Datasets:
Modalities:
Image
Formats:
imagefolder
Languages:
English
Size:
< 1K
Tags:
Large Language Models
LLM Evaluation
Sequential Reasoning
Scaling Laws
Synthetic Benchmarks
Commonsense Reasoning
License:
| import random | |
| import numpy as np | |
| import matplotlib.pyplot as plt | |
| from collections import defaultdict | |
| import copy | |
| import json | |
| import pickle | |
| from math import floor, ceil | |
| import os | |
| from concurrent.futures import ThreadPoolExecutor, as_completed | |
| import traceback | |
| from maze_loader import MazeLoader | |
| from rooms import NameGenerator | |
| class MazeGenerator: | |
| """A class for generating mazes with locked doors and distributed keys. | |
| The maze is generated using Kruskal's algorithm and includes features like: | |
| - Locked doors requiring keys | |
| - Keys distributed throughout the maze | |
| - Sub-problems with reduced complexity | |
| """ | |
| def __init__( | |
| self, | |
| N, # number of rows | |
| M, # number of columns | |
| rescue_agent="Bob", # the name of the rescue agent | |
| victim="Alice", # the name of the victim | |
| max_big_loop_count=5, # retry logic parameter | |
| max_retry_count=10, # retry logic parameter | |
| N_locked_doors=2, # the number of locked doors in the maze for the most difficult sub-problem | |
| generate_sub_problems=True, # whether to generate sub-problems from the original problem (reduced N_locked_doors without changing the maze pattern) | |
| verbose=True, # whether to print the maze parameters | |
| random_seeds=None, | |
| # shuffle_room_names=False, | |
| shuffle_key_ids=False, | |
| ): | |
| # random_seeds = {'random_room_name_pool': 1744527184380, 'key_ids': 1744527184480, 'maze_generation': 1744527184580, 'door_distribution': 1744527184680, 'problem_generation': 22869, 'end_room': 993550, 'remove_key': 1744527184980, 'remove_key_1': 63332129, 'remove_key_2': 3892716716, 'remove_key_3': 4053259202, 'remove_key_4': 2836627271, 'remove_key_5': 2154501613, 'remove_key_6': 3371613490, 'remove_key_7': 638681366} | |
| if random_seeds is None: | |
| self.random_seeds = { | |
| "key_ids": random.randint(100, 2**32 - 1), | |
| "maze_generation": random.randint(100, 2**32 - 1), | |
| "door_distribution": random.randint(100, 2**32 - 1), | |
| "problem_generation": random.randint(100, 2**32 - 1), | |
| "end_room": random.randint(100, 2**32 - 1), | |
| "remove_key": random.randint(100, 2**32 - 1), | |
| } | |
| else: | |
| self.random_seeds = random_seeds | |
| self.name_generator = NameGenerator(N, M) | |
| self.N = N # Number of rows | |
| self.M = M # Number of columns | |
| self.rescue_agent = rescue_agent | |
| self.victim = victim | |
| self.max_big_loop_count = max_big_loop_count | |
| self.max_retry_count = max_retry_count | |
| self.N_locked_doors = N_locked_doors # the number of locked doors in the maze for the most difficult sub-problem | |
| self.generate_sub_problems = generate_sub_problems # whether to generate sub-problems from the original problem (N_locked_doors) | |
| self.verbose = verbose | |
| self.shuffle_key_ids = shuffle_key_ids | |
| self.parent = {} # Disjoint set for Kruskal's algorithm | |
| self.rank = {} # Rank for union-find | |
| self.edges = [] # List of possible edges | |
| self.maze = np.ones((2 * N + 1, 2 * M + 1)) # Initialize grid with walls | |
| self.connected_cells = defaultdict(dict) | |
| self.room_name = {} | |
| self.doors = {} | |
| # self.key_ids = #["0"*(6-len(str(i))) + f"{i}" for i in range(100000)] | |
| self.key_ids = [f"{i}" for i in range(1, 10000)][::-1] | |
| self.keys_locations = {} | |
| # self.random_room_name_pool = ["R" + "0"*(6-len(str(i))) + f"{i}" for i in range(100000)] | |
| # room_index_max = ceil((N * M) / 26) if N * M > 26 else 0 | |
| # self.random_room_name_pool = generate_letter_number_list(room_index_max) | |
