File size: 25,581 Bytes
b4d7ac8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 |
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
from collections.abc import Sequence
import torch
import torch.nn as nn
import monai
from monai.networks import to_norm_affine
from monai.utils import (
GridSampleMode,
GridSamplePadMode,
convert_to_dst_type,
ensure_tuple,
look_up_option,
optional_import,
)
_C, _ = optional_import("monai._C")
__all__ = ["AffineTransform", "grid_pull", "grid_push", "grid_count", "grid_grad"]
class _GridPull(torch.autograd.Function):
@staticmethod
def forward(ctx, input, grid, interpolation, bound, extrapolate):
opt = (bound, interpolation, extrapolate)
output = _C.grid_pull(input, grid, *opt)
if input.requires_grad or grid.requires_grad:
ctx.opt = opt
ctx.save_for_backward(input, grid)
return output
@staticmethod
def backward(ctx, grad):
if not (ctx.needs_input_grad[0] or ctx.needs_input_grad[1]):
return None, None, None, None, None
var = ctx.saved_tensors
opt = ctx.opt
grads = _C.grid_pull_backward(grad, *var, *opt)
if ctx.needs_input_grad[0]:
return grads[0], grads[1] if ctx.needs_input_grad[1] else None, None, None, None
if ctx.needs_input_grad[1]:
return None, grads[0], None, None, None
def grid_pull(
input: torch.Tensor, grid: torch.Tensor, interpolation="linear", bound="zero", extrapolate: bool = True
) -> torch.Tensor:
"""
Sample an image with respect to a deformation field.
`interpolation` can be an int, a string or an InterpolationType.
Possible values are::
- 0 or 'nearest' or InterpolationType.nearest
- 1 or 'linear' or InterpolationType.linear
- 2 or 'quadratic' or InterpolationType.quadratic
- 3 or 'cubic' or InterpolationType.cubic
- 4 or 'fourth' or InterpolationType.fourth
- 5 or 'fifth' or InterpolationType.fifth
- 6 or 'sixth' or InterpolationType.sixth
- 7 or 'seventh' or InterpolationType.seventh
A list of values can be provided, in the order [W, H, D],
to specify dimension-specific interpolation orders.
`bound` can be an int, a string or a BoundType.
Possible values are::
- 0 or 'replicate' or 'nearest' or BoundType.replicate or 'border'
- 1 or 'dct1' or 'mirror' or BoundType.dct1
- 2 or 'dct2' or 'reflect' or BoundType.dct2
- 3 or 'dst1' or 'antimirror' or BoundType.dst1
- 4 or 'dst2' or 'antireflect' or BoundType.dst2
- 5 or 'dft' or 'wrap' or BoundType.dft
- 7 or 'zero' or 'zeros' or BoundType.zero
A list of values can be provided, in the order [W, H, D],
to specify dimension-specific boundary conditions.
`sliding` is a specific condition than only applies to flow fields
(with as many channels as dimensions). It cannot be dimension-specific.
Note that:
- `dft` corresponds to circular padding
- `dct2` corresponds to Neumann boundary conditions (symmetric)
- `dst2` corresponds to Dirichlet boundary conditions (antisymmetric)
See Also:
- https://en.wikipedia.org/wiki/Discrete_cosine_transform
- https://en.wikipedia.org/wiki/Discrete_sine_transform
- ``help(monai._C.BoundType)``
- ``help(monai._C.InterpolationType)``
Args:
input: Input image. `(B, C, Wi, Hi, Di)`.
grid: Deformation field. `(B, Wo, Ho, Do, 1|2|3)`.
interpolation (int or list[int] , optional): Interpolation order.
Defaults to `'linear'`.
bound (BoundType, or list[BoundType], optional): Boundary conditions.
Defaults to `'zero'`.
extrapolate: Extrapolate out-of-bound data.
Defaults to `True`.
Returns:
output (torch.Tensor): Deformed image `(B, C, Wo, Ho, Do)`.
