|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
|
from inspect import isfunction |
|
|
from functools import partial |
|
|
|
|
|
|
|
|
from einops import rearrange, reduce |
|
|
from einops.layers.torch import Rearrange |
|
|
|
|
|
import torch |
|
|
from torch import nn, einsum |
|
|
import torch.nn.functional as F |
|
|
|
|
|
from torch.utils.checkpoint import checkpoint |
|
|
|
|
|
class EMA: |
|
|
def __init__(self, beta): |
|
|
super().__init__() |
|
|
self.beta = beta |
|
|
self.step = 0 |
|
|
|
|
|
def update_model_average(self, ma_model, current_model): |
|
|
for current_params, ma_params in zip(current_model.parameters(), ma_model.parameters()): |
|
|
old_weight, up_weight = ma_params.data, current_params.data |
|
|
ma_params.data = self.update_average(old_weight, up_weight) |
|
|
|
|
|
def update_average(self, old, new): |
|
|
if old is None: |
|
|
return new |
|
|
return old * self.beta + (1 - self.beta) * new |
|
|
|
|
|
def step_ema(self, ema_model, model, step_start_ema=2000): |
|
|
if self.step < step_start_ema: |
|
|
self.reset_parameters(ema_model, model) |
|
|
self.step += 1 |
|
|
return |
|
|
self.update_model_average(ema_model, model) |
|
|
self.step += 1 |
|
|
|
|
|
def reset_parameters(self, ema_model, model): |
|
|
ema_model.load_state_dict(model.state_dict()) |
|
|
|
|
|
|
|
|
def exists(x): |
|
|
return x is not None |
|
|
|
|
|
|
|
|
def default(val, d): |
|
|
if exists(val): |
|
|
return val |
|
|
return d() if isfunction(d) else d |
|
|
|
|
|
|
|
|
def num_to_groups(num, divisor): |
|
|
groups = num // divisor |
|
|
remainder = num % divisor |
|
|
arr = [divisor] * groups |
|
|
if remainder > 0: |
|
|
arr.append(remainder) |
|
|
return arr |
|
|
|
|
|
|
|
|
class Residual(nn.Module): |
|
|
def __init__(self, fn): |
|
|
super().__init__() |
|
|
self.fn = fn |
|
|
|
|
|
def forward(self, x, *args, **kwargs): |
|
|
return self.fn(x, *args, **kwargs) + x |
|
|
|
|
|
|
|
|
def Upsample(dim, dim_out=None): |
|
|
return nn.Sequential( |
|
|
nn.Upsample(scale_factor=2, mode="nearest"), |
|
|
nn.Conv2d(dim, default(dim_out, dim), 3, padding=1), |
|
|
) |
|
|
|
|
|
|
|
|
def Downsample(dim, dim_out=None): |
|
|
|
|
|
return nn.Sequential( |
|
|
Rearrange("b c (h p1) (w p2) -> b (c p1 p2) h w", p1=2, p2=2), |
|
|
nn.Conv2d(dim * 4, default(dim_out, dim), 1), |
|
|
) |
|
|
|
|
|
|
|
|
class SinusoidalPositionEmbeddings(nn.Module): |
|
|
def __init__(self, dim): |
|
|
super().__init__() |
|
|
self.dim = dim |
|
|
|
|
|
def forward(self, time): |
|
|
device = time.device |
|
|
half_dim = self.dim // 2 |
|
|
embeddings = math.log(10000) / (half_dim - 1) |
|
|
embeddings = torch.exp(torch.arange(half_dim, device=device) * -embeddings) |
|
|
embeddings = time[:, None] * embeddings[None, :] |
|
|
embeddings = torch.cat((embeddings.sin(), embeddings.cos()), dim=-1) |
|
|
return embeddings |
|
|
|
|
|
|
|
|
class WeightStandardizedConv2d(nn.Conv2d): |
|
|
""" |
|
|
https://arxiv.org/abs/1903.10520 |
|
|
weight standardization purportedly works synergistically with group normalization |
|
|
""" |
|
|
|
|
|
def forward(self, x): |
|
|
eps = 1e-5 if x.dtype == torch.float32 else 1e-3 |
|
|
|
|
|
weight = self.weight |
|
|
mean = reduce(weight, "o ... -> o 1 1 1", "mean") |
|
|
var = reduce(weight, "o ... -> o 1 1 1", partial(torch.var, unbiased=False)) |
|