| # print(len(self.random_room_name_pool), room_index_max) | |
| # if random_seeds is None: | |
| self.random_seeds.update( | |
| { | |
| f"remove_key_{i+1}": random.randint(100, 2**32 - 1) | |
| for i, _ in enumerate(range(self.N_locked_doors)) | |
| } | |
| ) | |
| self.did_succeed = False | |
| if verbose: | |
| self.print_maze_parameters() | |
| random.seed(self.random_seeds["key_ids"]) | |
| if self.shuffle_key_ids: | |
| random.shuffle(self.key_ids) | |
| def print_maze_parameters(self): | |
| """Print the current maze generation parameters.""" | |
| print("\033[93m" + "the random seeds are: " + "\033[0m", self.random_seeds) | |
| print("maze parameters are: ") | |
| print(f"N: {self.N}") | |
| print(f"M: {self.M}") | |
| print(f"rescue_agent: {self.rescue_agent}") | |
| print(f"victim: {self.victim}") | |
| print(f"max_big_loop_count: {self.max_big_loop_count}") | |
| print(f"max_retry_count: {self.max_retry_count}") | |
| print(f"N_locked_doors: {self.N_locked_doors}") | |
| print(f"generate_sub_problems: {self.generate_sub_problems}") | |
| def find(self, node): | |
| """Find the root of the set containing node (with path compression). | |
| This is used in the union function""" | |
| if self.parent[node] != node: | |
| self.parent[node] = self.find(self.parent[node]) | |
| return self.parent[node] | |
| def union(self, node1, node2): | |
| """Union by rank - used in kruskal's algorithm""" | |
| root1 = self.find(node1) | |
| root2 = self.find(node2) | |
| if root1 != root2: | |
| if self.rank[root1] > self.rank[root2]: | |
| self.parent[root2] = root1 | |
| elif self.rank[root1] < self.rank[root2]: | |
| self.parent[root1] = root2 | |
| else: | |
| self.parent[root2] = root1 | |
| self.rank[root1] += 1 | |
| return True | |
| return False | |
| def assign_room_name(self, cell): | |
| return self.name_generator.get_name(cell) | |
| def generate_edges(self): | |
| """Generate edges between adjacent cells.""" | |
| for r in range(self.N): | |
| for c in range(self.M): | |
| node = (r, c) | |
| self.parent[node] = node | |
| self.rank[node] = 0 | |
| if r < self.N - 1: # Vertical edge | |
| self.edges.append(((r, c), (r + 1, c))) | |
| if c < self.M - 1: # Horizontal edge | |
| self.edges.append(((r, c), (r, c + 1))) | |
| self.room_name[node] = self.assign_room_name(node) | |
| def generate_maze_with_doors(self): | |
| """Generate the maze using Kruskal's algorithm.""" | |
| if self.verbose: | |
| print("generating the maze with doors...") | |
| self.generate_edges() | |
| random.seed(self.random_seeds["maze_generation"]) | |
| random.shuffle(self.edges) # Shuffle edges for randomness | |
| random.seed(self.random_seeds["door_distribution"]) | |
| ps = [(random.random(), random.random()) for _ in range(len(self.edges))] | |
| for (cell1, cell2), p in zip(self.edges, ps): | |
| if self.union(cell1, cell2): # Connect disjoint sets | |
| # Convert lattice coordinates to maze coordinates | |
| wall_r = 2 * cell1[0] + 1 + (cell2[0] - cell1[0]) | |
| wall_c = 2 * cell1[1] + 1 + (cell2[1] - cell1[1]) | |
| self.maze[2 * cell1[0] + 1, 2 * cell1[1] + 1] = 0 # Mark cell as open | |
| self.maze[2 * cell2[0] + 1, 2 * cell2[1] + 1] = 0 # Mark cell as open | |
| self.maze[wall_r, wall_c] = 0 # Remove wall | |
| self.connected_cells[cell1][cell2] = 1 | |
| self.connected_cells[cell2][cell1] = 1 | |
| status = "open" | |
| self.maze[ | |
| wall_r, wall_c | |
| ] = 4 # 3 if status == 'closed but unlocked' else 4 | |
| self.doors[(cell1, cell2)] = (status, self.key_ids.pop()) | |
| self.doors[(cell2, cell1)] = self.doors[(cell1, cell2)] | |
| def flush_checkpoints(self, checkpoints, removed_key_count): | |
| while len(checkpoints) > 1: | |
| rooms_in_path = self.find_shortest_path(checkpoints[0], checkpoints[1]) | |
| if rooms_in_path is None: | |