"""
# Convert parameters
bound = [_C.BoundType.__members__[b] if isinstance(b, str) else _C.BoundType(b) for b in ensure_tuple(bound)]
interpolation = [
_C.InterpolationType.__members__[i] if isinstance(i, str) else _C.InterpolationType(i)
for i in ensure_tuple(interpolation)
]
out: torch.Tensor
out = _GridPull.apply(input, grid, interpolation, bound, extrapolate)
if isinstance(input, monai.data.MetaTensor):
out = convert_to_dst_type(out, dst=input)[0]
return out
class _GridPush(torch.autograd.Function):
@staticmethod
def forward(ctx, input, grid, shape, interpolation, bound, extrapolate):
opt = (bound, interpolation, extrapolate)
output = _C.grid_push(input, grid, shape, *opt)
if input.requires_grad or grid.requires_grad:
ctx.opt = opt
ctx.save_for_backward(input, grid)
return output
@staticmethod
def backward(ctx, grad):
if not (ctx.needs_input_grad[0] or ctx.needs_input_grad[1]):
return None, None, None, None, None, None
var = ctx.saved_tensors
opt = ctx.opt
grads = _C.grid_push_backward(grad, *var, *opt)
if ctx.needs_input_grad[0]:
return grads[0], grads[1] if ctx.needs_input_grad[1] else None, None, None, None, None
if ctx.needs_input_grad[1]:
return None, grads[0], None, None, None, None
def grid_push(
input: torch.Tensor, grid: torch.Tensor, shape=None, interpolation="linear", bound="zero", extrapolate: bool = True
):
"""
Splat an image with respect to a deformation field (pull adjoint).
`interpolation` can be an int, a string or an InterpolationType.
Possible values are::
- 0 or 'nearest' or InterpolationType.nearest
- 1 or 'linear' or InterpolationType.linear
- 2 or 'quadratic' or InterpolationType.quadratic
- 3 or 'cubic' or InterpolationType.cubic
- 4 or 'fourth' or InterpolationType.fourth
- 5 or 'fifth' or InterpolationType.fifth
- 6 or 'sixth' or InterpolationType.sixth
- 7 or 'seventh' or InterpolationType.seventh
A list of values can be provided, in the order `[W, H, D]`,
to specify dimension-specific interpolation orders.
`bound` can be an int, a string or a BoundType.
Possible values are::
- 0 or 'replicate' or 'nearest' or BoundType.replicate
- 1 or 'dct1' or 'mirror' or BoundType.dct1
- 2 or 'dct2' or 'reflect' or BoundType.dct2
- 3 or 'dst1' or 'antimirror' or BoundType.dst1
- 4 or 'dst2' or 'antireflect' or BoundType.dst2
- 5 or 'dft' or 'wrap' or BoundType.dft
- 7 or 'zero' or BoundType.zero
A list of values can be provided, in the order `[W, H, D]`,
to specify dimension-specific boundary conditions.
`sliding` is a specific condition than only applies to flow fields
(with as many channels as dimensions). It cannot be dimension-specific.
Note that:
- `dft` corresponds to circular padding
- `dct2` corresponds to Neumann boundary conditions (symmetric)
- `dst2` corresponds to Dirichlet boundary conditions (antisymmetric)
See Also:
- https://en.wikipedia.org/wiki/Discrete_cosine_transform
- https://en.wikipedia.org/wiki/Discrete_sine_transform
- ``help(monai._C.BoundType)``
- ``help(monai._C.InterpolationType)``
Args:
input: Input image `(B, C, Wi, Hi, Di)`.
grid: Deformation field `(B, Wi, Hi, Di, 1|2|3)`.
shape: Shape of the source image.
interpolation (int or list[int] , optional): Interpolation order.
Defaults to `'linear'`.
bound (BoundType, or list[BoundType], optional): Boundary conditions.
Defaults to `'zero'`.
extrapolate: Extrapolate out-of-bound data.
Defaults to `True`.
Returns:
output (torch.Tensor): Splatted image `(B, C, Wo, Ho, Do)`.
