|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
|
import warnings |
|
|
from typing import List |
|
|
|
|
|
from torch.optim import Adam, Optimizer |
|
|
from torch.optim.lr_scheduler import _LRScheduler |
|
|
from torch.optim.lr_scheduler import LambdaLR |
|
|
import math |
|
|
from torch.optim import Optimizer |
|
|
|
|
|
class PolyLRScheduler(_LRScheduler): |
|
|
def __init__(self, optimizer, initial_lr: float, max_steps: int, exponent: float = 0.9, current_step: int = None): |
|
|
self.optimizer = optimizer |
|
|
self.initial_lr = initial_lr |
|
|
self.max_steps = max_steps |
|
|
self.exponent = exponent |
|
|
self.ctr = 0 |
|
|
super().__init__(optimizer, current_step if current_step is not None else -1, False) |
|
|
|
|
|
def step(self, current_step=None): |
|
|
if current_step is None or current_step == -1: |
|
|
current_step = self.ctr |
|
|
self.ctr += 1 |
|
|
|
|
|
new_lr = self.initial_lr * (1 - current_step / self.max_steps) ** self.exponent |
|
|
for param_group in self.optimizer.param_groups: |
|
|
param_group['lr'] = new_lr |
|
|
|
|
|
def get_polynomial_decay_schedule_with_warmup( |
|
|
optimizer, num_warmup_steps, num_training_steps, lr_end=1e-7, power=1.0, last_epoch=-1 |
|
|
): |
|
|
""" |
|
|
Create a schedule with a learning rate that decreases as a polynomial decay from the initial lr set in the |
|
|
optimizer to end lr defined by *lr_end*, after a warmup period during which it increases linearly from 0 to the |
|
|
initial lr set in the optimizer. |
|
|
|
|
|
Args: |
|
|
optimizer ([`~torch.optim.Optimizer`]): |
|
|
The optimizer for which to schedule the learning rate. |
|
|
num_warmup_steps (`int`): |
|
|
The number of steps for the warmup phase. |
|
|
num_training_steps (`int`): |
|
|
The total number of training steps. |
|
|
lr_end (`float`, *optional*, defaults to 1e-7): |
|
|
The end LR. |
|
|
power (`float`, *optional*, defaults to 1.0): |
|
|
Power factor. |
|
|
last_epoch (`int`, *optional*, defaults to -1): |
|
|
The index of the last epoch when resuming training. |
|
|
|
|
|
Note: *power* defaults to 1.0 as in the fairseq implementation, which in turn is based on the original BERT |
|
|
implementation at |
|
|
https://github.com/google-research/bert/blob/f39e881b169b9d53bea03d2d341b31707a6c052b/optimization.py#L37 |
|
|
|
|
|
Return: |
|
|
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule. |
|
|
|
|
|
""" |
|
|
|
|
|
lr_init = optimizer.defaults["lr"] |
|
|
if not (lr_init > lr_end): |
|
|
raise ValueError(f"lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})") |
|
|
|
|
|
def lr_lambda(current_step: int): |
|
|
if current_step < num_warmup_steps: |
|
|
return float(current_step) / float(max(1, num_warmup_steps)) |
|
|
elif current_step > num_training_steps: |
|
|
return lr_end / lr_init |
|
|
else: |
|
|
lr_range = lr_init - lr_end |
|
|
decay_steps = num_training_steps - num_warmup_steps |
|
|
pct_remaining = 1 - (current_step - num_warmup_steps) / decay_steps |
|
|
decay = lr_range * pct_remaining**power + lr_end |
|
|
return decay / lr_init |
|
|
|
|
|
return LambdaLR(optimizer, lr_lambda, last_epoch) |
|
|
|
|
|
def get_cosine_schedule_with_warmup( |
|
|
optimizer: Optimizer, num_warmup_steps: int, num_training_steps: int, num_cycles: float = 0.5, last_epoch: int = -1 |
|
|
): |
|
|
""" |
|
|
Create a schedule with a learning rate that decreases following the values of the cosine function between the |
|
|
initial lr set in the optimizer to 0, after a warmup period during which it increases linearly between 0 and the |
|
|
initial lr set in the optimizer. |
|
|
|
|
|
Args: |
|
|
optimizer ([`~torch.optim.Optimizer`]): |
|
|
The optimizer for which to schedule the learning rate. |
|
|
num_warmup_steps (`int`): |
|
|
The number of steps for the warmup phase. |
|
|
num_training_steps (`int`): |
|
|
The total number of training steps. |
|
|
num_periods (`float`, *optional*, defaults to 0.5): |
|
|
The number of periods of the cosine function in a schedule (the default is to just decrease from the max |
|
|
value to 0 following a half-cosine). |
|
|
last_epoch (`int`, *optional*, defaults to -1): |
|
|
The index of the last epoch when resuming training. |
|
|
|
|
|
Return: |
|
|
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule. |
|
|
""" |
|
|
|
|
|