| rooms_in_path = [] | |
| for sub_room in rooms_in_path[ | |
| :-1 | |
| ]: # we ensure we are not double counting the rooms | |
| self.standardized_problem_solution_backward[removed_key_count] += [ | |
| ("move_to", sub_room) | |
| ] | |
| checkpoints.pop(0) | |
| def standardize_sub_problems_and_solutions(self): | |
| # use the strategy backward to generate the standardized problem and solution in the final desired format | |
| self.standardized_problem_solution_backward = defaultdict(list) | |
| removed_key_count = 0 | |
| self.sub_maze_configurations = {} | |
| self.sub_problem_maze = copy.deepcopy(self.maze_original) | |
| self.sub_problem_doors = copy.deepcopy(self.doors_original) | |
| self.connected_cells = dict(self.connected_cells) | |
| number_of_unlocking_actions_required = ( | |
| len(self.strategy_backward_original) - 2 | |
| ) // 2 | |
| while removed_key_count <= (len(self.strategy_backward_original) - 2) // 2: | |
| checkpoints = [] | |
| for i, (room, context, action) in enumerate(self.strategy_backward): | |
| if action.split(":")[0] == "end_room": | |
| self.standardized_problem_solution_backward[removed_key_count] += [ | |
| ("rescue", self.victim) | |
| ] | |
| checkpoints.append(room) | |
| elif action.split(":")[0] == "unlock_door": | |
| checkpoints.append(room) | |
| checkpoints.append(context) | |
| self.flush_checkpoints(checkpoints, removed_key_count) | |
| self.standardized_problem_solution_backward[removed_key_count] += [ | |
| ("unlock_and_open_door_to", room) | |
| ] | |
| self.standardized_problem_solution_backward[removed_key_count] += [ | |
| ("use_key", self.doors[(room, context)][1]) | |
| ] | |
| elif action.split(":")[0] == "pick_up_key": | |
| checkpoints.append(room) | |
| self.flush_checkpoints(checkpoints, removed_key_count) | |
| self.standardized_problem_solution_backward[removed_key_count] += [ | |
| ("pick_up_key", action.split(":")[1]) | |
| ] | |
| elif action.split(":")[0] == "start_room": | |
| checkpoints.append(room) | |
| self.flush_checkpoints(checkpoints, removed_key_count) | |
| self.standardized_problem_solution_backward[removed_key_count] += [ | |
| ("start", room) | |
| ] | |
| self.flush_checkpoints(checkpoints, removed_key_count) | |
| self.sub_maze_configurations[removed_key_count] = { | |
| "maze": self.sub_problem_maze.astype(int).tolist(), | |
| "doors": copy.deepcopy(self.sub_problem_doors), | |
| "keys_locations": copy.deepcopy(self.keys_locations), | |
| "number_of_unlocking_actions_required": number_of_unlocking_actions_required, | |
| } | |
| # if the flag is not set, we stop the process after generating the first sub-problem (with N_locked_doors locked doors) | |
| if not self.generate_sub_problems: | |
| break | |
| removed_key_count += 1 | |
| if len(self.on_optimal_path_locked_doors_indices) == 0: | |
| break | |
| random.seed(self.random_seeds[f"remove_key_{removed_key_count}"]) | |
| # ss = random.randint(0, floor((len(self.strategy_backward) - 2) / 2) - 1) | |
| ss = self.on_optimal_path_locked_doors_indices.pop(0) | |
| cell1, cell2 = ( | |
| self.drs[ss][0], | |
| self.drs[ss][1], | |
| ) | |
| status = "open" | |
| self.sub_problem_doors[(cell1, cell2)] = ( | |
| status, | |
| self.sub_problem_doors[(cell1, cell2)][1], | |
| ) | |
| self.sub_problem_doors[(cell2, cell1)] = self.sub_problem_doors[ | |
| (cell1, cell2) | |
| ] | |
| # updating the maze and doors to reflect that | |
| wall_r = 2 * cell1[0] + 1 + (cell2[0] - cell1[0]) | |
| wall_c = 2 * cell1[1] + 1 + (cell2[1] - cell1[1]) | |
| self.sub_problem_maze[wall_r, wall_c] = 4 | |
| # don't need to change the key locations and can keep that as noise | |
| # we remove the locked door knowing that the backward strategy pattern is | |
| # inverse of ['start_room'] +['pick_up_key', 'unlock_door'] * N_locked_doors + ['end_room'] | |