|
normalized_weight = (weight - mean) * (var + eps).rsqrt() |
|
|
|
|
|
return F.conv2d( |
|
|
x, |
|
|
normalized_weight, |
|
|
self.bias, |
|
|
self.stride, |
|
|
self.padding, |
|
|
self.dilation, |
|
|
self.groups, |
|
|
) |
|
|
|
|
|
|
|
|
class Block(nn.Module): |
|
|
def __init__(self, dim, dim_out, groups=8): |
|
|
super().__init__() |
|
|
self.proj = WeightStandardizedConv2d(dim, dim_out, 3, padding=1) |
|
|
self.norm = nn.GroupNorm(groups, dim_out) |
|
|
self.act = nn.SiLU() |
|
|
|
|
|
def forward(self, x, scale_shift=None): |
|
|
x = self.proj(x) |
|
|
x = self.norm(x) |
|
|
|
|
|
if exists(scale_shift): |
|
|
scale, shift = scale_shift |
|
|
x = x * (scale + 1) + shift |
|
|
|
|
|
x = self.act(x) |
|
|
return x |
|
|
|
|
|
|
|
|
class ResnetBlock(nn.Module): |
|
|
"""https://arxiv.org/abs/1512.03385""" |
|
|
|
|
|
def __init__(self, dim, dim_out, *, time_emb_dim=None, groups=8): |
|
|
super().__init__() |
|
|
self.mlp = ( |
|
|
nn.Sequential(nn.SiLU(), nn.Linear(time_emb_dim, dim_out * 2)) |
|
|
if exists(time_emb_dim) |
|
|
else None |
|
|
) |
|
|
|
|
|
self.block1 = Block(dim, dim_out, groups=groups) |
|
|
self.block2 = Block(dim_out, dim_out, groups=groups) |
|
|
self.res_conv = nn.Conv2d(dim, dim_out, 1) if dim != dim_out else nn.Identity() |
|
|
|
|
|
def forward(self, x, time_emb=None): |
|
|
scale_shift = None |
|
|
if exists(self.mlp) and exists(time_emb): |
|
|
time_emb = self.mlp(time_emb) |
|
|
time_emb = rearrange(time_emb, "b c -> b c 1 1") |
|
|
scale_shift = time_emb.chunk(2, dim=1) |
|
|
|
|
|
h = self.block1(x, scale_shift=scale_shift) |
|
|
h = self.block2(h) |
|
|
return h + self.res_conv(x) |
|
|
|
|
|
|
|
|
class Attention(nn.Module): |
|
|
def __init__(self, dim, heads=4, dim_head=32): |
|
|
super().__init__() |
|
|
self.scale = dim_head**-0.5 |
|
|
self.heads = heads |
|
|
hidden_dim = dim_head * heads |
|
|
self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias=False) |
|
|
self.to_out = nn.Conv2d(hidden_dim, dim, 1) |
|
|
|
|
|
def forward(self, x): |
|
|
b, c, h, w = x.shape |
|
|
qkv = self.to_qkv(x).chunk(3, dim=1) |
|
|
q, k, v = map( |
|
|
lambda t: rearrange(t, "b (h c) x y -> b h c (x y)", h=self.heads), qkv |
|
|
) |
|
|
q = q * self.scale |
|
|
|
|
|
sim = einsum("b h d i, b h d j -> b h i j", q, k) |
|
|
sim = sim - sim.amax(dim=-1, keepdim=True).detach() |
|
|
attn = sim.softmax(dim=-1) |
|
|
|
|
|
out = einsum("b h i j, b h d j -> b h i d", attn, v) |
|
|
out = rearrange(out, "b h (x y) d -> b (h d) x y", x=h, y=w) |
|
|
return self.to_out(out) |
|
|
|
|
|
|
|
|
class LinearAttention(nn.Module): |
|
|
def __init__(self, dim, heads=4, dim_head=32): |
|
|
super().__init__() |
|
|
self.scale = dim_head**-0.5 |
|
|
self.heads = heads |
|
|
hidden_dim = dim_head * heads |
|
|
self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias=False) |
|
|
|
|
|
self.to_out = nn.Sequential(nn.Conv2d(hidden_dim, dim, 1), nn.GroupNorm(1, dim)) |
|
|
|
|
|
def forward(self, x): |
|
|
b, c, h, w = x.shape |
|
|
qkv = self.to_qkv(x).chunk(3, dim=1) |
|
|
q, k, v = map( |
|
|
lambda t: rearrange(t, "b (h c) x y -> b h c (x y)", h=self.heads), qkv |
|
|
) |
|
|
|
|
|
q = q.softmax(dim=-2) |
|
|
k = k.softmax(dim=-1) |
|
|
|
|
|
q = q * self.scale |
|
|
context = torch.einsum("b h d n, b h e n -> b h d e", k, v) |
|
|
|
|
|
