(y,x)`. | |
| - If matrix is of type `CV_64F` then use `Mat.at<double>(y,x)`. | |
| @param i0 Index along the dimension 0 | |
| */ | |
| template<typename _Tp> _Tp& at(int i0=0); | |
| /** @overload | |
| @param i0 Index along the dimension 0 | |
| */ | |
| template<typename _Tp> const _Tp& at(int i0=0) const; | |
| /** @overload | |
| @param row Index along the dimension 0 | |
| @param col Index along the dimension 1 | |
| */ | |
| template<typename _Tp> _Tp& at(int row, int col); | |
| /** @overload | |
| @param row Index along the dimension 0 | |
| @param col Index along the dimension 1 | |
| */ | |
| template<typename _Tp> const _Tp& at(int row, int col) const; | |
| /** @overload | |
| @param i0 Index along the dimension 0 | |
| @param i1 Index along the dimension 1 | |
| @param i2 Index along the dimension 2 | |
| */ | |
| template<typename _Tp> _Tp& at(int i0, int i1, int i2); | |
| /** @overload | |
| @param i0 Index along the dimension 0 | |
| @param i1 Index along the dimension 1 | |
| @param i2 Index along the dimension 2 | |
| */ | |
| template<typename _Tp> const _Tp& at(int i0, int i1, int i2) const; | |
| /** @overload | |
| @param idx Array of Mat::dims indices. | |
| */ | |
| template<typename _Tp> _Tp& at(const int* idx); | |
| /** @overload | |
| @param idx Array of Mat::dims indices. | |
| */ | |
| template<typename _Tp> const _Tp& at(const int* idx) const; | |
| /** @overload */ | |
| template<typename _Tp, int n> _Tp& at(const Vec<int, n>& idx); | |
| /** @overload */ | |
| template<typename _Tp, int n> const _Tp& at(const Vec<int, n>& idx) const; | |
| /** @overload | |
| special versions for 2D arrays (especially convenient for referencing image pixels) | |
| @param pt Element position specified as Point(j,i) . | |
| */ | |
| template<typename _Tp> _Tp& at(Point pt); | |
| /** @overload | |
| special versions for 2D arrays (especially convenient for referencing image pixels) | |
| @param pt Element position specified as Point(j,i) . | |
| */ | |
| template<typename _Tp> const _Tp& at(Point pt) const; | |
| /** @brief Returns the matrix iterator and sets it to the first matrix element. | |
| The methods return the matrix read-only or read-write iterators. The use of matrix iterators is very | |
| similar to the use of bi-directional STL iterators. In the example below, the alpha blending | |
| function is rewritten using the matrix iterators: | |
| @code | |
| template<typename T> | |
| void alphaBlendRGBA(const Mat& src1, const Mat& src2, Mat& dst) | |
| { | |
| typedef Vec<T, 4> VT; | |
| const float alpha_scale = (float)std::numeric_limits<T>::max(), | |
| inv_scale = 1.f/alpha_scale; | |
| CV_Assert( src1.type() == src2.type() && | |
| src1.type() == traits::Type<VT>::value && | |
| src1.size() == src2.size()); | |
| Size size = src1.size(); | |
| dst.create(size, src1.type()); | |
| MatConstIterator_<VT> it1 = src1.begin<VT>(), it1_end = src1.end<VT>(); | |
| MatConstIterator_<VT> it2 = src2.begin<VT>(); | |
| MatIterator_<VT> dst_it = dst.begin<VT>(); | |
| for( ; it1 != it1_end; ++it1, ++it2, ++dst_it ) | |
| { | |
| VT pix1 = *it1, pix2 = *it2; | |
| float alpha = pix1[3]*inv_scale, beta = pix2[3]*inv_scale; | |
| *dst_it = VT(saturate_cast<T>(pix1[0]*alpha + pix2[0]*beta), | |
| saturate_cast<T>(pix1[1]*alpha + pix2[1]*beta), | |
| saturate_cast<T>(pix1[2]*alpha + pix2[2]*beta), | |
| saturate_cast<T>((1 - (1-alpha)*(1-beta))*alpha_scale)); | |
| } | |
| } | |
| @endcode | |
| */ | |
| template<typename _Tp> MatIterator_<_Tp> begin(); | |
| template<typename _Tp> MatConstIterator_<_Tp> begin() const; | |
| /** @brief Same as begin() but for inverse traversal | |
| */ | |
| template<typename _Tp> std::reverse_iterator<MatIterator_<_Tp>> rbegin(); | |
| template<typename _Tp> std::reverse_iterator<MatConstIterator_<_Tp>> rbegin() const; | |
| /** @brief Returns the matrix iterator and sets it to the after-last matrix element. | |
| The methods return the matrix read-only or read-write iterators, set to the point following the last | |
| matrix element. | |
| */ | |
| template<typename _Tp> MatIterator_<_Tp> end(); | |
| template<typename _Tp> MatConstIterator_<_Tp> end() const; | |
| /** @brief Same as end() but for inverse traversal | |
| */ | |
| template<typename _Tp> std::reverse_iterator< MatIterator_<_Tp>> rend(); | |
| template<typename _Tp> std::reverse_iterator< MatConstIterator_<_Tp>> rend() const; | |
| /** @brief Runs the given functor over all matrix elements in parallel. | |
| The operation passed as argument has to be a function pointer, a function object or a lambda(C++11). | |
| Example 1. All of the operations below put 0xFF the first channel of all matrix elements: | |
| @code | |
| Mat image(1920, 1080, CV_8UC3); | |
| typedef cv::Point3_<uint8_t> Pixel; | |
| // first. raw pointer access. | |
| for (int r = 0; r < image.rows; ++r) { | |
| Pixel* ptr = image.ptr<Pixel>(r, 0); | |
| const Pixel* ptr_end = ptr + image.cols; | |
| for (; ptr != ptr_end; ++ptr) { | |
| ptr->x = 255; | |
| } | |
| } | |
| // Using MatIterator. (Simple but there are a Iterator's overhead) | |
| for (Pixel &p : cv::Mat_<Pixel>(image)) { | |
| p.x = 255; | |
| } | |
| // Parallel execution with function object. | |
| struct Operator { | |
| void operator ()(Pixel &pixel, const int * position) { | |
| pixel.x = 255; | |
| } | |
| }; | |
| image.forEach<Pixel>(Operator()); | |
| // Parallel execution using C++11 lambda. | |
| image.forEach<Pixel>([](Pixel &p, const int * position) -> void { | |
| p.x = 255; | |
| }); | |
| @endcode | |
| Example 2. Using the pixel's position: | |
| @code | |
| // Creating 3D matrix (255 x 255 x 255) typed uint8_t | |
| // and initialize all elements by the value which equals elements position. | |
| // i.e. pixels (x,y,z) = (1,2,3) is (b,g,r) = (1,2,3). | |
| int sizes[] = { 255, 255, 255 }; | |
| typedef cv::Point3_<uint8_t> Pixel; | |
| Mat_<Pixel> image = Mat::zeros(3, sizes, CV_8UC3); | |
| image.forEach<Pixel>([](Pixel& pixel, const int position[]) -> void { | |
| pixel.x = position[0]; | |
| pixel.y = position[1]; | |
| pixel.z = position[2]; | |
| }); | |
| @endcode | |
| */ | |
| template<typename _Tp, typename Functor> void forEach(const Functor& operation); | |
| /** @overload */ | |
| template<typename _Tp, typename Functor> void forEach(const Functor& operation) const; | |
| Mat(Mat&& m) CV_NOEXCEPT; | |
| Mat& operator = (Mat&& m); | |
| enum { MAGIC_VAL = 0x42FF0000, AUTO_STEP = 0, CONTINUOUS_FLAG = CV_MAT_CONT_FLAG, SUBMATRIX_FLAG = CV_SUBMAT_FLAG }; | |
| enum { MAGIC_MASK = 0xFFFF0000, TYPE_MASK = 0x00000FFF, DEPTH_MASK = 7 }; | |
| /*! includes several bit-fields: | |
| - the magic signature | |
| - continuity flag | |
| - depth | |
| - number of channels | |
| */ | |
| int flags; | |
| //! the matrix dimensionality, >= 2 | |
| int dims; | |
| //! the number of rows and columns or (-1, -1) when the matrix has more than 2 dimensions | |
| int rows, cols; | |
| //! pointer to the data | |
| uchar* data; | |
| //! helper fields used in locateROI and adjustROI | |
| const uchar* datastart; | |
| const uchar* dataend; | |
| const uchar* datalimit; | |
| //! custom allocator | |
| MatAllocator* allocator; | |
| //! and the standard allocator | |
| static MatAllocator* getStdAllocator(); | |
| static MatAllocator* getDefaultAllocator(); | |
| static void setDefaultAllocator(MatAllocator* allocator); | |
| //! internal use method: updates the continuity flag | |
| void updateContinuityFlag(); | |
| //! interaction with UMat | |
| UMatData* u; | |
| MatSize size; | |
| MatStep step; | |
| protected: | |
| template<typename _Tp, typename Functor> void forEach_impl(const Functor& operation); | |
| }; | |
| ///////////////////////////////// Mat_<_Tp> //////////////////////////////////// | |
| /** @brief Template matrix class derived from Mat | |
| @code{.cpp} | |
| template<typename _Tp> class Mat_ : public Mat | |
| { | |
| public: | |
| // ... some specific methods | |
| // and | |
| // no new extra fields | |
| }; | |
| @endcode | |
| The class `Mat_<_Tp>` is a *thin* template wrapper on top of the Mat class. It does not have any | |
| extra data fields. Nor this class nor Mat has any virtual methods. Thus, references or pointers to | |
| these two classes can be freely but carefully converted one to another. For example: | |
| @code{.cpp} | |
| // create a 100x100 8-bit matrix | |
| Mat M(100,100,CV_8U); | |
| // this will be compiled fine. no any data conversion will be done. | |
| Mat_<float>& M1 = (Mat_<float>&)M; | |
| // the program is likely to crash at the statement below | |
| M1(99,99) = 1.f; | |
| @endcode | |
| While Mat is sufficient in most cases, Mat_ can be more convenient if you use a lot of element | |
| access operations and if you know matrix type at the compilation time. Note that | |
| `Mat::at(int y,int x)` and `Mat_::operator()(int y,int x)` do absolutely the same | |
| and run at the same speed, but the latter is certainly shorter: | |
| @code{.cpp} | |
| Mat_<double> M(20,20); | |
| for(int i = 0; i < M.rows; i++) | |
| for(int j = 0; j < M.cols; j++) | |
| M(i,j) = 1./(i+j+1); | |
| Mat E, V; | |
| eigen(M,E,V); | |
| cout << E.at<double>(0,0)/E.at<double>(M.rows-1,0); | |
| @endcode | |
| To use Mat_ for multi-channel images/matrices, pass Vec as a Mat_ parameter: | |
| @code{.cpp} | |
| // allocate a 320x240 color image and fill it with green (in RGB space) | |
| Mat_<Vec3b> img(240, 320, Vec3b(0,255,0)); | |
| // now draw a diagonal white line | |
| for(int i = 0; i < 100; i++) | |
| img(i,i)=Vec3b(255,255,255); | |
| // and now scramble the 2nd (red) channel of each pixel | |
| for(int i = 0; i < img.rows; i++) | |
| for(int j = 0; j < img.cols; j++) | |
| img(i,j)[2] ^= (uchar)(i ^ j); | |
| @endcode | |
| Mat_ is fully compatible with C++11 range-based for loop. For example such loop | |
| can be used to safely apply look-up table: | |
| @code{.cpp} | |
