File size: 12,240 Bytes
b4d7ac8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
from abc import abstractmethod
from collections.abc import Sequence
import numpy as np
from torch import Tensor
from monai.apps.reconstruction.complex_utils import complex_abs, convert_to_tensor_complex
from monai.apps.reconstruction.mri_utils import root_sum_of_squares
from monai.config.type_definitions import NdarrayOrTensor
from monai.data.fft_utils import ifftn_centered
from monai.transforms.transform import RandomizableTransform
from monai.utils.enums import TransformBackends
from monai.utils.type_conversion import convert_to_tensor
class KspaceMask(RandomizableTransform):
"""
A basic class for under-sampling mask setup. It provides common
features for under-sampling mask generators.
For example, RandomMaskFunc and EquispacedMaskFunc (two mask
transform objects defined right after this module)
both inherit MaskFunc to properly setup properties like the
acceleration factor.
"""
def __init__(
self,
center_fractions: Sequence[float],
accelerations: Sequence[float],
spatial_dims: int = 2,
is_complex: bool = True,
):
"""
Args:
center_fractions: Fraction of low-frequency columns to be retained.
If multiple values are provided, then one of these numbers
is chosen uniformly each time.
accelerations: Amount of under-sampling. This should have the
same length as center_fractions. If multiple values are
provided, then one of these is chosen uniformly each time.
spatial_dims: Number of spatial dims (e.g., it's 2 for a 2D data;
it's also 2 for pseudo-3D datasets like the fastMRI dataset).
The last spatial dim is selected for sampling. For the fastMRI
dataset, k-space has the form (...,num_slices,num_coils,H,W)
and sampling is done along W. For a general 3D data with the
shape (...,num_coils,H,W,D), sampling is done along D.
is_complex: if True, then the last dimension will be reserved for
real/imaginary parts.
"""
if len(center_fractions) != len(accelerations):
raise ValueError(
"Number of center fractions \
should match number of accelerations"
)
self.center_fractions = center_fractions
self.accelerations = accelerations
self.spatial_dims = spatial_dims
self.is_complex = is_complex
@abstractmethod
def __call__(self, kspace: NdarrayOrTensor) -> Sequence[Tensor]:
"""
This is an extra instance to allow for defining new mask generators.
For creating other mask transforms, define a new class and simply
override __call__. See an example of this in
:py:class:`monai.apps.reconstruction.transforms.array.RandomKspacemask`.
Args:
kspace: The input k-space data. The shape is (...,num_coils,H,W,2)
for complex 2D inputs and (...,num_coils,H,W,D) for real 3D
data.
"""
raise NotImplementedError
def randomize_choose_acceleration(self) -> Sequence[float]:
"""
If multiple values are provided for center_fractions and
accelerations, this function selects one value uniformly
for each training/test sample.
Returns:
A tuple containing
(1) center_fraction: chosen fraction of center kspace
lines to exclude from under-sampling
(2) acceleration: chosen acceleration factor
"""
choice = self.R.randint(0, len(self.accelerations))
center_fraction = self.center_fractions[choice]
acceleration = self.accelerations[choice]
return center_fraction, acceleration
class RandomKspaceMask(KspaceMask):
"""
This k-space mask transform under-samples the k-space according to a
random sampling pattern. Precisely, it uniformly selects a subset of
columns from the input k-space data. If the k-space data has N columns,
the mask picks out:
1. N_low_freqs = (N * center_fraction) columns in the center
corresponding to low-frequencies
2. The other columns are selected uniformly at random with a probability
equal to:
prob = (N / acceleration - N_low_freqs) / (N - N_low_freqs).
This ensures that the expected number of columns selected is equal to
(N / acceleration)
It is possible to use multiple center_fractions and accelerations,
in which case one possible (center_fraction, acceleration) is chosen
uniformly at random each time the transform is called.
Example:
If accelerations = [4, 8] and center_fractions = [0.08, 0.04],
then there is a 50% probability that 4-fold acceleration with 8%
center fraction is selected and a 50% probability that 8-fold
acceleration with 4% center fraction is selected.
Modified and adopted from:
https://github.com/facebookresearch/fastMRI/tree/master/fastmri
"""
backend = [TransformBackends.TORCH]
def __call__(self, kspace: NdarrayOrTensor) -> Sequence[Tensor]:
"""
Args:
kspace: The input k-space data. The shape is (...,num_coils,H,W,2)
for complex 2D inputs and (...,num_coils,H,W,D) for real 3D
data. The last spatial dim is selected for sampling. For the
fastMRI dataset, k-space has the form
(...,num_slices,num_coils,H,W) and sampling is done along W.
For a general 3D data with the shape (...,num_coils,H,W,D),
sampling is done along D.