out = torch.einsum("b h d e, b h d n -> b h e n", context, q) |
|
|
out = rearrange(out, "b h c (x y) -> b (h c) x y", h=self.heads, x=h, y=w) |
|
|
return self.to_out(out) |
|
|
|
|
|
|
|
|
class PreNorm(nn.Module): |
|
|
def __init__(self, dim, fn): |
|
|
super().__init__() |
|
|
self.fn = fn |
|
|
self.norm = nn.GroupNorm(1, dim) |
|
|
|
|
|
def forward(self, x): |
|
|
x = self.norm(x) |
|
|
return self.fn(x) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Unet(nn.Module): |
|
|
def __init__( |
|
|
self, |
|
|
dim, |
|
|
init_dim=None, |
|
|
out_dim=None, |
|
|
dim_mults=(1, 2, 4, 8), |
|
|
channels=3, |
|
|
self_condition=False, |
|
|
resnet_block_groups=4, |
|
|
att_res=32, |
|
|
att_heads=4, |
|
|
): |
|
|
super().__init__() |
|
|
|
|
|
|
|
|
self.channels = channels |
|
|
self.self_condition = self_condition |
|
|
|
|
|
input_channels = channels if not self_condition else channels + 1 |
|
|
|
|
|
init_dim = default(init_dim, dim) |
|
|
self.init_conv = nn.Conv2d( |
|
|
input_channels, init_dim, 1, padding=0 |
|
|
) |
|
|
|
|
|
dims = [init_dim, *map(lambda m: dim * m, dim_mults)] |
|
|
in_out = list(zip(dims[:-1], dims[1:])) |
|
|
|
|
|
block_klass = partial(ResnetBlock, groups=resnet_block_groups) |
|
|
|
|
|
|
|
|
time_dim = dim * 4 |
|
|
|
|
|
self.time_mlp = nn.Sequential( |
|
|
SinusoidalPositionEmbeddings(dim), |
|
|
nn.Linear(dim, time_dim), |
|
|
nn.GELU(), |
|
|
nn.Linear(time_dim, time_dim), |
|
|
) |
|
|
|
|
|
|
|
|
self.downs = nn.ModuleList([]) |
|
|
self.ups = nn.ModuleList([]) |
|
|
num_resolutions = len(in_out) |
|
|
|
|
|
for ind, (dim_in, dim_out) in enumerate(in_out): |
|
|
is_last = ind >= (num_resolutions - 1) |
|
|
|
|
|
self.downs.append( |
|
|
nn.ModuleList( |
|
|
[ |
|
|
block_klass(dim_in, dim_in, time_emb_dim=time_dim), |
|
|
block_klass(dim_in, dim_in, time_emb_dim=time_dim), |
|
|
Residual( |
|
|
PreNorm(dim_in, LinearAttention(dim_in, att_heads, att_res)) |
|
|
), |
|
|
Downsample(dim_in, dim_out) |
|
|
if not is_last |
|
|
else nn.Conv2d(dim_in, dim_out, 3, padding=1), |
|
|
] |
|
|
) |
|
|
) |
|
|
|
|
|
mid_dim = dims[-1] |
|
|
self.mid_block1 = block_klass(mid_dim, mid_dim, time_emb_dim=time_dim) |
|
|
self.mid_attn = Residual( |
|
|
PreNorm(mid_dim, Attention(mid_dim, att_heads, att_res)) |
|
|
) |
|
|
self.mid_block2 = block_klass(mid_dim, mid_dim, time_emb_dim=time_dim) |
|
|
|
|
|
for ind, (dim_in, dim_out) in enumerate(reversed(in_out)): |
|
|
is_last = ind == (len(in_out) - 1) |
|
|
|
|
|
self.ups.append( |
|
|
nn.ModuleList( |
|
|
[ |
|
|
block_klass(dim_out + dim_in, dim_out, time_emb_dim=time_dim), |
|
|
block_klass(dim_out + dim_in, dim_out, time_emb_dim=time_dim), |
|
|
Residual( |
|
|
PreNorm( |
|
|
dim_out, LinearAttention(dim_out, att_heads, att_res) |
|
|
) |
|
|
), |
|
|
Upsample(dim_out, dim_in) |
|
|
if not is_last |
|
|
else nn.Conv2d(dim_out, dim_in, 3, padding=1), |
|
|
] |
|
|
) |
|
|
) |
|
|
|
|
|
self.out_dim = default(out_dim, channels) |
|
|
|
|
|
self.final_res_block = block_klass(dim * 2, dim, time_emb_dim=time_dim) |
|
|
self.final_conv = nn.Conv2d(dim, self.out_dim, 1) |
|
|
|
|
|
|
|
|
def forward(self, x, time=None, x_self_cond=None, checkpointing=True): |
|
|
if self.self_condition: |
|
|
x_self_cond = default(x_self_cond, lambda: torch.zeros_like(x)) |
|
|
x = torch.cat((x_self_cond, x), dim=1) |
|
|
|