| void applyTable(Mat_<uchar>& I, const uchar* const table) | |
| { | |
| for(auto& pixel : I) | |
| { | |
| pixel = table[pixel]; | |
| } | |
| } | |
| @endcode | |
| */ | |
| template<typename _Tp> class Mat_ : public Mat | |
| { | |
| public: | |
| typedef _Tp value_type; | |
| typedef typename DataType<_Tp>::channel_type channel_type; | |
| typedef MatIterator_<_Tp> iterator; | |
| typedef MatConstIterator_<_Tp> const_iterator; | |
| //! default constructor | |
| Mat_() CV_NOEXCEPT; | |
| //! equivalent to Mat(_rows, _cols, DataType<_Tp>::type) | |
| Mat_(int _rows, int _cols); | |
| //! constructor that sets each matrix element to specified value | |
| Mat_(int _rows, int _cols, const _Tp& value); | |
| //! equivalent to Mat(_size, DataType<_Tp>::type) | |
| explicit Mat_(Size _size); | |
| //! constructor that sets each matrix element to specified value | |
| Mat_(Size _size, const _Tp& value); | |
| //! n-dim array constructor | |
| Mat_(int _ndims, const int* _sizes); | |
| //! n-dim array constructor that sets each matrix element to specified value | |
| Mat_(int _ndims, const int* _sizes, const _Tp& value); | |
| //! copy/conversion constructor. If m is of different type, it's converted | |
| Mat_(const Mat& m); | |
| //! copy constructor | |
| Mat_(const Mat_& m); | |
| //! constructs a matrix on top of user-allocated data. step is in bytes(!!!), regardless of the type | |
| Mat_(int _rows, int _cols, _Tp* _data, size_t _step=AUTO_STEP); | |
| //! constructs n-dim matrix on top of user-allocated data. steps are in bytes(!!!), regardless of the type | |
| Mat_(int _ndims, const int* _sizes, _Tp* _data, const size_t* _steps=0); | |
| //! selects a submatrix | |
| Mat_(const Mat_& m, const Range& rowRange, const Range& colRange=Range::all()); | |
| //! selects a submatrix | |
| Mat_(const Mat_& m, const Rect& roi); | |
| //! selects a submatrix, n-dim version | |
| Mat_(const Mat_& m, const Range* ranges); | |
| //! selects a submatrix, n-dim version | |
| Mat_(const Mat_& m, const std::vector<Range>& ranges); | |
| //! from a matrix expression | |
| explicit Mat_(const MatExpr& e); | |
| //! makes a matrix out of Vec, std::vector, Point_ or Point3_. The matrix will have a single column | |
| explicit Mat_(const std::vector<_Tp>& vec, bool copyData=false); | |
| template<int n> explicit Mat_(const Vec<typename DataType<_Tp>::channel_type, n>& vec, bool copyData=true); | |
| template<int m, int n> explicit Mat_(const Matx<typename DataType<_Tp>::channel_type, m, n>& mtx, bool copyData=true); | |
| explicit Mat_(const Point_<typename DataType<_Tp>::channel_type>& pt, bool copyData=true); | |
| explicit Mat_(const Point3_<typename DataType<_Tp>::channel_type>& pt, bool copyData=true); | |
| explicit Mat_(const MatCommaInitializer_<_Tp>& commaInitializer); | |
| Mat_(std::initializer_list<_Tp> values); | |
| explicit Mat_(const std::initializer_list<int> sizes, const std::initializer_list<_Tp> values); | |
| template <std::size_t _Nm> explicit Mat_(const std::array<_Tp, _Nm>& arr, bool copyData=false); | |
| Mat_& operator = (const Mat& m); | |
| Mat_& operator = (const Mat_& m); | |
| //! set all the elements to s. | |
| Mat_& operator = (const _Tp& s); | |
| //! assign a matrix expression | |
| Mat_& operator = (const MatExpr& e); | |
| //! iterators; they are smart enough to skip gaps in the end of rows | |
| iterator begin(); | |
| iterator end(); | |
| const_iterator begin() const; | |
| const_iterator end() const; | |
| //reverse iterators | |
| std::reverse_iterator<iterator> rbegin(); | |
| std::reverse_iterator<iterator> rend(); | |
| std::reverse_iterator<const_iterator> rbegin() const; | |
| std::reverse_iterator<const_iterator> rend() const; | |
| //! template methods for operation over all matrix elements. | |
| // the operations take care of skipping gaps in the end of rows (if any) | |
| template<typename Functor> void forEach(const Functor& operation); | |
| template<typename Functor> void forEach(const Functor& operation) const; | |
| //! equivalent to Mat::create(_rows, _cols, DataType<_Tp>::type) | |
| void create(int _rows, int _cols); | |
| //! equivalent to Mat::create(_size, DataType<_Tp>::type) | |
| void create(Size _size); | |
| //! equivalent to Mat::create(_ndims, _sizes, DatType<_Tp>::type) | |
| void create(int _ndims, const int* _sizes); | |
| //! equivalent to Mat::release() | |
| void release(); | |
| //! cross-product | |
| Mat_ cross(const Mat_& m) const; | |
| //! data type conversion | |
| template<typename T2> operator Mat_<T2>() const; | |
| //! overridden forms of Mat::row() etc. | |
| Mat_ row(int y) const; | |
| Mat_ col(int x) const; | |
| Mat_ diag(int d=0) const; | |
| CV_NODISCARD_STD Mat_ clone() const; | |
| //! overridden forms of Mat::elemSize() etc. | |
| size_t elemSize() const; | |
| size_t elemSize1() const; | |
| int type() const; | |
| int depth() const; | |
| int channels() const; | |
| size_t step1(int i=0) const; | |
| //! returns step()/sizeof(_Tp) | |
| size_t stepT(int i=0) const; | |
| //! overridden forms of Mat::zeros() etc. Data type is omitted, of course | |
| CV_NODISCARD_STD static MatExpr zeros(int rows, int cols); | |
| CV_NODISCARD_STD static MatExpr zeros(Size size); | |
| CV_NODISCARD_STD static MatExpr zeros(int _ndims, const int* _sizes); | |
| CV_NODISCARD_STD static MatExpr ones(int rows, int cols); | |
| CV_NODISCARD_STD static MatExpr ones(Size size); | |
| CV_NODISCARD_STD static MatExpr ones(int _ndims, const int* _sizes); | |
| CV_NODISCARD_STD static MatExpr eye(int rows, int cols); | |
| CV_NODISCARD_STD static MatExpr eye(Size size); | |
| //! some more overridden methods | |
| Mat_& adjustROI( int dtop, int dbottom, int dleft, int dright ); | |
| Mat_ operator()( const Range& rowRange, const Range& colRange ) const; | |
| Mat_ operator()( const Rect& roi ) const; | |
| Mat_ operator()( const Range* ranges ) const; | |
| Mat_ operator()(const std::vector<Range>& ranges) const; | |
| //! more convenient forms of row and element access operators | |
| _Tp* operator [](int y); | |
| const _Tp* operator [](int y) const; | |
| //! returns reference to the specified element | |
| _Tp& operator ()(const int* idx); | |
| //! returns read-only reference to the specified element | |
| const _Tp& operator ()(const int* idx) const; | |
| //! returns reference to the specified element | |
| template<int n> _Tp& operator ()(const Vec<int, n>& idx); | |
| //! returns read-only reference to the specified element | |
| template<int n> const _Tp& operator ()(const Vec<int, n>& idx) const; | |
| //! returns reference to the specified element (1D case) | |
| _Tp& operator ()(int idx0); | |
| //! returns read-only reference to the specified element (1D case) | |
| const _Tp& operator ()(int idx0) const; | |
| //! returns reference to the specified element (2D case) | |
| _Tp& operator ()(int row, int col); | |
| //! returns read-only reference to the specified element (2D case) | |
| const _Tp& operator ()(int row, int col) const; | |
| //! returns reference to the specified element (3D case) | |
| _Tp& operator ()(int idx0, int idx1, int idx2); | |
| //! returns read-only reference to the specified element (3D case) | |
| const _Tp& operator ()(int idx0, int idx1, int idx2) const; | |
| _Tp& operator ()(Point pt); | |
| const _Tp& operator ()(Point pt) const; | |
| //! conversion to vector. | |
| operator std::vector<_Tp>() const; | |
| //! conversion to array. | |
| template<std::size_t _Nm> operator std::array<_Tp, _Nm>() const; | |
| //! conversion to Vec | |
| template<int n> operator Vec<typename DataType<_Tp>::channel_type, n>() const; | |
| //! conversion to Matx | |
| template<int m, int n> operator Matx<typename DataType<_Tp>::channel_type, m, n>() const; | |
| Mat_(Mat_&& m); | |
| Mat_& operator = (Mat_&& m); | |
| Mat_(Mat&& m); | |
| Mat_& operator = (Mat&& m); | |
| Mat_(MatExpr&& e); | |
| }; | |
| typedef Mat_<uchar> Mat1b; | |
| typedef Mat_<Vec2b> Mat2b; | |
| typedef Mat_<Vec3b> Mat3b; | |
| typedef Mat_<Vec4b> Mat4b; | |
| typedef Mat_<short> Mat1s; | |
| typedef Mat_<Vec2s> Mat2s; | |
| typedef Mat_<Vec3s> Mat3s; | |
| typedef Mat_<Vec4s> Mat4s; | |
| typedef Mat_<ushort> Mat1w; | |
| typedef Mat_<Vec2w> Mat2w; | |
| typedef Mat_<Vec3w> Mat3w; | |
| typedef Mat_<Vec4w> Mat4w; | |
| typedef Mat_<int> Mat1i; | |
| typedef Mat_<Vec2i> Mat2i; | |
| typedef Mat_<Vec3i> Mat3i; | |
| typedef Mat_<Vec4i> Mat4i; | |
| typedef Mat_<float> Mat1f; | |
| typedef Mat_<Vec2f> Mat2f; | |
| typedef Mat_<Vec3f> Mat3f; | |
| typedef Mat_<Vec4f> Mat4f; | |
| typedef Mat_<double> Mat1d; | |
| typedef Mat_<Vec2d> Mat2d; | |
| typedef Mat_<Vec3d> Mat3d; | |
| typedef Mat_<Vec4d> Mat4d; | |
| /** @todo document */ | |
| class CV_EXPORTS UMat | |
| { | |
| public: | |
| //! default constructor | |
| UMat(UMatUsageFlags usageFlags = USAGE_DEFAULT) CV_NOEXCEPT; | |
| //! constructs 2D matrix of the specified size and type | |
| // (_type is CV_8UC1, CV_64FC3, CV_32SC(12) etc.) | |
| UMat(int rows, int cols, int type, UMatUsageFlags usageFlags = USAGE_DEFAULT); | |
| UMat(Size size, int type, UMatUsageFlags usageFlags = USAGE_DEFAULT); | |
| //! constructs 2D matrix and fills it with the specified value _s. | |
| UMat(int rows, int cols, int type, const Scalar& s, UMatUsageFlags usageFlags = USAGE_DEFAULT); | |
| UMat(Size size, int type, const Scalar& s, UMatUsageFlags usageFlags = USAGE_DEFAULT); | |
| //! constructs n-dimensional matrix | |
| UMat(int ndims, const int* sizes, int type, UMatUsageFlags usageFlags = USAGE_DEFAULT); | |
| UMat(int ndims, const int* sizes, int type, const Scalar& s, UMatUsageFlags usageFlags = USAGE_DEFAULT); | |
| //! copy constructor | |
| UMat(const UMat& m); | |
| //! creates a matrix header for a part of the bigger matrix | |
| UMat(const UMat& m, const Range& rowRange, const Range& colRange=Range::all()); | |
| UMat(const UMat& m, const Rect& roi); | |