Returns:
A tuple containing
(1) the under-sampled kspace
(2) absolute value of the inverse fourier of the under-sampled kspace
"""
kspace_t = convert_to_tensor_complex(kspace)
spatial_size = kspace_t.shape
num_cols = spatial_size[-1]
if self.is_complex: # for complex data
num_cols = spatial_size[-2]
center_fraction, acceleration = self.randomize_choose_acceleration()
# Create the mask
num_low_freqs = int(round(num_cols * center_fraction))
prob = (num_cols / acceleration - num_low_freqs) / (num_cols - num_low_freqs)
mask = self.R.uniform(size=num_cols) < prob
pad = (num_cols - num_low_freqs + 1) // 2
mask[pad : pad + num_low_freqs] = True
# Reshape the mask
mask_shape = [1 for _ in spatial_size]
if self.is_complex:
mask_shape[-2] = num_cols
else:
mask_shape[-1] = num_cols
mask = convert_to_tensor(mask.reshape(*mask_shape).astype(np.float32))
# under-sample the ksapce
masked = mask * kspace_t
masked_kspace: Tensor = convert_to_tensor(masked)
self.mask = mask
# compute inverse fourier of the masked kspace
masked_kspace_ifft: Tensor = convert_to_tensor(
complex_abs(ifftn_centered(masked_kspace, spatial_dims=self.spatial_dims, is_complex=self.is_complex))
)
# combine coil images (it is assumed that the coil dimension is
# the first dimension before spatial dimensions)
masked_kspace_ifft_rss: Tensor = convert_to_tensor(
root_sum_of_squares(masked_kspace_ifft, spatial_dim=-self.spatial_dims - 1)
)
return masked_kspace, masked_kspace_ifft_rss
class EquispacedKspaceMask(KspaceMask):
"""
This k-space mask transform under-samples the k-space according to an
equi-distant sampling pattern. Precisely, it selects an equi-distant
subset of columns from the input k-space data. If the k-space data has N
columns, the mask picks out:
1. N_low_freqs = (N * center_fraction) columns in the center corresponding
to low-frequencies
2. The other columns are selected with equal spacing at a proportion that
reaches the desired acceleration rate taking into consideration the number
of low frequencies. This ensures that the expected number of columns
selected is equal to (N / acceleration)
It is possible to use multiple center_fractions and accelerations, in
which case one possible (center_fraction, acceleration) is chosen
uniformly at random each time the EquispacedMaskFunc object is called.
Example:
If accelerations = [4, 8] and center_fractions = [0.08, 0.04],
then there is a 50% probability that 4-fold acceleration with 8%
center fraction is selected and a 50% probability that 8-fold
acceleration with 4% center fraction is selected.
Modified and adopted from:
https://github.com/facebookresearch/fastMRI/tree/master/fastmri
"""
backend = [TransformBackends.TORCH]
def __call__(self, kspace: NdarrayOrTensor) -> Sequence[Tensor]:
"""
Args:
kspace: The input k-space data. The shape is (...,num_coils,H,W,2)
for complex 2D inputs and (...,num_coils,H,W,D) for real 3D
data. The last spatial dim is selected for sampling. For the
fastMRI multi-coil dataset, k-space has the form
(...,num_slices,num_coils,H,W) and sampling is done along W.
For a general 3D data with the shape (...,num_coils,H,W,D),
sampling is done along D.
Returns:
A tuple containing
(1) the under-sampled kspace
(2) absolute value of the inverse fourier of the under-sampled kspace
"""
kspace_t = convert_to_tensor_complex(kspace)
spatial_size = kspace_t.shape
num_cols = spatial_size[-1]
if self.is_complex: # for complex data
num_cols = spatial_size[-2]
center_fraction, acceleration = self.randomize_choose_acceleration()
num_low_freqs = int(round(num_cols * center_fraction))
# Create the mask
mask = np.zeros(num_cols, dtype=np.float32)
pad = (num_cols - num_low_freqs + 1) // 2
mask[pad : pad + num_low_freqs] = True
# Determine acceleration rate by adjusting for the
# number of low frequencies
adjusted_accel = (acceleration * (num_low_freqs - num_cols)) / (num_low_freqs * acceleration - num_cols)
offset = self.R.randint(0, round(adjusted_accel))
accel_samples = np.arange(offset, num_cols - 1, adjusted_accel)
accel_samples = np.around(accel_samples).astype(np.uint)
mask[accel_samples] = True
# Reshape the mask
mask_shape = [1 for _ in spatial_size]
if self.is_complex:
mask_shape[-2] = num_cols
else:
mask_shape[-1] = num_cols
mask = convert_to_tensor(mask.reshape(*mask_shape).astype(np.float32))
# under-sample the ksapce
masked = mask * kspace_t
masked_kspace: Tensor = convert_to_tensor(masked)
self.mask = mask
# compute inverse fourier of the masked kspace
masked_kspace_ifft: Tensor = convert_to_tensor(
complex_abs(ifftn_centered(masked_kspace, spatial_dims=self.spatial_dims, is_complex=self.is_complex))
)
# combine coil images (it is assumed that the coil dimension is
# the first dimension before spatial dimensions)
masked_kspace_ifft_rss: Tensor = convert_to_tensor(
root_sum_of_squares(masked_kspace_ifft, spatial_dim=-self.spatial_dims - 1)
)
return masked_kspace, masked_kspace_ifft_rss
|