|
|
x = self.init_conv(x) |
|
|
r = x.clone() |
|
|
|
|
|
|
|
|
if time is not None: |
|
|
t = self.time_mlp(time) |
|
|
else: |
|
|
t = None |
|
|
|
|
|
h = [] |
|
|
|
|
|
|
|
|
if checkpointing: |
|
|
for block1, block2, attn, downsample in self.downs: |
|
|
x = checkpoint(block1, x, t, use_reentrant=False) |
|
|
h.append(x) |
|
|
|
|
|
x = checkpoint(block2, x, t, use_reentrant=False) |
|
|
x = checkpoint(attn, x, use_reentrant=False) |
|
|
h.append(x) |
|
|
|
|
|
x = checkpoint(downsample, x, use_reentrant=False) |
|
|
|
|
|
x = checkpoint(self.mid_block1, x, t, use_reentrant=False) |
|
|
x = checkpoint(self.mid_attn, x, use_reentrant=False) |
|
|
x = checkpoint(self.mid_block2, x, t, use_reentrant=False) |
|
|
|
|
|
for block1, block2, attn, upsample in self.ups: |
|
|
x = torch.cat((x, h.pop()), dim=1) |
|
|
x = checkpoint(block1, x, t, use_reentrant=False) |
|
|
|
|
|
x = torch.cat((x, h.pop()), dim=1) |
|
|
x = checkpoint(block2, x, t, use_reentrant=False) |
|
|
x = checkpoint(attn, x, use_reentrant=False) |
|
|
|
|
|
x = checkpoint(upsample, x, use_reentrant=False) |
|
|
|
|
|
|
|
|
else: |
|
|
for block1, block2, attn, downsample in self.downs: |
|
|
x = block1(x, t) |
|
|
h.append(x) |
|
|
|
|
|
x = block2(x, t) |
|
|
x = attn(x) |
|
|
h.append(x) |
|
|
|
|
|
x = downsample(x) |
|
|
|
|
|
x = self.mid_block1(x, t) |
|
|
x = self.mid_attn(x) |
|
|
x = self.mid_block2(x, t) |
|
|
|
|
|
for block1, block2, attn, upsample in self.ups: |
|
|
x = torch.cat((x, h.pop()), dim=1) |
|
|
x = block1(x, t) |
|
|
|
|
|
x = torch.cat((x, h.pop()), dim=1) |
|
|
x = block2(x, t) |
|
|
x = attn(x) |
|
|
|
|
|
x = upsample(x) |
|
|
|
|
|
x = torch.cat((x, r), dim=1) |
|
|
|
|
|
x = self.final_res_block(x, t) |
|
|
return self.final_conv(x) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def cosine_beta_schedule(timesteps, s=0.008): |
|
|
""" |
|
|
cosine schedule as proposed in https://arxiv.org/abs/2102.09672 |
|
|
""" |
|
|
steps = timesteps + 1 |
|
|
x = torch.linspace(0, timesteps, steps) |
|
|
alphas_cumprod = torch.cos(((x / timesteps) + s) / (1 + s) * torch.pi * 0.5) ** 2 |
|
|
alphas_cumprod = alphas_cumprod / alphas_cumprod[0] |
|
|
betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1]) |
|
|
return torch.clip(betas, 0.0001, 0.9999) |
|
|
|
|
|
def linear_beta_schedule(timesteps, beta_start=0.0001, beta_end=0.02): |
|
|
return torch.linspace(beta_start, beta_end, timesteps) |
|
|
|
|
|
|
|
|
def quadratic_beta_schedule(timesteps, beta_start=0.0001, beta_end=0.02): |
|
|
return torch.linspace(beta_start**0.5, beta_end**0.5, timesteps) ** 2 |
|
|
|
|
|
|
|
|
def sigmoid_beta_schedule(timesteps, beta_start=0.0001, beta_end=0.02): |
|
|
betas = torch.linspace(-6, 6, timesteps) |
|
|
return torch.sigmoid(betas) * (beta_end - beta_start) + beta_start |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from segmentation_models_pytorch import Unet as smpUnet |
|
|
|
|
|
class smpUnet(smpUnet): |
|
|
def __init__(self, encoder_name, encoder_weights, in_channels, classes): |
|
|
super().__init__(encoder_name=encoder_name, encoder_weights=encoder_weights, in_channels=in_channels, classes=classes) |
|
|
self.encoder_name = encoder_name |
|
|
self.encoder_weights = encoder_weights |
|
|
self.in_channels = in_channels |
|
|
self.classes = classes |
|
|
|
|
|
|
|
|
|
|
|
|