| UMat(const UMat& m, const Range* ranges); | |
| UMat(const UMat& m, const std::vector<Range>& ranges); | |
| // FIXIT copyData=false is not implemented, drop this in favor of cv::Mat (OpenCV 5.0) | |
| //! builds matrix from std::vector with or without copying the data | |
| template<typename _Tp> explicit UMat(const std::vector<_Tp>& vec, bool copyData=false); | |
| //! destructor - calls release() | |
| ~UMat(); | |
| //! assignment operators | |
| UMat& operator = (const UMat& m); | |
| Mat getMat(AccessFlag flags) const; | |
| //! returns a new matrix header for the specified row | |
| UMat row(int y) const; | |
| //! returns a new matrix header for the specified column | |
| UMat col(int x) const; | |
| //! ... for the specified row span | |
| UMat rowRange(int startrow, int endrow) const; | |
| UMat rowRange(const Range& r) const; | |
| //! ... for the specified column span | |
| UMat colRange(int startcol, int endcol) const; | |
| UMat colRange(const Range& r) const; | |
| //! ... for the specified diagonal | |
| //! (d=0 - the main diagonal, | |
| //! >0 - a diagonal from the upper half, | |
| //! <0 - a diagonal from the lower half) | |
| UMat diag(int d=0) const; | |
| //! constructs a square diagonal matrix which main diagonal is vector "d" | |
| CV_NODISCARD_STD static UMat diag(const UMat& d, UMatUsageFlags usageFlags /*= USAGE_DEFAULT*/); | |
| CV_NODISCARD_STD static UMat diag(const UMat& d) { return diag(d, USAGE_DEFAULT); } // OpenCV 5.0: remove abi compatibility overload | |
| //! returns deep copy of the matrix, i.e. the data is copied | |
| CV_NODISCARD_STD UMat clone() const; | |
| //! copies the matrix content to "m". | |
| // It calls m.create(this->size(), this->type()). | |
| void copyTo( OutputArray m ) const; | |
| //! copies those matrix elements to "m" that are marked with non-zero mask elements. | |
| void copyTo( OutputArray m, InputArray mask ) const; | |
| //! converts matrix to another datatype with optional scaling. See cvConvertScale. | |
| void convertTo( OutputArray m, int rtype, double alpha=1, double beta=0 ) const; | |
| void assignTo( UMat& m, int type=-1 ) const; | |
| //! sets every matrix element to s | |
| UMat& operator = (const Scalar& s); | |
| //! sets some of the matrix elements to s, according to the mask | |
| UMat& setTo(InputArray value, InputArray mask=noArray()); | |
| //! creates alternative matrix header for the same data, with different | |
| // number of channels and/or different number of rows. see cvReshape. | |
| UMat reshape(int cn, int rows=0) const; | |
| UMat reshape(int cn, int newndims, const int* newsz) const; | |
| //! matrix transposition by means of matrix expressions | |
| UMat t() const; | |
| //! matrix inversion by means of matrix expressions | |
| UMat inv(int method=DECOMP_LU) const; | |
| //! per-element matrix multiplication by means of matrix expressions | |
| UMat mul(InputArray m, double scale=1) const; | |
| //! computes dot-product | |
| double dot(InputArray m) const; | |
| //! Matlab-style matrix initialization | |
| CV_NODISCARD_STD static UMat zeros(int rows, int cols, int type, UMatUsageFlags usageFlags /*= USAGE_DEFAULT*/); | |
| CV_NODISCARD_STD static UMat zeros(Size size, int type, UMatUsageFlags usageFlags /*= USAGE_DEFAULT*/); | |
| CV_NODISCARD_STD static UMat zeros(int ndims, const int* sz, int type, UMatUsageFlags usageFlags /*= USAGE_DEFAULT*/); | |
| CV_NODISCARD_STD static UMat zeros(int rows, int cols, int type) { return zeros(rows, cols, type, USAGE_DEFAULT); } // OpenCV 5.0: remove abi compatibility overload | |
| CV_NODISCARD_STD static UMat zeros(Size size, int type) { return zeros(size, type, USAGE_DEFAULT); } // OpenCV 5.0: remove abi compatibility overload | |
| CV_NODISCARD_STD static UMat zeros(int ndims, const int* sz, int type) { return zeros(ndims, sz, type, USAGE_DEFAULT); } // OpenCV 5.0: remove abi compatibility overload | |
| CV_NODISCARD_STD static UMat ones(int rows, int cols, int type, UMatUsageFlags usageFlags /*= USAGE_DEFAULT*/); | |
| CV_NODISCARD_STD static UMat ones(Size size, int type, UMatUsageFlags usageFlags /*= USAGE_DEFAULT*/); | |
| CV_NODISCARD_STD static UMat ones(int ndims, const int* sz, int type, UMatUsageFlags usageFlags /*= USAGE_DEFAULT*/); | |
| CV_NODISCARD_STD static UMat ones(int rows, int cols, int type) { return ones(rows, cols, type, USAGE_DEFAULT); } // OpenCV 5.0: remove abi compatibility overload | |
| CV_NODISCARD_STD static UMat ones(Size size, int type) { return ones(size, type, USAGE_DEFAULT); } // OpenCV 5.0: remove abi compatibility overload | |
| CV_NODISCARD_STD static UMat ones(int ndims, const int* sz, int type) { return ones(ndims, sz, type, USAGE_DEFAULT); } // OpenCV 5.0: remove abi compatibility overload | |
| CV_NODISCARD_STD static UMat eye(int rows, int cols, int type, UMatUsageFlags usageFlags /*= USAGE_DEFAULT*/); | |
| CV_NODISCARD_STD static UMat eye(Size size, int type, UMatUsageFlags usageFlags /*= USAGE_DEFAULT*/); | |
| CV_NODISCARD_STD static UMat eye(int rows, int cols, int type) { return eye(rows, cols, type, USAGE_DEFAULT); } // OpenCV 5.0: remove abi compatibility overload | |
| CV_NODISCARD_STD static UMat eye(Size size, int type) { return eye(size, type, USAGE_DEFAULT); } // OpenCV 5.0: remove abi compatibility overload | |
| //! allocates new matrix data unless the matrix already has specified size and type. | |
| // previous data is unreferenced if needed. | |
| void create(int rows, int cols, int type, UMatUsageFlags usageFlags = USAGE_DEFAULT); | |
| void create(Size size, int type, UMatUsageFlags usageFlags = USAGE_DEFAULT); | |
| void create(int ndims, const int* sizes, int type, UMatUsageFlags usageFlags = USAGE_DEFAULT); | |
| void create(const std::vector<int>& sizes, int type, UMatUsageFlags usageFlags = USAGE_DEFAULT); | |
| //! increases the reference counter; use with care to avoid memleaks | |
| void addref(); | |
| //! decreases reference counter; | |
| // deallocates the data when reference counter reaches 0. | |
| void release(); | |
| //! deallocates the matrix data | |
| void deallocate(); | |
| //! internal use function; properly re-allocates _size, _step arrays | |
| void copySize(const UMat& m); | |
| //! locates matrix header within a parent matrix. See below | |
| void locateROI( Size& wholeSize, Point& ofs ) const; | |
| //! moves/resizes the current matrix ROI inside the parent matrix. | |
| UMat& adjustROI( int dtop, int dbottom, int dleft, int dright ); | |
| //! extracts a rectangular sub-matrix | |
| // (this is a generalized form of row, rowRange etc.) | |
| UMat operator()( Range rowRange, Range colRange ) const; | |
| UMat operator()( const Rect& roi ) const; | |
| UMat operator()( const Range* ranges ) const; | |
| UMat operator()(const std::vector<Range>& ranges) const; | |
| //! returns true iff the matrix data is continuous | |
| // (i.e. when there are no gaps between successive rows). | |
| // similar to CV_IS_MAT_CONT(cvmat->type) | |
| bool isContinuous() const; | |
| //! returns true if the matrix is a submatrix of another matrix | |
| bool isSubmatrix() const; | |
| //! returns element size in bytes, | |
| // similar to CV_ELEM_SIZE(cvmat->type) | |
| size_t elemSize() const; | |
| //! returns the size of element channel in bytes. | |
| size_t elemSize1() const; | |
| //! returns element type, similar to CV_MAT_TYPE(cvmat->type) | |
| int type() const; | |
| //! returns element type, similar to CV_MAT_DEPTH(cvmat->type) | |
| int depth() const; | |
| //! returns element type, similar to CV_MAT_CN(cvmat->type) | |
| int channels() const; | |
| //! returns step/elemSize1() | |
| size_t step1(int i=0) const; | |
| //! returns true if matrix data is NULL | |
| bool empty() const; | |
| //! returns the total number of matrix elements | |
| size_t total() const; | |
| //! returns N if the matrix is 1-channel (N x ptdim) or ptdim-channel (1 x N) or (N x 1); negative number otherwise | |
| int checkVector(int elemChannels, int depth=-1, bool requireContinuous=true) const; | |
| UMat(UMat&& m); | |
| UMat& operator = (UMat&& m); | |
| /*! Returns the OpenCL buffer handle on which UMat operates on. | |
| The UMat instance should be kept alive during the use of the handle to prevent the buffer to be | |
| returned to the OpenCV buffer pool. | |
| */ | |
| void* handle(AccessFlag accessFlags) const; | |
| void ndoffset(size_t* ofs) const; | |
| enum { MAGIC_VAL = 0x42FF0000, AUTO_STEP = 0, CONTINUOUS_FLAG = CV_MAT_CONT_FLAG, SUBMATRIX_FLAG = CV_SUBMAT_FLAG }; | |
| enum { MAGIC_MASK = 0xFFFF0000, TYPE_MASK = 0x00000FFF, DEPTH_MASK = 7 }; | |
| /*! includes several bit-fields: | |
| - the magic signature | |
| - continuity flag | |
| - depth | |
| - number of channels | |
| */ | |
| int flags; | |
| //! the matrix dimensionality, >= 2 | |
| int dims; | |
| //! number of rows in the matrix; -1 when the matrix has more than 2 dimensions | |
| int rows; | |
| //! number of columns in the matrix; -1 when the matrix has more than 2 dimensions | |
| int cols; | |
| //! custom allocator | |
| MatAllocator* allocator; | |
| //! usage flags for allocator; recommend do not set directly, instead set during construct/create/getUMat | |
| UMatUsageFlags usageFlags; | |
| //! and the standard allocator | |
| static MatAllocator* getStdAllocator(); | |
| //! internal use method: updates the continuity flag | |
| void updateContinuityFlag(); | |
| //! black-box container of UMat data | |
| UMatData* u; | |
| //! offset of the submatrix (or 0) | |
| size_t offset; | |
| //! dimensional size of the matrix; accessible in various formats | |
| MatSize size; | |
| //! number of bytes each matrix element/row/plane/dimension occupies | |
| MatStep step; | |
| protected: | |
| }; | |
| /////////////////////////// multi-dimensional sparse matrix ////////////////////////// | |
| /** @brief The class SparseMat represents multi-dimensional sparse numerical arrays. | |