"""
# Convert parameters
bound = [_C.BoundType.__members__[b] if isinstance(b, str) else _C.BoundType(b) for b in ensure_tuple(bound)]
interpolation = [
_C.InterpolationType.__members__[i] if isinstance(i, str) else _C.InterpolationType(i)
for i in ensure_tuple(interpolation)
]
if shape is None:
shape = tuple(input.shape[2:])
out: torch.Tensor = _GridPush.apply(input, grid, shape, interpolation, bound, extrapolate)
if isinstance(input, monai.data.MetaTensor):
out = convert_to_dst_type(out, dst=input)[0]
return out
class _GridCount(torch.autograd.Function):
@staticmethod
def forward(ctx, grid, shape, interpolation, bound, extrapolate):
opt = (bound, interpolation, extrapolate)
output = _C.grid_count(grid, shape, *opt)
if grid.requires_grad:
ctx.opt = opt
ctx.save_for_backward(grid)
return output
@staticmethod
def backward(ctx, grad):
if ctx.needs_input_grad[0]:
var = ctx.saved_tensors
opt = ctx.opt
return _C.grid_count_backward(grad, *var, *opt), None, None, None, None
return None, None, None, None, None
def grid_count(grid: torch.Tensor, shape=None, interpolation="linear", bound="zero", extrapolate: bool = True):
"""
Splatting weights with respect to a deformation field (pull adjoint).
This function is equivalent to applying grid_push to an image of ones.
`interpolation` can be an int, a string or an InterpolationType.
Possible values are::
- 0 or 'nearest' or InterpolationType.nearest
- 1 or 'linear' or InterpolationType.linear
- 2 or 'quadratic' or InterpolationType.quadratic
- 3 or 'cubic' or InterpolationType.cubic
- 4 or 'fourth' or InterpolationType.fourth
- 5 or 'fifth' or InterpolationType.fifth
- 6 or 'sixth' or InterpolationType.sixth
- 7 or 'seventh' or InterpolationType.seventh
A list of values can be provided, in the order [W, H, D],
to specify dimension-specific interpolation orders.
`bound` can be an int, a string or a BoundType.
Possible values are::
- 0 or 'replicate' or 'nearest' or BoundType.replicate
- 1 or 'dct1' or 'mirror' or BoundType.dct1
- 2 or 'dct2' or 'reflect' or BoundType.dct2
- 3 or 'dst1' or 'antimirror' or BoundType.dst1
- 4 or 'dst2' or 'antireflect' or BoundType.dst2
- 5 or 'dft' or 'wrap' or BoundType.dft
- 7 or 'zero' or BoundType.zero
A list of values can be provided, in the order [W, H, D],
to specify dimension-specific boundary conditions.
`sliding` is a specific condition than only applies to flow fields
(with as many channels as dimensions). It cannot be dimension-specific.
Note that:
- `dft` corresponds to circular padding
- `dct2` corresponds to Neumann boundary conditions (symmetric)
- `dst2` corresponds to Dirichlet boundary conditions (antisymmetric)
See Also:
- https://en.wikipedia.org/wiki/Discrete_cosine_transform
- https://en.wikipedia.org/wiki/Discrete_sine_transform
- ``help(monai._C.BoundType)``
- ``help(monai._C.InterpolationType)``
Args:
grid: Deformation field `(B, Wi, Hi, Di, 2|3)`.
shape: shape of the source image.
interpolation (int or list[int] , optional): Interpolation order.
Defaults to `'linear'`.
bound (BoundType, or list[BoundType], optional): Boundary conditions.
Defaults to `'zero'`.
extrapolate (bool, optional): Extrapolate out-of-bound data.
Defaults to `True`.
Returns:
output (torch.Tensor): Splat weights `(B, 1, Wo, Ho, Do)`.