def lr_lambda(current_step): |
|
|
if current_step < num_warmup_steps: |
|
|
return float(current_step) / float(max(1, num_warmup_steps)) |
|
|
progress = float(current_step - num_warmup_steps) / float(max(1, num_training_steps - num_warmup_steps)) |
|
|
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress))) |
|
|
|
|
|
return LambdaLR(optimizer, lr_lambda, last_epoch) |
|
|
|
|
|
def get_constant_schedule_with_warmup(optimizer, num_warmup_steps: int, last_epoch: int = -1): |
|
|
""" |
|
|
Create a schedule with a constant learning rate preceded by a warmup period during which the learning rate |
|
|
increases linearly between 0 and the initial lr set in the optimizer. |
|
|
|
|
|
Args: |
|
|
optimizer ([`~torch.optim.Optimizer`]): |
|
|
The optimizer for which to schedule the learning rate. |
|
|
num_warmup_steps (`int`): |
|
|
The number of steps for the warmup phase. |
|
|
last_epoch (`int`, *optional*, defaults to -1): |
|
|
The index of the last epoch when resuming training. |
|
|
|
|
|
Return: |
|
|
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule. |
|
|
""" |
|
|
|
|
|
def lr_lambda(current_step: int): |
|
|
if current_step < num_warmup_steps: |
|
|
return float(current_step) / float(max(1.0, num_warmup_steps)) |
|
|
return 1.0 |
|
|
|
|
|
return LambdaLR(optimizer, lr_lambda, last_epoch=last_epoch) |
|
|
|
|
|
class LinearWarmupCosineAnnealingLR(_LRScheduler): |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
optimizer: Optimizer, |
|
|
warmup_epochs: int, |
|
|
max_epochs: int, |
|
|
warmup_start_lr: float = 0.0, |
|
|
eta_min: float = 0.0, |
|
|
last_epoch: int = -1, |
|
|
) -> None: |
|
|
""" |
|
|
Args: |
|
|
optimizer (Optimizer): Wrapped optimizer. |
|
|
warmup_epochs (int): Maximum number of iterations for linear warmup |
|
|
max_epochs (int): Maximum number of iterations |
|
|
warmup_start_lr (float): Learning rate to start the linear warmup. Default: 0. |
|
|
eta_min (float): Minimum learning rate. Default: 0. |
|
|
last_epoch (int): The index of last epoch. Default: -1. |
|
|
""" |
|
|
self.warmup_epochs = warmup_epochs |
|
|
self.max_epochs = max_epochs |
|
|
self.warmup_start_lr = warmup_start_lr |
|
|
self.eta_min = eta_min |
|
|
|
|
|
super(LinearWarmupCosineAnnealingLR, self).__init__(optimizer, last_epoch) |
|
|
|
|
|
def get_lr(self) -> List[float]: |
|
|
""" |
|
|
Compute learning rate using chainable form of the scheduler |
|
|
""" |
|
|
if not self._get_lr_called_within_step: |
|
|
warnings.warn( |
|
|
"To get the last learning rate computed by the scheduler, " |
|
|
"please use `get_last_lr()`.", |
|
|
UserWarning, |
|
|
) |
|
|
|
|
|
if self.last_epoch == 0: |
|
|
return [self.warmup_start_lr] * len(self.base_lrs) |
|
|
elif self.last_epoch < self.warmup_epochs: |
|
|
return [ |
|
|
group["lr"] + (base_lr - self.warmup_start_lr) / (self.warmup_epochs - 1) |
|
|
for base_lr, group in zip(self.base_lrs, self.optimizer.param_groups) |
|
|
] |
|
|
elif self.last_epoch == self.warmup_epochs: |
|
|
return self.base_lrs |
|
|
elif (self.last_epoch - 1 - self.max_epochs) % (2 * (self.max_epochs - self.warmup_epochs)) == 0: |
|
|
return [ |
|
|
group["lr"] + (base_lr - self.eta_min) * |
|
|
(1 - math.cos(math.pi / (self.max_epochs - self.warmup_epochs))) / 2 |
|
|
for base_lr, group in zip(self.base_lrs, self.optimizer.param_groups) |
|
|
] |
|
|
|
|
|
return [ |
|
|
(1 + math.cos(math.pi * (self.last_epoch - self.warmup_epochs) / (self.max_epochs - self.warmup_epochs))) / |
|
|
( |
|
|
1 + |
|
|
math.cos(math.pi * (self.last_epoch - self.warmup_epochs - 1) / (self.max_epochs - self.warmup_epochs)) |
|
|
) * (group["lr"] - self.eta_min) + self.eta_min for group in self.optimizer.param_groups |
|
|
] |
|
|
|
|
|
def _get_closed_form_lr(self) -> List[float]: |
|
|
""" |
|
|
Called when epoch is passed as a param to the `step` function of the scheduler. |
|
|
""" |
|
|
if self.last_epoch < self.warmup_epochs: |
|
|
return [ |
|
|
self.warmup_start_lr + self.last_epoch * (base_lr - self.warmup_start_lr) / (self.warmup_epochs - 1) |
|
|
for base_lr in self.base_lrs |
|
|
] |
|
|
|
|
|
return [ |
|
|
self.eta_min + 0.5 * (base_lr - self.eta_min) * |
|
|
(1 + math.cos(math.pi * (self.last_epoch - self.warmup_epochs) / (self.max_epochs - self.warmup_epochs))) |
|
|
for base_lr in self.base_lrs |
|
|
] |
|
|
|