| Such a sparse array can store elements of any type that Mat can store. *Sparse* means that only | |
| non-zero elements are stored (though, as a result of operations on a sparse matrix, some of its | |
| stored elements can actually become 0. It is up to you to detect such elements and delete them | |
| using SparseMat::erase ). The non-zero elements are stored in a hash table that grows when it is | |
| filled so that the search time is O(1) in average (regardless of whether element is there or not). | |
| Elements can be accessed using the following methods: | |
| - Query operations (SparseMat::ptr and the higher-level SparseMat::ref, SparseMat::value and | |
| SparseMat::find), for example: | |
| @code | |
| const int dims = 5; | |
| int size[5] = {10, 10, 10, 10, 10}; | |
| SparseMat sparse_mat(dims, size, CV_32F); | |
| for(int i = 0; i < 1000; i++) | |
| { | |
| int idx[dims]; | |
| for(int k = 0; k < dims; k++) | |
| idx[k] = rand() % size[k]; | |
| sparse_mat.ref<float>(idx) += 1.f; | |
| } | |
| cout << "nnz = " << sparse_mat.nzcount() << endl; | |
| @endcode | |
| - Sparse matrix iterators. They are similar to MatIterator but different from NAryMatIterator. | |
| That is, the iteration loop is familiar to STL users: | |
| @code | |
| // prints elements of a sparse floating-point matrix | |
| // and the sum of elements. | |
| SparseMatConstIterator_<float> | |
| it = sparse_mat.begin<float>(), | |
| it_end = sparse_mat.end<float>(); | |
| double s = 0; | |
| int dims = sparse_mat.dims(); | |
| for(; it != it_end; ++it) | |
| { | |
| // print element indices and the element value | |
| const SparseMat::Node* n = it.node(); | |
| printf("("); | |
| for(int i = 0; i < dims; i++) | |
| printf("%d%s", n->idx[i], i < dims-1 ? ", " : ")"); | |
| printf(": %g\n", it.value<float>()); | |
| s += *it; | |
| } | |
| printf("Element sum is %g\n", s); | |
| @endcode | |
| If you run this loop, you will notice that elements are not enumerated in a logical order | |
| (lexicographical, and so on). They come in the same order as they are stored in the hash table | |
| (semi-randomly). You may collect pointers to the nodes and sort them to get the proper ordering. | |
| Note, however, that pointers to the nodes may become invalid when you add more elements to the | |
| matrix. This may happen due to possible buffer reallocation. | |
| - Combination of the above 2 methods when you need to process 2 or more sparse matrices | |
| simultaneously. For example, this is how you can compute unnormalized cross-correlation of the 2 | |
| floating-point sparse matrices: | |
| @code | |
| double cross_corr(const SparseMat& a, const SparseMat& b) | |
| { | |
| const SparseMat *_a = &a, *_b = &b; | |
| // if b contains less elements than a, | |
| // it is faster to iterate through b | |
| if(_a->nzcount() > _b->nzcount()) | |
| std::swap(_a, _b); | |
| SparseMatConstIterator_<float> it = _a->begin<float>(), | |
| it_end = _a->end<float>(); | |
| double ccorr = 0; | |
| for(; it != it_end; ++it) | |
| { | |
| // take the next element from the first matrix | |
| float avalue = *it; | |
| const Node* anode = it.node(); | |
| // and try to find an element with the same index in the second matrix. | |
| // since the hash value depends only on the element index, | |
| // reuse the hash value stored in the node | |
| float bvalue = _b->value<float>(anode->idx,&anode->hashval); | |
| ccorr += avalue*bvalue; | |
| } | |
| return ccorr; | |
| } | |
| @endcode | |
| */ | |
| class CV_EXPORTS SparseMat | |
| { | |
| public: | |
| typedef SparseMatIterator iterator; | |
| typedef SparseMatConstIterator const_iterator; | |
| enum { MAGIC_VAL=0x42FD0000, MAX_DIM=32, HASH_SCALE=0x5bd1e995, HASH_BIT=0x80000000 }; | |
| //! the sparse matrix header | |
| struct CV_EXPORTS Hdr | |
| { | |
| Hdr(int _dims, const int* _sizes, int _type); | |
| void clear(); | |
| int refcount; | |
| int dims; | |
| int valueOffset; | |
| size_t nodeSize; | |
| size_t nodeCount; | |
| size_t freeList; | |
| std::vector<uchar> pool; | |
| std::vector<size_t> hashtab; | |
| int size[MAX_DIM]; | |
| }; | |
| //! sparse matrix node - element of a hash table | |
| struct CV_EXPORTS Node | |
| { | |
| //! hash value | |
| size_t hashval; | |
| //! index of the next node in the same hash table entry | |
| size_t next; | |
| //! index of the matrix element | |
| int idx[MAX_DIM]; | |
| }; | |
| /** @brief Various SparseMat constructors. | |
| */ | |
| SparseMat(); | |
| /** @overload | |
| @param dims Array dimensionality. | |
| @param _sizes Sparce matrix size on all dementions. | |
| @param _type Sparse matrix data type. | |
| */ | |
| SparseMat(int dims, const int* _sizes, int _type); | |
| /** @overload | |
| @param m Source matrix for copy constructor. If m is dense matrix (ocvMat) then it will be converted | |
| to sparse representation. | |
| */ | |
| SparseMat(const SparseMat& m); | |
| /** @overload | |
| @param m Source matrix for copy constructor. If m is dense matrix (ocvMat) then it will be converted | |
| to sparse representation. | |
| */ | |
| explicit SparseMat(const Mat& m); | |
| //! the destructor | |
| ~SparseMat(); | |
| //! assignment operator. This is O(1) operation, i.e. no data is copied | |
| SparseMat& operator = (const SparseMat& m); | |
| //! equivalent to the corresponding constructor | |
| SparseMat& operator = (const Mat& m); | |
| //! creates full copy of the matrix | |
| CV_NODISCARD_STD SparseMat clone() const; | |
| //! copies all the data to the destination matrix. All the previous content of m is erased | |
| void copyTo( SparseMat& m ) const; | |
| //! converts sparse matrix to dense matrix. | |
| void copyTo( Mat& m ) const; | |
| //! multiplies all the matrix elements by the specified scale factor alpha and converts the results to the specified data type | |
| void convertTo( SparseMat& m, int rtype, double alpha=1 ) const; | |
| //! converts sparse matrix to dense n-dim matrix with optional type conversion and scaling. | |
| /*! | |
| @param [out] m - output matrix; if it does not have a proper size or type before the operation, | |
| it is reallocated | |
| @param [in] rtype - desired output matrix type or, rather, the depth since the number of channels | |
| are the same as the input has; if rtype is negative, the output matrix will have the | |
| same type as the input. | |
| @param [in] alpha - optional scale factor | |
| @param [in] beta - optional delta added to the scaled values | |
| */ | |
| void convertTo( Mat& m, int rtype, double alpha=1, double beta=0 ) const; | |
| // not used now | |
| void assignTo( SparseMat& m, int type=-1 ) const; | |
| //! reallocates sparse matrix. | |
| /*! | |
| If the matrix already had the proper size and type, | |
| it is simply cleared with clear(), otherwise, | |
| the old matrix is released (using release()) and the new one is allocated. | |
| */ | |
| void create(int dims, const int* _sizes, int _type); | |
| //! sets all the sparse matrix elements to 0, which means clearing the hash table. | |
| void clear(); | |
| //! manually increments the reference counter to the header. | |
| void addref(); | |
| // decrements the header reference counter. When the counter reaches 0, the header and all the underlying data are deallocated. | |
| void release(); | |
| //! converts sparse matrix to the old-style representation; all the elements are copied. | |
| //operator CvSparseMat*() const; | |
| //! returns the size of each element in bytes (not including the overhead - the space occupied by SparseMat::Node elements) | |
| size_t elemSize() const; | |
| //! returns elemSize()/channels() | |
| size_t elemSize1() const; | |
| //! returns type of sparse matrix elements | |
| int type() const; | |
| //! returns the depth of sparse matrix elements | |
| int depth() const; | |
| //! returns the number of channels | |
| int channels() const; | |
| //! returns the array of sizes, or NULL if the matrix is not allocated | |
| const int* size() const; | |
| //! returns the size of i-th matrix dimension (or 0) | |
| int size(int i) const; | |
| //! returns the matrix dimensionality | |
| int dims() const; | |
| //! returns the number of non-zero elements (=the number of hash table nodes) | |
| size_t nzcount() const; | |
| //! computes the element hash value (1D case) | |
| size_t hash(int i0) const; | |
| //! computes the element hash value (2D case) | |
| size_t hash(int i0, int i1) const; | |
| //! computes the element hash value (3D case) | |
| size_t hash(int i0, int i1, int i2) const; | |
| //! computes the element hash value (nD case) | |
| size_t hash(const int* idx) const; | |
| //!@{ | |
| /*! | |
| specialized variants for 1D, 2D, 3D cases and the generic_type one for n-D case. | |
| return pointer to the matrix element. | |
| - if the element is there (it's non-zero), the pointer to it is returned | |
| - if it's not there and createMissing=false, NULL pointer is returned | |
| - if it's not there and createMissing=true, then the new element | |
| is created and initialized with 0. Pointer to it is returned | |
| - if the optional hashval pointer is not NULL, the element hash value is | |
| not computed, but *hashval is taken instead. | |
| */ | |
| //! returns pointer to the specified element (1D case) | |
| uchar* ptr(int i0, bool createMissing, size_t* hashval=0); | |
| //! returns pointer to the specified element (2D case) | |
| uchar* ptr(int i0, int i1, bool createMissing, size_t* hashval=0); | |
| //! returns pointer to the specified element (3D case) | |
| uchar* ptr(int i0, int i1, int i2, bool createMissing, size_t* hashval=0); | |
| //! returns pointer to the specified element (nD case) | |
| uchar* ptr(const int* idx, bool createMissing, size_t* hashval=0); | |
| //!@} | |
| //!@{ | |
| /*! | |
| return read-write reference to the specified sparse matrix element. | |
| `ref<_Tp>(i0,...[,hashval])` is equivalent to `*(_Tp*)ptr(i0,...,true[,hashval])`. | |