"""
# Convert parameters
bound = [_C.BoundType.__members__[b] if isinstance(b, str) else _C.BoundType(b) for b in ensure_tuple(bound)]
interpolation = [
_C.InterpolationType.__members__[i] if isinstance(i, str) else _C.InterpolationType(i)
for i in ensure_tuple(interpolation)
]
if shape is None:
shape = tuple(grid.shape[2:])
out: torch.Tensor = _GridCount.apply(grid, shape, interpolation, bound, extrapolate)
if isinstance(input, monai.data.MetaTensor):
out = convert_to_dst_type(out, dst=input)[0]
return out
class _GridGrad(torch.autograd.Function):
@staticmethod
def forward(ctx, input, grid, interpolation, bound, extrapolate):
opt = (bound, interpolation, extrapolate)
output = _C.grid_grad(input, grid, *opt)
if input.requires_grad or grid.requires_grad:
ctx.opt = opt
ctx.save_for_backward(input, grid)
return output
@staticmethod
def backward(ctx, grad):
if not (ctx.needs_input_grad[0] or ctx.needs_input_grad[1]):
return None, None, None, None, None
var = ctx.saved_tensors
opt = ctx.opt
grads = _C.grid_grad_backward(grad, *var, *opt)
if ctx.needs_input_grad[0]:
return grads[0], grads[1] if ctx.needs_input_grad[1] else None, None, None, None
if ctx.needs_input_grad[1]:
return None, grads[0], None, None, None
def grid_grad(input: torch.Tensor, grid: torch.Tensor, interpolation="linear", bound="zero", extrapolate: bool = True):
"""
Sample an image with respect to a deformation field.
`interpolation` can be an int, a string or an InterpolationType.
Possible values are::
- 0 or 'nearest' or InterpolationType.nearest
- 1 or 'linear' or InterpolationType.linear
- 2 or 'quadratic' or InterpolationType.quadratic
- 3 or 'cubic' or InterpolationType.cubic
- 4 or 'fourth' or InterpolationType.fourth
- 5 or 'fifth' or InterpolationType.fifth
- 6 or 'sixth' or InterpolationType.sixth
- 7 or 'seventh' or InterpolationType.seventh
A list of values can be provided, in the order [W, H, D],
to specify dimension-specific interpolation orders.
`bound` can be an int, a string or a BoundType.
Possible values are::
- 0 or 'replicate' or 'nearest' or BoundType.replicate
- 1 or 'dct1' or 'mirror' or BoundType.dct1
- 2 or 'dct2' or 'reflect' or BoundType.dct2
- 3 or 'dst1' or 'antimirror' or BoundType.dst1
- 4 or 'dst2' or 'antireflect' or BoundType.dst2
- 5 or 'dft' or 'wrap' or BoundType.dft
- 7 or 'zero' or BoundType.zero
A list of values can be provided, in the order [W, H, D],
to specify dimension-specific boundary conditions.
`sliding` is a specific condition than only applies to flow fields
(with as many channels as dimensions). It cannot be dimension-specific.
Note that:
- `dft` corresponds to circular padding
- `dct2` corresponds to Neumann boundary conditions (symmetric)
- `dst2` corresponds to Dirichlet boundary conditions (antisymmetric)
See Also:
- https://en.wikipedia.org/wiki/Discrete_cosine_transform
- https://en.wikipedia.org/wiki/Discrete_sine_transform
- ``help(monai._C.BoundType)``
- ``help(monai._C.InterpolationType)``
Args:
input: Input image. `(B, C, Wi, Hi, Di)`.
grid: Deformation field. `(B, Wo, Ho, Do, 2|3)`.
interpolation (int or list[int] , optional): Interpolation order.
Defaults to `'linear'`.
bound (BoundType, or list[BoundType], optional): Boundary conditions.
Defaults to `'zero'`.
extrapolate: Extrapolate out-of-bound data. Defaults to `True`.
Returns:
output (torch.Tensor): Sampled gradients (B, C, Wo, Ho, Do, 1|2|3).