| self.drs[ss] = ( | |
| self.drs[ss][0], | |
| self.drs[ss][1], | |
| "open", | |
| self.drs[ss][3], | |
| False, | |
| ) | |
| ( | |
| extra_removed_keys, | |
| number_of_unlocking_actions_required, | |
| ) = self.remove_redundant_steps_from_strategy_backward( | |
| ss | |
| ) # if the rooms associated with a removed locked door is not on the optimal path, we remove it | |
| removed_key_count += extra_removed_keys | |
| if not removed_key_count <= (len(self.strategy_backward_original) - 2) // 2: | |
| break | |
| def remove_redundant_steps_from_strategy_backward(self, ss): | |
| # prouning the ground truth to ensure optimality by tweaking the strategy backward | |
| """ | |
| get the list of all locked doors in the original backward strategy in the following format: | |
| drs = [(cell1, cell2, status = 'open | locked', is_on_optimal_path[bool], included_in_gt_or_not[bool]),...] | |
| when changing status of an item to open (as part of sub problem generation logic) | |
| set drs[s]['included_in_gt_or_not'] = False, check prevoius item (s = s-1) | |
| if drs[s]['is_on_optimal_path'] = False , set drs[s]['included_in_gt_or_not'] = False | |
| and set s = s-1 and do the check again | |
| if drs[s]['is_on_optimal_path'] = True, stop the process | |
| return the number of extra removed keys | |
| """ | |
| inds_to_drop = [] | |
| # drop the opened door from the strategy backward | |
| dr = self.drs[ss] | |
| for i, item in enumerate(self.strategy_backward): | |
| if (item[0] == dr[0] and item[1] == dr[1]) or ( | |
| item[0] == dr[1] and item[1] == dr[0] | |
| ): | |
| inds_to_drop.append(i) | |
| i = ss + 1 | |
| if i >= len(self.drs): | |
| self.strategy_backward = [ | |
| self.strategy_backward[i] | |
| for i in range(len(self.strategy_backward)) | |
| if i not in inds_to_drop and i - 1 not in inds_to_drop | |
| ] | |
| number_of_unlocking_actions_required = ( | |
| len(self.strategy_backward) - 2 | |
| ) // 2 | |
| return 0, number_of_unlocking_actions_required | |
| is_on_optimal_path = self.drs[i][3] | |
| extra_removed_keys = 0 | |
| while i < len(self.drs) and ((not is_on_optimal_path)): | |
| dr = self.drs[i] | |
| self.drs[i] = (dr[0], dr[1], dr[2], False, False) | |
| # drop the removed door from the ground truth from the strategy backward | |
| for j, item in enumerate(self.strategy_backward): | |
| if (item[0] == dr[0] and item[1] == dr[1]) or ( | |
| item[0] == dr[1] and item[1] == dr[0] | |
| ): | |
| inds_to_drop.append(j) | |
| extra_removed_keys += 1 | |
| i += 1 | |
| if i >= len(self.drs): | |
| break | |
| is_on_optimal_path = self.drs[i][3] | |
| # remove both unlock and pickup from the strategy backward for dropped doors | |
| self.strategy_backward = [ | |
| self.strategy_backward[i] | |
| for i in range(len(self.strategy_backward)) | |
| if i not in inds_to_drop and i - 1 not in inds_to_drop | |
| ] | |
| number_of_unlocking_actions_required = (len(self.strategy_backward) - 2) // 2 | |
| return extra_removed_keys, number_of_unlocking_actions_required | |
| def generate_distributed_keys_rescue_positive_problem(self): | |
| # positive means that the problem is solvable | |
| # there are locked doors between start_room and end_room | |
| # these locked doors have keys distributed throughout the maze | |
| # Alex needs to find the keys and open the doors on its path to rescue Maggie | |
| # Not all keys open all doors | |
| # circular dependency can exist: when the key to open a | |
| # locked door to room A is in a room B that is on the path to it has a locked door | |
| # but the key to open that locked door is in room A - | |
| # there is a circular dependency and it makes it impossible to rescue Maggie | |
| ### GENERATION PROCESS ######################################################### | |
| # We use a reverse back in time to build the problem configuration | |