| The methods always return a valid reference. | |
| If the element did not exist, it is created and initialized with 0. | |
| */ | |
| //! returns reference to the specified element (1D case) | |
| template<typename _Tp> _Tp& ref(int i0, size_t* hashval=0); | |
| //! returns reference to the specified element (2D case) | |
| template<typename _Tp> _Tp& ref(int i0, int i1, size_t* hashval=0); | |
| //! returns reference to the specified element (3D case) | |
| template<typename _Tp> _Tp& ref(int i0, int i1, int i2, size_t* hashval=0); | |
| //! returns reference to the specified element (nD case) | |
| template<typename _Tp> _Tp& ref(const int* idx, size_t* hashval=0); | |
| //!@} | |
| //!@{ | |
| /*! | |
| return value of the specified sparse matrix element. | |
| `value<_Tp>(i0,...[,hashval])` is equivalent to | |
| @code | |
| { const _Tp* p = find<_Tp>(i0,...[,hashval]); return p ? *p : _Tp(); } | |
| @endcode | |
| That is, if the element did not exist, the methods return 0. | |
| */ | |
| //! returns value of the specified element (1D case) | |
| template<typename _Tp> _Tp value(int i0, size_t* hashval=0) const; | |
| //! returns value of the specified element (2D case) | |
| template<typename _Tp> _Tp value(int i0, int i1, size_t* hashval=0) const; | |
| //! returns value of the specified element (3D case) | |
| template<typename _Tp> _Tp value(int i0, int i1, int i2, size_t* hashval=0) const; | |
| //! returns value of the specified element (nD case) | |
| template<typename _Tp> _Tp value(const int* idx, size_t* hashval=0) const; | |
| //!@} | |
| //!@{ | |
| /*! | |
| Return pointer to the specified sparse matrix element if it exists | |
| `find<_Tp>(i0,...[,hashval])` is equivalent to `(_const Tp*)ptr(i0,...false[,hashval])`. | |
| If the specified element does not exist, the methods return NULL. | |
| */ | |
| //! returns pointer to the specified element (1D case) | |
| template<typename _Tp> const _Tp* find(int i0, size_t* hashval=0) const; | |
| //! returns pointer to the specified element (2D case) | |
| template<typename _Tp> const _Tp* find(int i0, int i1, size_t* hashval=0) const; | |
| //! returns pointer to the specified element (3D case) | |
| template<typename _Tp> const _Tp* find(int i0, int i1, int i2, size_t* hashval=0) const; | |
| //! returns pointer to the specified element (nD case) | |
| template<typename _Tp> const _Tp* find(const int* idx, size_t* hashval=0) const; | |
| //!@} | |
| //! erases the specified element (2D case) | |
| void erase(int i0, int i1, size_t* hashval=0); | |
| //! erases the specified element (3D case) | |
| void erase(int i0, int i1, int i2, size_t* hashval=0); | |
| //! erases the specified element (nD case) | |
| void erase(const int* idx, size_t* hashval=0); | |
| //!@{ | |
| /*! | |
| return the sparse matrix iterator pointing to the first sparse matrix element | |
| */ | |
| //! returns the sparse matrix iterator at the matrix beginning | |
| SparseMatIterator begin(); | |
| //! returns the sparse matrix iterator at the matrix beginning | |
| template<typename _Tp> SparseMatIterator_<_Tp> begin(); | |
| //! returns the read-only sparse matrix iterator at the matrix beginning | |
| SparseMatConstIterator begin() const; | |
| //! returns the read-only sparse matrix iterator at the matrix beginning | |
| template<typename _Tp> SparseMatConstIterator_<_Tp> begin() const; | |
| //!@} | |
| /*! | |
| return the sparse matrix iterator pointing to the element following the last sparse matrix element | |
| */ | |
| //! returns the sparse matrix iterator at the matrix end | |
| SparseMatIterator end(); | |
| //! returns the read-only sparse matrix iterator at the matrix end | |
| SparseMatConstIterator end() const; | |
| //! returns the typed sparse matrix iterator at the matrix end | |
| template<typename _Tp> SparseMatIterator_<_Tp> end(); | |
| //! returns the typed read-only sparse matrix iterator at the matrix end | |
| template<typename _Tp> SparseMatConstIterator_<_Tp> end() const; | |
| //! returns the value stored in the sparse martix node | |
| template<typename _Tp> _Tp& value(Node* n); | |
| //! returns the value stored in the sparse martix node | |
| template<typename _Tp> const _Tp& value(const Node* n) const; | |
| ////////////// some internal-use methods /////////////// | |
| Node* node(size_t nidx); | |
| const Node* node(size_t nidx) const; | |
| uchar* newNode(const int* idx, size_t hashval); | |
| void removeNode(size_t hidx, size_t nidx, size_t previdx); | |
| void resizeHashTab(size_t newsize); | |
| int flags; | |
| Hdr* hdr; | |
| }; | |
| ///////////////////////////////// SparseMat_<_Tp> //////////////////////////////////// | |
| /** @brief Template sparse n-dimensional array class derived from SparseMat | |
| SparseMat_ is a thin wrapper on top of SparseMat created in the same way as Mat_ . It simplifies | |
| notation of some operations: | |
| @code | |
| int sz[] = {10, 20, 30}; | |
| SparseMat_<double> M(3, sz); | |
| ... | |
| M.ref(1, 2, 3) = M(4, 5, 6) + M(7, 8, 9); | |
| @endcode | |
| */ | |
| template<typename _Tp> class SparseMat_ : public SparseMat | |
| { | |
| public: | |
| typedef SparseMatIterator_<_Tp> iterator; | |
| typedef SparseMatConstIterator_<_Tp> const_iterator; | |
| //! the default constructor | |
| SparseMat_(); | |
| //! the full constructor equivalent to SparseMat(dims, _sizes, DataType<_Tp>::type) | |
| SparseMat_(int dims, const int* _sizes); | |
| //! the copy constructor. If DataType<_Tp>.type != m.type(), the m elements are converted | |
| SparseMat_(const SparseMat& m); | |
| //! the copy constructor. This is O(1) operation - no data is copied | |
| SparseMat_(const SparseMat_& m); | |
| //! converts dense matrix to the sparse form | |
| SparseMat_(const Mat& m); | |
| //! converts the old-style sparse matrix to the C++ class. All the elements are copied | |
| //SparseMat_(const CvSparseMat* m); | |
| //! the assignment operator. If DataType<_Tp>.type != m.type(), the m elements are converted | |
| SparseMat_& operator = (const SparseMat& m); | |
| //! the assignment operator. This is O(1) operation - no data is copied | |
| SparseMat_& operator = (const SparseMat_& m); | |
| //! converts dense matrix to the sparse form | |
| SparseMat_& operator = (const Mat& m); | |
| //! makes full copy of the matrix. All the elements are duplicated | |
| CV_NODISCARD_STD SparseMat_ clone() const; | |
| //! equivalent to cv::SparseMat::create(dims, _sizes, DataType<_Tp>::type) | |
| void create(int dims, const int* _sizes); | |
| //! converts sparse matrix to the old-style CvSparseMat. All the elements are copied | |
| //operator CvSparseMat*() const; | |
| //! returns type of the matrix elements | |
| int type() const; | |
| //! returns depth of the matrix elements | |
| int depth() const; | |
| //! returns the number of channels in each matrix element | |
| int channels() const; | |
| //! equivalent to SparseMat::ref<_Tp>(i0, hashval) | |
| _Tp& ref(int i0, size_t* hashval=0); | |
| //! equivalent to SparseMat::ref<_Tp>(i0, i1, hashval) | |
| _Tp& ref(int i0, int i1, size_t* hashval=0); | |
| //! equivalent to SparseMat::ref<_Tp>(i0, i1, i2, hashval) | |
| _Tp& ref(int i0, int i1, int i2, size_t* hashval=0); | |
| //! equivalent to SparseMat::ref<_Tp>(idx, hashval) | |
| _Tp& ref(const int* idx, size_t* hashval=0); | |
| //! equivalent to SparseMat::value<_Tp>(i0, hashval) | |
| _Tp operator()(int i0, size_t* hashval=0) const; | |
| //! equivalent to SparseMat::value<_Tp>(i0, i1, hashval) | |
| _Tp operator()(int i0, int i1, size_t* hashval=0) const; | |
| //! equivalent to SparseMat::value<_Tp>(i0, i1, i2, hashval) | |
| _Tp operator()(int i0, int i1, int i2, size_t* hashval=0) const; | |
| //! equivalent to SparseMat::value<_Tp>(idx, hashval) | |
| _Tp operator()(const int* idx, size_t* hashval=0) const; | |
| //! returns sparse matrix iterator pointing to the first sparse matrix element | |
| SparseMatIterator_<_Tp> begin(); | |
| //! returns read-only sparse matrix iterator pointing to the first sparse matrix element | |
| SparseMatConstIterator_<_Tp> begin() const; | |
| //! returns sparse matrix iterator pointing to the element following the last sparse matrix element | |
| SparseMatIterator_<_Tp> end(); | |
| //! returns read-only sparse matrix iterator pointing to the element following the last sparse matrix element | |
| SparseMatConstIterator_<_Tp> end() const; | |
| }; | |
| ////////////////////////////////// MatConstIterator ////////////////////////////////// | |
| class CV_EXPORTS MatConstIterator | |
| { | |
| public: | |
| typedef uchar* value_type; | |
| typedef ptrdiff_t difference_type; | |
| typedef const uchar** pointer; | |
| typedef uchar* reference; | |
| typedef std::random_access_iterator_tag iterator_category; | |
| //! default constructor | |
| MatConstIterator(); | |
| //! constructor that sets the iterator to the beginning of the matrix | |
| MatConstIterator(const Mat* _m); | |
| //! constructor that sets the iterator to the specified element of the matrix | |
| MatConstIterator(const Mat* _m, int _row, int _col=0); | |
| //! constructor that sets the iterator to the specified element of the matrix | |
| MatConstIterator(const Mat* _m, Point _pt); | |
| //! constructor that sets the iterator to the specified element of the matrix | |
| MatConstIterator(const Mat* _m, const int* _idx); | |
| //! copy constructor | |
| MatConstIterator(const MatConstIterator& it); | |
| //! copy operator | |
| MatConstIterator& operator = (const MatConstIterator& it); | |
| //! returns the current matrix element | |
| const uchar* operator *() const; | |
| //! returns the i-th matrix element, relative to the current | |
| const uchar* operator [](ptrdiff_t i) const; | |
| //! shifts the iterator forward by the specified number of elements | |
| MatConstIterator& operator += (ptrdiff_t ofs); | |
| //! shifts the iterator backward by the specified number of elements | |