"""
# Convert parameters
bound = [_C.BoundType.__members__[b] if isinstance(b, str) else _C.BoundType(b) for b in ensure_tuple(bound)]
interpolation = [
_C.InterpolationType.__members__[i] if isinstance(i, str) else _C.InterpolationType(i)
for i in ensure_tuple(interpolation)
]
out: torch.Tensor = _GridGrad.apply(input, grid, interpolation, bound, extrapolate)
if isinstance(input, monai.data.MetaTensor):
out = convert_to_dst_type(out, dst=input)[0]
return out
class AffineTransform(nn.Module):
def __init__(
self,
spatial_size: Sequence[int] | int | None = None,
normalized: bool = False,
mode: str = GridSampleMode.BILINEAR,
padding_mode: str = GridSamplePadMode.ZEROS,
align_corners: bool = True,
reverse_indexing: bool = True,
zero_centered: bool | None = None,
) -> None:
"""
Apply affine transformations with a batch of affine matrices.
When `normalized=False` and `reverse_indexing=True`,
it does the commonly used resampling in the 'pull' direction
following the ``scipy.ndimage.affine_transform`` convention.
In this case `theta` is equivalent to (ndim+1, ndim+1) input ``matrix`` of ``scipy.ndimage.affine_transform``,
operates on homogeneous coordinates.
See also: https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.affine_transform.html
When `normalized=True` and `reverse_indexing=False`,
it applies `theta` to the normalized coordinates (coords. in the range of [-1, 1]) directly.
This is often used with `align_corners=False` to achieve resolution-agnostic resampling,
thus useful as a part of trainable modules such as the spatial transformer networks.
See also: https://pytorch.org/tutorials/intermediate/spatial_transformer_tutorial.html
Args:
spatial_size: output spatial shape, the full output shape will be
`[N, C, *spatial_size]` where N and C are inferred from the `src` input of `self.forward`.
normalized: indicating whether the provided affine matrix `theta` is defined
for the normalized coordinates. If `normalized=False`, `theta` will be converted
to operate on normalized coordinates as pytorch affine_grid works with the normalized
coordinates.
mode: {``"bilinear"``, ``"nearest"``}
Interpolation mode to calculate output values. Defaults to ``"bilinear"``.
See also: https://pytorch.org/docs/stable/generated/torch.nn.functional.grid_sample.html
padding_mode: {``"zeros"``, ``"border"``, ``"reflection"``}
Padding mode for outside grid values. Defaults to ``"zeros"``.
See also: https://pytorch.org/docs/stable/generated/torch.nn.functional.grid_sample.html
align_corners: see also https://pytorch.org/docs/stable/generated/torch.nn.functional.grid_sample.html.
reverse_indexing: whether to reverse the spatial indexing of image and coordinates.
set to `False` if `theta` follows pytorch's default "D, H, W" convention.
set to `True` if `theta` follows `scipy.ndimage` default "i, j, k" convention.
zero_centered: whether the affine is applied to coordinates in a zero-centered value range.
With `zero_centered=True`, for example, the center of rotation will be the
spatial center of the input; with `zero_centered=False`, the center of rotation will be the
origin of the input. This option is only available when `normalized=False`,
where the default behaviour is `False` if unspecified.
See also: :py:func:`monai.networks.utils.normalize_transform`.
"""
super().__init__()
self.spatial_size = ensure_tuple(spatial_size) if spatial_size is not None else None
self.normalized = normalized
self.mode: str = look_up_option(mode, GridSampleMode)
self.padding_mode: str = look_up_option(padding_mode, GridSamplePadMode)
self.align_corners = align_corners
self.reverse_indexing = reverse_indexing
if zero_centered is not None and self.normalized:
raise ValueError("`normalized=True` is not compatible with the `zero_centered` option.")
self.zero_centered = zero_centered if zero_centered is not None else False
def forward(
self, src: torch.Tensor, theta: torch.Tensor, spatial_size: Sequence[int] | int | None = None
) -> torch.Tensor:
"""
``theta`` must be an affine transformation matrix with shape
3x3 or Nx3x3 or Nx2x3 or 2x3 for spatial 2D transforms,
4x4 or Nx4x4 or Nx3x4 or 3x4 for spatial 3D transforms,
where `N` is the batch size. `theta` will be converted into float Tensor for the computation.