| # We move back in time from the moment Maggie is rescued to the moment Alex starts the rescue | |
| # Initially all the rooms are unlocked | |
| ################################################################################ | |
| # 1. Pick a random room as the episode's final state (Maggie's location - Alex's final location): | |
| self.maze_original = copy.deepcopy(self.maze) | |
| self.doors_original = copy.deepcopy(self.doors) | |
| self.keys_locations_original = copy.deepcopy(self.keys_locations) | |
| self.random_seeds["problem_generation"] = random.randint(0, 1000000) | |
| random.seed(self.random_seeds["problem_generation"]) | |
| succeeded = False | |
| big_loop_count = 0 | |
| while not succeeded: | |
| self.all_originally_locked_doors_on_optimal_path = [] | |
| self.strategy_backward = [] | |
| self.drs = [] | |
| big_loop_count += 1 | |
| if big_loop_count > self.max_big_loop_count: | |
| return False | |
| self.keys_locations = {} | |
| self.random_seeds["end_room"] = random.randint(0, 1000000) | |
| random.seed(self.random_seeds["end_room"]) | |
| end_room = random.choice(list(self.room_name.keys())) | |
| current_room = copy.deepcopy(end_room) | |
| self.end_room = end_room | |
| step_count = 0 | |
| while True: | |
| if step_count == 0: | |
| self.strategy_backward += [(current_room, current_room, "end_room")] | |
| step_count += 1 | |
| # 2. Select a random previous room from the list of all rooms accessible from current room. | |
| # Alex moves back in time by going to a randomly selected previous room in the maze: | |
| accessible_rooms = self.list_of_all_currently_accessible_rooms( | |
| current_room | |
| ) | |
| if self.N_locked_doors==0: | |
| start_room = accessible_rooms[ | |
| random.randint(0, len(accessible_rooms) - 1) | |
| ][0] | |
| self.start_room = start_room | |
| self.strategy_backward += [(start_room, start_room, "start_room")] | |
| succeeded = True | |
| break | |
| retry_count = 0 | |
| all_doors_on_path = [] | |
| while ( | |
| retry_count < self.max_retry_count and len(all_doors_on_path) == 0 | |
| ): | |
| if len(accessible_rooms) != 0: | |
| previous_room = accessible_rooms[ | |
| random.randint(0, len(accessible_rooms) - 1) | |
| ][0] | |
| # 3. Alex locks a randomly selected door on the way back to the previous room | |
| # from all the blue doors it encounters: | |
| all_doors_on_path = self.get_all_doors_on_path( | |
| current_room, previous_room | |
| ) | |
| if len(all_doors_on_path) == 0: | |
| # need to ensure we choose a path that has at least one blue or green door | |
| if self.verbose: | |
| print( | |
| f"no doors found between {current_room} and {previous_room} - retrying..." | |
| ) | |
| retry_count += 1 | |
| if retry_count == self.max_retry_count: | |
| self.maze = copy.deepcopy(self.maze_original) | |
| self.doors = copy.deepcopy(self.doors_original) | |
| self.keys_locations = copy.deepcopy(self.keys_locations_original) | |
| break | |
| cell1, cell2 = random.choice(all_doors_on_path) | |
| self.strategy_backward += [(cell1, cell2, "unlock_door")] | |
| self.drs.append((cell1, cell2, "closed and locked", None, True)) | |
| self.all_originally_locked_doors_on_optimal_path.append((cell1, cell2)) | |
| self.doors[(cell1, cell2)] = ( | |
| "closed and locked", | |
| self.doors[(cell1, cell2)][1], | |
| ) | |
| self.doors[(cell2, cell1)] = self.doors[(cell1, cell2)] | |
| wall_r = 2 * cell1[0] + 1 + (cell2[0] - cell1[0]) | |
| wall_c = 2 * cell1[1] + 1 + (cell2[1] - cell1[1]) | |
| self.maze[wall_r, wall_c] = 2 # 2 is the value for locked doors | |
| # 4. Alex then leaves the associated key to this locked door in the selected previous room: | |
| self.keys_locations[self.doors[(cell1, cell2)][1]] = previous_room | |
| self.strategy_backward += [ | |
| ( | |
| previous_room, | |
| (cell1, cell2), | |