| MatConstIterator& operator -= (ptrdiff_t ofs); | |
| //! decrements the iterator | |
| MatConstIterator& operator --(); | |
| //! decrements the iterator | |
| MatConstIterator operator --(int); | |
| //! increments the iterator | |
| MatConstIterator& operator ++(); | |
| //! increments the iterator | |
| MatConstIterator operator ++(int); | |
| //! returns the current iterator position | |
| Point pos() const; | |
| //! returns the current iterator position | |
| void pos(int* _idx) const; | |
| ptrdiff_t lpos() const; | |
| void seek(ptrdiff_t ofs, bool relative = false); | |
| void seek(const int* _idx, bool relative = false); | |
| const Mat* m; | |
| size_t elemSize; | |
| const uchar* ptr; | |
| const uchar* sliceStart; | |
| const uchar* sliceEnd; | |
| }; | |
| ////////////////////////////////// MatConstIterator_ ///////////////////////////////// | |
| /** @brief Matrix read-only iterator | |
| */ | |
| template<typename _Tp> | |
| class MatConstIterator_ : public MatConstIterator | |
| { | |
| public: | |
| typedef _Tp value_type; | |
| typedef ptrdiff_t difference_type; | |
| typedef const _Tp* pointer; | |
| typedef const _Tp& reference; | |
| typedef std::random_access_iterator_tag iterator_category; | |
| //! default constructor | |
| MatConstIterator_(); | |
| //! constructor that sets the iterator to the beginning of the matrix | |
| MatConstIterator_(const Mat_<_Tp>* _m); | |
| //! constructor that sets the iterator to the specified element of the matrix | |
| MatConstIterator_(const Mat_<_Tp>* _m, int _row, int _col=0); | |
| //! constructor that sets the iterator to the specified element of the matrix | |
| MatConstIterator_(const Mat_<_Tp>* _m, Point _pt); | |
| //! constructor that sets the iterator to the specified element of the matrix | |
| MatConstIterator_(const Mat_<_Tp>* _m, const int* _idx); | |
| //! copy constructor | |
| MatConstIterator_(const MatConstIterator_& it); | |
| //! copy operator | |
| MatConstIterator_& operator = (const MatConstIterator_& it); | |
| //! returns the current matrix element | |
| const _Tp& operator *() const; | |
| //! returns the i-th matrix element, relative to the current | |
| const _Tp& operator [](ptrdiff_t i) const; | |
| //! shifts the iterator forward by the specified number of elements | |
| MatConstIterator_& operator += (ptrdiff_t ofs); | |
| //! shifts the iterator backward by the specified number of elements | |
| MatConstIterator_& operator -= (ptrdiff_t ofs); | |
| //! decrements the iterator | |
| MatConstIterator_& operator --(); | |
| //! decrements the iterator | |
| MatConstIterator_ operator --(int); | |
| //! increments the iterator | |
| MatConstIterator_& operator ++(); | |
| //! increments the iterator | |
| MatConstIterator_ operator ++(int); | |
| //! returns the current iterator position | |
| Point pos() const; | |
| }; | |
| //////////////////////////////////// MatIterator_ //////////////////////////////////// | |
| /** @brief Matrix read-write iterator | |
| */ | |
| template<typename _Tp> | |
| class MatIterator_ : public MatConstIterator_<_Tp> | |
| { | |
| public: | |
| typedef _Tp* pointer; | |
| typedef _Tp& reference; | |
| typedef std::random_access_iterator_tag iterator_category; | |
| //! the default constructor | |
| MatIterator_(); | |
| //! constructor that sets the iterator to the beginning of the matrix | |
| MatIterator_(Mat_<_Tp>* _m); | |
| //! constructor that sets the iterator to the specified element of the matrix | |
| MatIterator_(Mat_<_Tp>* _m, int _row, int _col=0); | |
| //! constructor that sets the iterator to the specified element of the matrix | |
| MatIterator_(Mat_<_Tp>* _m, Point _pt); | |
| //! constructor that sets the iterator to the specified element of the matrix | |
| MatIterator_(Mat_<_Tp>* _m, const int* _idx); | |
| //! copy constructor | |
| MatIterator_(const MatIterator_& it); | |
| //! copy operator | |
| MatIterator_& operator = (const MatIterator_<_Tp>& it ); | |
| //! returns the current matrix element | |
| _Tp& operator *() const; | |
| //! returns the i-th matrix element, relative to the current | |
| _Tp& operator [](ptrdiff_t i) const; | |
| //! shifts the iterator forward by the specified number of elements | |
| MatIterator_& operator += (ptrdiff_t ofs); | |
| //! shifts the iterator backward by the specified number of elements | |
| MatIterator_& operator -= (ptrdiff_t ofs); | |
| //! decrements the iterator | |
| MatIterator_& operator --(); | |
| //! decrements the iterator | |
| MatIterator_ operator --(int); | |
| //! increments the iterator | |
| MatIterator_& operator ++(); | |
| //! increments the iterator | |
| MatIterator_ operator ++(int); | |
| }; | |
| /////////////////////////////// SparseMatConstIterator /////////////////////////////// | |
| /** @brief Read-Only Sparse Matrix Iterator. | |
| Here is how to use the iterator to compute the sum of floating-point sparse matrix elements: | |
| \code | |
| SparseMatConstIterator it = m.begin(), it_end = m.end(); | |
| double s = 0; | |
| CV_Assert( m.type() == CV_32F ); | |
| for( ; it != it_end; ++it ) | |
| s += it.value<float>(); | |
| \endcode | |
| */ | |
| class CV_EXPORTS SparseMatConstIterator | |
| { | |
| public: | |
| //! the default constructor | |
| SparseMatConstIterator(); | |
| //! the full constructor setting the iterator to the first sparse matrix element | |
| SparseMatConstIterator(const SparseMat* _m); | |
| //! the copy constructor | |
| SparseMatConstIterator(const SparseMatConstIterator& it); | |
| //! the assignment operator | |
| SparseMatConstIterator& operator = (const SparseMatConstIterator& it); | |
| //! template method returning the current matrix element | |
| template<typename _Tp> const _Tp& value() const; | |
| //! returns the current node of the sparse matrix. it.node->idx is the current element index | |
| const SparseMat::Node* node() const; | |
| //! moves iterator to the previous element | |
| SparseMatConstIterator& operator --(); | |
| //! moves iterator to the previous element | |
| SparseMatConstIterator operator --(int); | |
| //! moves iterator to the next element | |
| SparseMatConstIterator& operator ++(); | |
| //! moves iterator to the next element | |
| SparseMatConstIterator operator ++(int); | |
| //! moves iterator to the element after the last element | |
| void seekEnd(); | |
| const SparseMat* m; | |
| size_t hashidx; | |
| uchar* ptr; | |
| }; | |
| ////////////////////////////////// SparseMatIterator ///////////////////////////////// | |
| /** @brief Read-write Sparse Matrix Iterator | |
| The class is similar to cv::SparseMatConstIterator, | |
| but can be used for in-place modification of the matrix elements. | |
| */ | |
| class CV_EXPORTS SparseMatIterator : public SparseMatConstIterator | |
| { | |
| public: | |
| //! the default constructor | |
| SparseMatIterator(); | |
| //! the full constructor setting the iterator to the first sparse matrix element | |
| SparseMatIterator(SparseMat* _m); | |
| //! the full constructor setting the iterator to the specified sparse matrix element | |
| SparseMatIterator(SparseMat* _m, const int* idx); | |
| //! the copy constructor | |
| SparseMatIterator(const SparseMatIterator& it); | |
| //! the assignment operator | |
| SparseMatIterator& operator = (const SparseMatIterator& it); | |
| //! returns read-write reference to the current sparse matrix element | |
| template<typename _Tp> _Tp& value() const; | |
| //! returns pointer to the current sparse matrix node. it.node->idx is the index of the current element (do not modify it!) | |
| SparseMat::Node* node() const; | |
| //! moves iterator to the next element | |
| SparseMatIterator& operator ++(); | |
| //! moves iterator to the next element | |
| SparseMatIterator operator ++(int); | |
| }; | |
| /////////////////////////////// SparseMatConstIterator_ ////////////////////////////// | |
| /** @brief Template Read-Only Sparse Matrix Iterator Class. | |
| This is the derived from SparseMatConstIterator class that | |
| introduces more convenient operator *() for accessing the current element. | |
| */ | |
| template<typename _Tp> class SparseMatConstIterator_ : public SparseMatConstIterator | |
| { | |
| public: | |
| typedef std::forward_iterator_tag iterator_category; | |
| //! the default constructor | |
| SparseMatConstIterator_(); | |
| //! the full constructor setting the iterator to the first sparse matrix element | |
| SparseMatConstIterator_(const SparseMat_<_Tp>* _m); | |
| SparseMatConstIterator_(const SparseMat* _m); | |
| //! the copy constructor | |
| SparseMatConstIterator_(const SparseMatConstIterator_& it); | |
| //! the assignment operator | |
| SparseMatConstIterator_& operator = (const SparseMatConstIterator_& it); | |
| //! the element access operator | |
| const _Tp& operator *() const; | |
| //! moves iterator to the next element | |
| SparseMatConstIterator_& operator ++(); | |
| //! moves iterator to the next element | |
| SparseMatConstIterator_ operator ++(int); | |
| }; | |
| ///////////////////////////////// SparseMatIterator_ ///////////////////////////////// | |
| /** @brief Template Read-Write Sparse Matrix Iterator Class. | |
| This is the derived from cv::SparseMatConstIterator_ class that | |
| introduces more convenient operator *() for accessing the current element. | |
| */ | |
| template<typename _Tp> class SparseMatIterator_ : public SparseMatConstIterator_<_Tp> | |
| { | |
| public: | |
| typedef std::forward_iterator_tag iterator_category; | |
| //! the default constructor | |
| SparseMatIterator_(); | |
| //! the full constructor setting the iterator to the first sparse matrix element | |
| SparseMatIterator_(SparseMat_<_Tp>* _m); | |
| SparseMatIterator_(SparseMat* _m); | |
| //! the copy constructor | |
| SparseMatIterator_(const SparseMatIterator_& it); | |
| //! the assignment operator | |
| SparseMatIterator_& operator = (const SparseMatIterator_& it); | |