Args:
src (array_like): image in spatial 2D or 3D (N, C, spatial_dims),
where N is the batch dim, C is the number of channels.
theta (array_like): Nx3x3, Nx2x3, 3x3, 2x3 for spatial 2D inputs,
Nx4x4, Nx3x4, 3x4, 4x4 for spatial 3D inputs. When the batch dimension is omitted,
`theta` will be repeated N times, N is the batch dim of `src`.
spatial_size: output spatial shape, the full output shape will be
`[N, C, *spatial_size]` where N and C are inferred from the `src`.
Raises:
TypeError: When ``theta`` is not a ``torch.Tensor``.
ValueError: When ``theta`` is not one of [Nxdxd, dxd].
ValueError: When ``theta`` is not one of [Nx3x3, Nx4x4].
TypeError: When ``src`` is not a ``torch.Tensor``.
ValueError: When ``src`` spatially is not one of [2D, 3D].
ValueError: When affine and image batch dimension differ.
"""
# validate `theta`
if not isinstance(theta, torch.Tensor):
raise TypeError(f"theta must be torch.Tensor but is {type(theta).__name__}.")
if theta.dim() not in (2, 3):
raise ValueError(f"theta must be Nxdxd or dxd, got {theta.shape}.")
if theta.dim() == 2:
theta = theta[None] # adds a batch dim.
theta = theta.clone() # no in-place change of theta
theta_shape = tuple(theta.shape[1:])
if theta_shape in ((2, 3), (3, 4)): # needs padding to dxd
pad_affine = torch.tensor([0, 0, 1] if theta_shape[0] == 2 else [0, 0, 0, 1])
pad_affine = pad_affine.repeat(theta.shape[0], 1, 1).to(theta)
pad_affine.requires_grad = False
theta = torch.cat([theta, pad_affine], dim=1)
if tuple(theta.shape[1:]) not in ((3, 3), (4, 4)):
raise ValueError(f"theta must be Nx3x3 or Nx4x4, got {theta.shape}.")
if not torch.is_floating_point(theta):
raise ValueError(f"theta must be floating point data, got {theta.dtype}")
# validate `src`
if not isinstance(src, torch.Tensor):
raise TypeError(f"src must be torch.Tensor but is {type(src).__name__}.")
sr = src.dim() - 2 # input spatial rank
if sr not in (2, 3):
raise ValueError(f"Unsupported src dimension: {sr}, available options are [2, 3].")
# set output shape
src_size = tuple(src.shape)
dst_size = src_size # default to the src shape
if self.spatial_size is not None:
dst_size = src_size[:2] + self.spatial_size
if spatial_size is not None:
dst_size = src_size[:2] + ensure_tuple(spatial_size)
# reverse and normalize theta if needed
if not self.normalized:
theta = to_norm_affine(
affine=theta,
src_size=src_size[2:],
dst_size=dst_size[2:],
align_corners=False,
zero_centered=self.zero_centered,
)
if self.reverse_indexing:
rev_idx = torch.as_tensor(range(sr - 1, -1, -1), device=src.device)
theta[:, :sr] = theta[:, rev_idx]
theta[:, :, :sr] = theta[:, :, rev_idx]
if (theta.shape[0] == 1) and src_size[0] > 1:
# adds a batch dim to `theta` in order to match `src`
theta = theta.repeat(src_size[0], 1, 1)
if theta.shape[0] != src_size[0]:
raise ValueError(
f"affine and image batch dimension must match, got affine={theta.shape[0]} image={src_size[0]}."
)
grid = nn.functional.affine_grid(theta=theta[:, :sr], size=list(dst_size), align_corners=self.align_corners)
dst = nn.functional.grid_sample(
input=src.contiguous(),
grid=grid,
mode=self.mode,
padding_mode=self.padding_mode,
align_corners=self.align_corners,
)
return dst
|