| f"pick_up_key:{self.doors[(cell1, cell2)][1]}", | |
| ) | |
| ] | |
| current_room = copy.deepcopy(previous_room) | |
| # 5. repeat the steps from 2 to 4 (while loop) until N keys are distributed and user goes to a final | |
| # randomly accessible room | |
| if len(self.keys_locations) == self.N_locked_doors: | |
| accessible_rooms = self.list_of_all_currently_accessible_rooms( | |
| current_room | |
| ) | |
| if len(accessible_rooms) == 0: | |
| start_room = current_room | |
| else: | |
| start_room = accessible_rooms.pop( | |
| random.randint(0, len(accessible_rooms) - 1) | |
| )[0] | |
| self.start_room = start_room | |
| self.strategy_backward += [(start_room, start_room, "start_room")] | |
| succeeded = True | |
| break | |
| # no already locked doors should be traversed - the final room becomes the start room | |
| # the process stops after N keys are distributed and user goes to a final randomly accessible room | |
| if succeeded: | |
| self.maze_original = copy.deepcopy(self.maze) | |
| self.doors_original = copy.deepcopy(self.doors) | |
| self.keys_locations_original = copy.deepcopy(self.keys_locations) | |
| self.strategy_backward_original = copy.deepcopy(self.strategy_backward) | |
| self.drs_set_3rd_item() | |
| self.standardize_sub_problems_and_solutions() | |
| self.did_succeed = True | |
| return True | |
| else: | |
| return False | |
| def drs_set_3rd_item(self): | |
| # [(cell1, cell2, status = 'open | locked', is_on_optimal_path[bool], included_in_gt_or_not[bool]),...] | |
| self.on_optimal_path_locked_doors_indices = [] | |
| optimal_path = self.find_shortest_path(self.start_room, self.end_room) | |
| for i, dr in enumerate(self.drs): | |
| # self.drs[i][3]-> is_on_optimal_path | |
| is_on_optimal_path = dr[0] in optimal_path and dr[1] in optimal_path | |
| self.drs[i] = (dr[0], dr[1], dr[2], is_on_optimal_path, dr[4]) | |
| if is_on_optimal_path: | |
| self.on_optimal_path_locked_doors_indices.append(i) | |
| return None | |
| def list_of_all_currently_accessible_rooms( | |
| self, current_room, previous_room=None, steps=0 | |
| ): | |
| # consideriing the current room and the maze structure as well as status of all the doors | |
| # return a list of all the rooms that are accessible from the current room | |
| if previous_room is None: | |
| self.accessible_rooms = [] | |
| adjacent_cells = list(self.connected_cells[current_room].keys()) | |
| for cell in adjacent_cells: | |
| if cell == previous_room: | |
| continue | |
| if (current_room, cell) not in self.doors.keys() or self.doors[ | |
| (current_room, cell) | |
| ][0] == "open": | |
| self.accessible_rooms.append((cell, steps + 1)) | |
| self.list_of_all_currently_accessible_rooms( | |
| cell, previous_room=current_room, steps=steps + 1 | |
| ) | |
| return self.accessible_rooms | |
| def find_shortest_path(self, room_A, room_B, path=[]): | |
| if room_A == room_B: | |
| return path + [room_B] | |
| adjacent_cells = [ | |
| cell | |
| for cell in list(self.connected_cells[room_A].keys()) | |
| if cell not in path and cell != room_A | |
| ] | |
| for cell in adjacent_cells: | |
| res = self.find_shortest_path(cell, room_B, path=path + [room_A]) | |
| if res is not None: | |
| return res | |
| return None | |
| def get_all_doors_on_path(self, room_A, room_B): | |
| if room_A == room_B: | |
| return [] | |
| path = self.find_shortest_path(room_A, room_B) | |
| if path is None: | |
| return [] | |
| return [ | |
| (path[i], path[i + 1]) | |
| for i in range(len(path) - 1) | |
| if (path[i], path[i + 1]) in self.doors.keys() | |
| and self.doors[(path[i], path[i + 1])][0] == "open" | |
| ] | |
| def display_maze(self): | |
| """Display the maze using Matplotlib.""" | |
| fig, ax = plt.subplots(figsize=(self.M / 2, self.N / 2)) | |
| # Create a custom colormap with red for locked doors | |