| //! returns the reference to the current element | |
| _Tp& operator *() const; | |
| //! moves the iterator to the next element | |
| SparseMatIterator_& operator ++(); | |
| //! moves the iterator to the next element | |
| SparseMatIterator_ operator ++(int); | |
| }; | |
| /////////////////////////////////// NAryMatIterator ////////////////////////////////// | |
| /** @brief n-ary multi-dimensional array iterator. | |
| Use the class to implement unary, binary, and, generally, n-ary element-wise operations on | |
| multi-dimensional arrays. Some of the arguments of an n-ary function may be continuous arrays, some | |
| may be not. It is possible to use conventional MatIterator 's for each array but incrementing all of | |
| the iterators after each small operations may be a big overhead. In this case consider using | |
| NAryMatIterator to iterate through several matrices simultaneously as long as they have the same | |
| geometry (dimensionality and all the dimension sizes are the same). On each iteration `it.planes[0]`, | |
| `it.planes[1]`,... will be the slices of the corresponding matrices. | |
| The example below illustrates how you can compute a normalized and threshold 3D color histogram: | |
| @code | |
| void computeNormalizedColorHist(const Mat& image, Mat& hist, int N, double minProb) | |
| { | |
| const int histSize[] = {N, N, N}; | |
| // make sure that the histogram has a proper size and type | |
| hist.create(3, histSize, CV_32F); | |
| // and clear it | |
| hist = Scalar(0); | |
| // the loop below assumes that the image | |
| // is a 8-bit 3-channel. check it. | |
| CV_Assert(image.type() == CV_8UC3); | |
| MatConstIterator_<Vec3b> it = image.begin<Vec3b>(), | |
| it_end = image.end<Vec3b>(); | |
| for( ; it != it_end; ++it ) | |
| { | |
| const Vec3b& pix = *it; | |
| hist.at<float>(pix[0]*N/256, pix[1]*N/256, pix[2]*N/256) += 1.f; | |
| } | |
| minProb *= image.rows*image.cols; | |
| // initialize iterator (the style is different from STL). | |
| // after initialization the iterator will contain | |
| // the number of slices or planes the iterator will go through. | |
| // it simultaneously increments iterators for several matrices | |
| // supplied as a null terminated list of pointers | |
| const Mat* arrays[] = {&hist, 0}; | |
| Mat planes[1]; | |
| NAryMatIterator itNAry(arrays, planes, 1); | |
| double s = 0; | |
| // iterate through the matrix. on each iteration | |
| // itNAry.planes[i] (of type Mat) will be set to the current plane | |
| // of the i-th n-dim matrix passed to the iterator constructor. | |
| for(int p = 0; p < itNAry.nplanes; p++, ++itNAry) | |
| { | |
| threshold(itNAry.planes[0], itNAry.planes[0], minProb, 0, THRESH_TOZERO); | |
| s += sum(itNAry.planes[0])[0]; | |
| } | |
| s = 1./s; | |
| itNAry = NAryMatIterator(arrays, planes, 1); | |
| for(int p = 0; p < itNAry.nplanes; p++, ++itNAry) | |
| itNAry.planes[0] *= s; | |
| } | |
| @endcode | |
| */ | |
| class CV_EXPORTS NAryMatIterator | |
| { | |
| public: | |
| //! the default constructor | |
| NAryMatIterator(); | |
| //! the full constructor taking arbitrary number of n-dim matrices | |
| NAryMatIterator(const Mat** arrays, uchar** ptrs, int narrays=-1); | |
| //! the full constructor taking arbitrary number of n-dim matrices | |
| NAryMatIterator(const Mat** arrays, Mat* planes, int narrays=-1); | |
| //! the separate iterator initialization method | |
| void init(const Mat** arrays, Mat* planes, uchar** ptrs, int narrays=-1); | |
| //! proceeds to the next plane of every iterated matrix | |
| NAryMatIterator& operator ++(); | |
| //! proceeds to the next plane of every iterated matrix (postfix increment operator) | |
| NAryMatIterator operator ++(int); | |
| //! the iterated arrays | |
| const Mat** arrays; | |
| //! the current planes | |
| Mat* planes; | |
| //! data pointers | |
| uchar** ptrs; | |
| //! the number of arrays | |
| int narrays; | |
| //! the number of hyper-planes that the iterator steps through | |
| size_t nplanes; | |
| //! the size of each segment (in elements) | |
| size_t size; | |
| protected: | |
| int iterdepth; | |
| size_t idx; | |
| }; | |
| ///////////////////////////////// Matrix Expressions ///////////////////////////////// | |
| class CV_EXPORTS MatOp | |
| { | |
| public: | |
| MatOp(); | |
| virtual ~MatOp(); | |
| virtual bool elementWise(const MatExpr& expr) const; | |
| virtual void assign(const MatExpr& expr, Mat& m, int type=-1) const = 0; | |
| virtual void roi(const MatExpr& expr, const Range& rowRange, | |
| const Range& colRange, MatExpr& res) const; | |
| virtual void diag(const MatExpr& expr, int d, MatExpr& res) const; | |
| virtual void augAssignAdd(const MatExpr& expr, Mat& m) const; | |
| virtual void augAssignSubtract(const MatExpr& expr, Mat& m) const; | |
| virtual void augAssignMultiply(const MatExpr& expr, Mat& m) const; | |
| virtual void augAssignDivide(const MatExpr& expr, Mat& m) const; | |
| virtual void augAssignAnd(const MatExpr& expr, Mat& m) const; | |
| virtual void augAssignOr(const MatExpr& expr, Mat& m) const; | |
| virtual void augAssignXor(const MatExpr& expr, Mat& m) const; | |
| virtual void add(const MatExpr& expr1, const MatExpr& expr2, MatExpr& res) const; | |
| virtual void add(const MatExpr& expr1, const Scalar& s, MatExpr& res) const; | |
| virtual void subtract(const MatExpr& expr1, const MatExpr& expr2, MatExpr& res) const; | |
| virtual void subtract(const Scalar& s, const MatExpr& expr, MatExpr& res) const; | |
| virtual void multiply(const MatExpr& expr1, const MatExpr& expr2, MatExpr& res, double scale=1) const; | |
| virtual void multiply(const MatExpr& expr1, double s, MatExpr& res) const; | |
| virtual void divide(const MatExpr& expr1, const MatExpr& expr2, MatExpr& res, double scale=1) const; | |
| virtual void divide(double s, const MatExpr& expr, MatExpr& res) const; | |
| virtual void abs(const MatExpr& expr, MatExpr& res) const; | |
| virtual void transpose(const MatExpr& expr, MatExpr& res) const; | |
| virtual void matmul(const MatExpr& expr1, const MatExpr& expr2, MatExpr& res) const; | |
| virtual void invert(const MatExpr& expr, int method, MatExpr& res) const; | |
| virtual Size size(const MatExpr& expr) const; | |
| virtual int type(const MatExpr& expr) const; | |
| }; | |
| /** @brief Matrix expression representation | |
| @anchor MatrixExpressions | |
| This is a list of implemented matrix operations that can be combined in arbitrary complex | |
| expressions (here A, B stand for matrices ( Mat ), s for a scalar ( Scalar ), alpha for a | |
| real-valued scalar ( double )): | |
| - Addition, subtraction, negation: `A+B`, `A-B`, `A+s`, `A-s`, `s+A`, `s-A`, `-A` | |
| - Scaling: `A*alpha` | |
| - Per-element multiplication and division: `A.mul(B)`, `A/B`, `alpha/A` | |
| - Matrix multiplication: `A*B` | |
| - Transposition: `A.t()` (means A<sup>T</sup>) | |
| - Matrix inversion and pseudo-inversion, solving linear systems and least-squares problems: | |
| `A.inv([method]) (~ A<sup>-1</sup>)`, `A.inv([method])*B (~ X: AX=B)` | |
| - Comparison: `A cmpop B`, `A cmpop alpha`, `alpha cmpop A`, where *cmpop* is one of | |
| `>`, `>=`, `==`, `!=`, `<=`, `<`. The result of comparison is an 8-bit single channel mask whose | |
| elements are set to 255 (if the particular element or pair of elements satisfy the condition) or | |
| 0. | |
| - Bitwise logical operations: `A logicop B`, `A logicop s`, `s logicop A`, `~A`, where *logicop* is one of | |
| `&`, `|`, `^`. | |
| - Element-wise minimum and maximum: `min(A, B)`, `min(A, alpha)`, `max(A, B)`, `max(A, alpha)` | |
| - Element-wise absolute value: `abs(A)` | |
| - Cross-product, dot-product: `A.cross(B)`, `A.dot(B)` | |
| - Any function of matrix or matrices and scalars that returns a matrix or a scalar, such as norm, | |
| mean, sum, countNonZero, trace, determinant, repeat, and others. | |
| - Matrix initializers ( Mat::eye(), Mat::zeros(), Mat::ones() ), matrix comma-separated | |
| initializers, matrix constructors and operators that extract sub-matrices (see Mat description). | |
| - Mat_<destination_type>() constructors to cast the result to the proper type. | |
| @note Comma-separated initializers and probably some other operations may require additional | |
| explicit Mat() or Mat_<T>() constructor calls to resolve a possible ambiguity. | |
| Here are examples of matrix expressions: | |
| @code | |
| // compute pseudo-inverse of A, equivalent to A.inv(DECOMP_SVD) | |
| SVD svd(A); | |
| Mat pinvA = svd.vt.t()*Mat::diag(1./svd.w)*svd.u.t(); | |
| // compute the new vector of parameters in the Levenberg-Marquardt algorithm | |
| x -= (A.t()*A + lambda*Mat::eye(A.cols,A.cols,A.type())).inv(DECOMP_CHOLESKY)*(A.t()*err); | |
| // sharpen image using "unsharp mask" algorithm | |
| Mat blurred; double sigma = 1, threshold = 5, amount = 1; | |
| GaussianBlur(img, blurred, Size(), sigma, sigma); | |
| Mat lowContrastMask = abs(img - blurred) < threshold; | |
| Mat sharpened = img*(1+amount) + blurred*(-amount); | |
| img.copyTo(sharpened, lowContrastMask); | |
| @endcode | |
| */ | |
| class CV_EXPORTS MatExpr | |
| { | |
| public: | |
| MatExpr(); | |
| explicit MatExpr(const Mat& m); | |
| MatExpr(const MatOp* _op, int _flags, const Mat& _a = Mat(), const Mat& _b = Mat(), | |
| const Mat& _c = Mat(), double _alpha = 1, double _beta = 1, const Scalar& _s = Scalar()); | |
| operator Mat() const; | |
| template<typename _Tp> operator Mat_<_Tp>() const; | |
| Size size() const; | |
| int type() const; | |
| MatExpr row(int y) const; | |
| MatExpr col(int x) const; | |
| MatExpr diag(int d = 0) const; | |
| MatExpr operator()( const Range& rowRange, const Range& colRange ) const; | |
| MatExpr operator()( const Rect& roi ) const; | |
| MatExpr t() const; | |
| MatExpr inv(int method = DECOMP_LU) const; | |
| MatExpr mul(const MatExpr& e, double scale=1) const; | |
| MatExpr mul(const Mat& m, double scale=1) const; | |
| Mat cross(const Mat& m) const; | |
| double dot(const Mat& m) const; | |
| void swap(MatExpr& b); | |
| const MatOp* op; | |
| int flags; | |
| Mat a, b, c; | |
| double alpha, beta; | |
| Scalar s; | |
| }; | |
| //! @} core_basic | |
| //! @relates cv::MatExpr | |
| //! @{ | |
| CV_EXPORTS MatExpr operator + (const Mat& a, const Mat& b); | |
| CV_EXPORTS MatExpr operator + (const Mat& a, const Scalar& s); | |
| CV_EXPORTS MatExpr operator + (const Scalar& s, const Mat& a); | |
| CV_EXPORTS MatExpr operator + (const MatExpr& e, const Mat& m); | |
| CV_EXPORTS MatExpr operator + (const Mat& m, const MatExpr& e); | |
| CV_EXPORTS MatExpr operator + (const MatExpr& e, const Scalar& s); | |
| CV_EXPORTS MatExpr operator + (const Scalar& s, const MatExpr& e); | |
| CV_EXPORTS MatExpr operator + (const MatExpr& e1, const MatExpr& e2); | |
| template<typename _Tp, int m, int n> static inline | |
| MatExpr operator + (const Mat& a, const Matx<_Tp, m, n>& b) { return a + Mat(b); } | |
| template<typename _Tp, int m, int n> static inline | |
| MatExpr operator + (const Matx<_Tp, m, n>& a, const Mat& b) { return Mat(a) + b; } | |
| CV_EXPORTS MatExpr operator - (const Mat& a, const Mat& b); | |
| CV_EXPORTS MatExpr operator - (const Mat& a, const Scalar& s); | |
| CV_EXPORTS MatExpr operator - (const Scalar& s, const Mat& a); | |
| CV_EXPORTS MatExpr operator - (const MatExpr& e, const Mat& m); | |
| CV_EXPORTS MatExpr operator - (const Mat& m, const MatExpr& e); | |
| CV_EXPORTS MatExpr operator - (const MatExpr& e, const Scalar& s); | |
| CV_EXPORTS MatExpr operator - (const Scalar& s, const MatExpr& e); | |
| CV_EXPORTS MatExpr operator - (const MatExpr& e1, const MatExpr& e2); | |
| template<typename _Tp, int m, int n> static inline | |
| MatExpr operator - (const Mat& a, const Matx<_Tp, m, n>& b) { return a - Mat(b); } | |
| template<typename _Tp, int m, int n> static inline | |
| MatExpr operator - (const Matx<_Tp, m, n>& a, const Mat& b) { return Mat(a) - b; } | |
| CV_EXPORTS MatExpr operator - (const Mat& m); | |
| CV_EXPORTS MatExpr operator - (const MatExpr& e); | |
| CV_EXPORTS MatExpr operator * (const Mat& a, const Mat& b); | |
| CV_EXPORTS MatExpr operator * (const Mat& a, double s); | |
| CV_EXPORTS MatExpr operator * (double s, const Mat& a); | |
| CV_EXPORTS MatExpr operator * (const MatExpr& e, const Mat& m); | |
| CV_EXPORTS MatExpr operator * (const Mat& m, const MatExpr& e); | |
| CV_EXPORTS MatExpr operator * (const MatExpr& e, double s); | |
| CV_EXPORTS MatExpr operator * (double s, const MatExpr& e); | |
| CV_EXPORTS MatExpr operator * (const MatExpr& e1, const MatExpr& e2); | |
| template<typename _Tp, int m, int n> static inline | |
| MatExpr operator * (const Mat& a, const Matx<_Tp, m, n>& b) { return a * Mat(b); } | |
| template<typename _Tp, int m, int n> static inline | |
| MatExpr operator * (const Matx<_Tp, m, n>& a, const Mat& b) { return Mat(a) * b; } | |
| CV_EXPORTS MatExpr operator / (const Mat& a, const Mat& b); | |
| CV_EXPORTS MatExpr operator / (const Mat& a, double s); | |
| CV_EXPORTS MatExpr operator / (double s, const Mat& a); | |
| CV_EXPORTS MatExpr operator / (const MatExpr& e, const Mat& m); | |
| CV_EXPORTS MatExpr operator / (const Mat& m, const MatExpr& e); | |
| CV_EXPORTS MatExpr operator / (const MatExpr& e, double s); | |
| CV_EXPORTS MatExpr operator / (double s, const MatExpr& e); | |
| CV_EXPORTS MatExpr operator / (const MatExpr& e1, const MatExpr& e2); | |
| template<typename _Tp, int m, int n> static inline | |
| MatExpr operator / (const Mat& a, const Matx<_Tp, m, n>& b) { return a / Mat(b); } | |
| template<typename _Tp, int m, int n> static inline | |
| MatExpr operator / (const Matx<_Tp, m, n>& a, const Mat& b) { return Mat(a) / b; } | |
| CV_EXPORTS MatExpr operator < (const Mat& a, const Mat& b); | |
| CV_EXPORTS MatExpr operator < (const Mat& a, double s); | |
| CV_EXPORTS MatExpr operator < (double s, const Mat& a); | |
| template<typename _Tp, int m, int n> static inline | |
| MatExpr operator < (const Mat& a, const Matx<_Tp, m, n>& b) { return a < Mat(b); } | |
| template<typename _Tp, int m, int n> static inline | |
| MatExpr operator < (const Matx<_Tp, m, n>& a, const Mat& b) { return Mat(a) < b; } | |
| CV_EXPORTS MatExpr operator <= (const Mat& a, const Mat& b); | |
| CV_EXPORTS MatExpr operator <= (const Mat& a, double s); | |
| CV_EXPORTS MatExpr operator <= (double s, const Mat& a); | |
| template<typename _Tp, int m, int n> static inline | |
| MatExpr operator <= (const Mat& a, const Matx<_Tp, m, n>& b) { return a <= Mat(b); } | |
| template<typename _Tp, int m, int n> static inline | |
| MatExpr operator <= (const Matx<_Tp, m, n>& a, const Mat& b) { return Mat(a) <= b; } | |
| CV_EXPORTS MatExpr operator == (const Mat& a, const Mat& b); | |
| CV_EXPORTS MatExpr operator == (const Mat& a, double s); | |
| CV_EXPORTS MatExpr operator == (double s, const Mat& a); | |
| template<typename _Tp, int m, int n> static inline | |
| MatExpr operator == (const Mat& a, const Matx<_Tp, m, n>& b) { return a == Mat(b); } | |
| template<typename _Tp, int m, int n> static inline | |
| MatExpr operator == (const Matx<_Tp, m, n>& a, const Mat& b) { return Mat(a) == b; } | |
| CV_EXPORTS MatExpr operator != (const Mat& a, const Mat& b); | |
| CV_EXPORTS MatExpr operator != (const Mat& a, double s); | |
| CV_EXPORTS MatExpr operator != (double s, const Mat& a); | |
| template<typename _Tp, int m, int n> static inline | |
| MatExpr operator != (const Mat& a, const Matx<_Tp, m, n>& b) { return a != Mat(b); } | |
| template<typename _Tp, int m, int n> static inline | |
| MatExpr operator != (const Matx<_Tp, m, n>& a, const Mat& b) { return Mat(a) != b; } | |
| CV_EXPORTS MatExpr operator >= (const Mat& a, const Mat& b); | |
| CV_EXPORTS MatExpr operator >= (const Mat& a, double s); | |
| CV_EXPORTS MatExpr operator >= (double s, const Mat& a); | |
| template<typename _Tp, int m, int n> static inline | |
| MatExpr operator >= (const Mat& a, const Matx<_Tp, m, n>& b) { return a >= Mat(b); } | |
| template<typename _Tp, int m, int n> static inline | |
| MatExpr operator >= (const Matx<_Tp, m, n>& a, const Mat& b) { return Mat(a) >= b; } | |
| CV_EXPORTS MatExpr operator > (const Mat& a, const Mat& b); | |
| CV_EXPORTS MatExpr operator > (const Mat& a, double s); | |
| CV_EXPORTS MatExpr operator > (double s, const Mat& a); | |
| template<typename _Tp, int m, int n> static inline | |
| MatExpr operator > (const Mat& a, const Matx<_Tp, m, n>& b) { return a > Mat(b); } | |
| template<typename _Tp, int m, int n> static inline | |
| MatExpr operator > (const Matx<_Tp, m, n>& a, const Mat& b) { return Mat(a) > b; } | |
| CV_EXPORTS MatExpr operator & (const Mat& a, const Mat& b); | |
| CV_EXPORTS MatExpr operator & (const Mat& a, const Scalar& s); | |
| CV_EXPORTS MatExpr operator & (const Scalar& s, const Mat& a); | |
| template<typename _Tp, int m, int n> static inline | |
| MatExpr operator & (const Mat& a, const Matx<_Tp, m, n>& b) { return a & Mat(b); } | |
| template<typename _Tp, int m, int n> static inline | |
| MatExpr operator & (const Matx<_Tp, m, n>& a, const Mat& b) { return Mat(a) & b; } | |
| CV_EXPORTS MatExpr operator | (const Mat& a, const Mat& b); | |
| CV_EXPORTS MatExpr operator | (const Mat& a, const Scalar& s); | |
| CV_EXPORTS MatExpr operator | (const Scalar& s, const Mat& a); | |
| template<typename _Tp, int m, int n> static inline | |
| MatExpr operator | (const Mat& a, const Matx<_Tp, m, n>& b) { return a | Mat(b); } | |
| template<typename _Tp, int m, int n> static inline | |
| MatExpr operator | (const Matx<_Tp, m, n>& a, const Mat& b) { return Mat(a) | b; } | |
| CV_EXPORTS MatExpr operator ^ (const Mat& a, const Mat& b); | |
| CV_EXPORTS MatExpr operator ^ (const Mat& a, const Scalar& s); | |
| CV_EXPORTS MatExpr operator ^ (const Scalar& s, const Mat& a); | |
| template<typename _Tp, int m, int n> static inline | |
| MatExpr operator ^ (const Mat& a, const Matx<_Tp, m, n>& b) { return a ^ Mat(b); } | |
| template<typename _Tp, int m, int n> static inline | |
| MatExpr operator ^ (const Matx<_Tp, m, n>& a, const Mat& b) { return Mat(a) ^ b; } | |
| CV_EXPORTS MatExpr operator ~(const Mat& m); | |
| CV_EXPORTS MatExpr min(const Mat& a, const Mat& b); | |
| CV_EXPORTS MatExpr min(const Mat& a, double s); | |
| CV_EXPORTS MatExpr min(double s, const Mat& a); | |
| template<typename _Tp, int m, int n> static inline | |
| MatExpr min (const Mat& a, const Matx<_Tp, m, n>& b) { return min(a, Mat(b)); } | |
| template<typename _Tp, int m, int n> static inline | |
| MatExpr min (const Matx<_Tp, m, n>& a, const Mat& b) { return min(Mat(a), b); } | |
| CV_EXPORTS MatExpr max(const Mat& a, const Mat& b); | |
| CV_EXPORTS MatExpr max(const Mat& a, double s); | |
| CV_EXPORTS MatExpr max(double s, const Mat& a); | |
| template<typename _Tp, int m, int n> static inline | |
| MatExpr max (const Mat& a, const Matx<_Tp, m, n>& b) { return max(a, Mat(b)); } | |
| template<typename _Tp, int m, int n> static inline | |
| MatExpr max (const Matx<_Tp, m, n>& a, const Mat& b) { return max(Mat(a), b); } | |
| /** @brief Calculates an absolute value of each matrix element. | |
| abs is a meta-function that is expanded to one of absdiff or convertScaleAbs forms: | |
| - C = abs(A-B) is equivalent to `absdiff(A, B, C)` | |
| - C = abs(A) is equivalent to `absdiff(A, Scalar::all(0), C)` | |
| - C = `Mat_<Vec<uchar,n> >(abs(A*alpha + beta))` is equivalent to `convertScaleAbs(A, C, alpha, | |
| beta)` | |
| The output matrix has the same size and the same type as the input one except for the last case, | |
| where C is depth=CV_8U . | |
| @param m matrix. | |
| @sa @ref MatrixExpressions, absdiff, convertScaleAbs | |
| */ | |
| CV_EXPORTS MatExpr abs(const Mat& m); | |
| /** @overload | |
| @param e matrix expression. | |
| */ | |
| CV_EXPORTS MatExpr abs(const MatExpr& e); | |
| //! @} relates cv::MatExpr | |
| } // cv | |