| # create cmap to show black for walls (1 value), white for open space (0 value), and red for locked doors (2 value) | |
| cmap = plt.cm.colors.ListedColormap(["white", "black", "red", "blue", "green"]) | |
| ax.imshow(self.maze, cmap=cmap, interpolation="nearest") | |
| ax.set_xticks([]), ax.set_yticks([]) | |
| plt.show() | |
| def save_maze(self): | |
| # create the directory if it doesn't exist | |
| os.makedirs( | |
| f"generated_data/maze_{self.N}_{self.M}_{self.N_locked_doors}" | |
| f"_{self.generate_sub_problems}", | |
| exist_ok=True, | |
| ) | |
| filename = ( | |
| f"generated_data/maze_{self.N}_{self.M}_{self.N_locked_doors}" | |
| f"_{self.generate_sub_problems}/{self.random_seeds['problem_generation']}.pkl" | |
| ) | |
| data = {} | |
| data["world_parameters"] = { | |
| "N": self.N, | |
| "M": self.M, | |
| "N_keys": len(self.keys_locations), | |
| "N_locked_doors": self.N_locked_doors, | |
| "rescue_agent": self.rescue_agent, | |
| "victim": self.victim, | |
| "random_seeds": self.random_seeds, | |
| } | |
| data.update( | |
| { | |
| "start_room": self.start_room, | |
| "end_room": self.end_room, | |
| "standardized_problem_solution": self.standardized_problem_solution_backward, | |
| "sub_maze_configurations": self.sub_maze_configurations, # if any key values are ndarray, convert to list | |
| "connected_cells": self.connected_cells, | |
| "room_name": self.room_name, | |
| } | |
| ) | |
| pickle.dump(data, open(filename, "wb")) | |
| return filename, None | |
| def single_run(N, M, N_locked_doors, display_maze=False, verbose=False): | |
| try: | |
| print(f"Starting run with N: {N}, M: {M}, N_locked_doors: {N_locked_doors}") | |
| succeeded = False | |
| counter = 0 | |
| while not succeeded: | |
| counter += 1 | |
| maze = MazeGenerator( | |
| N=N, | |
| M=M, | |
| rescue_agent="Alex", | |
| victim="Maggie", | |
| max_big_loop_count=500, | |
| max_retry_count=100, | |
| N_locked_doors=N_locked_doors, | |
| generate_sub_problems=True, | |
| verbose=verbose, | |
| ) | |
| maze.generate_maze_with_doors() | |
| maze.generate_distributed_keys_rescue_positive_problem() | |
| succeeded = maze.did_succeed | |
| if counter > 100: | |
| print(f"Failed to generate {N}, M: {M}, N_locked_doors: {N_locked_doors}") | |
| break | |
| if succeeded: | |
| if display_maze: | |
| maze.display_maze() | |
| # Save the maze data | |
| filename, maze_file = maze.save_maze() | |
| if maze_file: | |
| maze_id = os.path.splitext(os.path.basename(maze_file))[0] | |
| maze_dir = os.path.dirname(maze_file) | |
| plots_dir = os.path.join(maze_dir, "plots") | |
| os.makedirs(plots_dir, exist_ok=True) | |
| maze_loader = MazeLoader(maze_file, hide_coordinates=True) | |
| plot_path = os.path.join(plots_dir, f"{maze_id}.png") | |
| maze_loader.pretty_plot(save_path=plot_path) | |
| print(f"Saved maze visualization to {plot_path}") | |
| return ( | |
| f"run with N: {N}, M: {M}, N_locked_doors: {N_locked_doors} succeeded", | |
| filename, | |
| ) | |
| else: | |
| return ( | |
| f"run with N: {N}, M: {M}, N_locked_doors: {N_locked_doors} maxed out retry count", | |
| None, | |
| ) | |
| except Exception as e: | |
| print(traceback.print_exc()) | |
| raise Exception( | |
| f"Run with N: {N}, M: {M}, N_locked_doors: {N_locked_doors} failed" | |
| ) | |
| def run_maze_generation(NMs, num_instances_per_parameter_combination=1): | |
| fs = [] | |
| generated_maze_files = [] | |
| with ThreadPoolExecutor(max_workers=60) as executor: | |
| for i in range(num_instances_per_parameter_combination): | |
| print( | |
| f"Running instance {i+1} of {num_instances_per_parameter_combination}..." | |
| ) | |
| for N, M, N_locked_doors in NMs: | |
| fs.append( | |
| executor.submit( | |
| single_run, | |
| N, | |
| M, | |
| N_locked_doors, | |
| display_maze=False, | |
| verbose=False, | |
| ) | |
| ) | |
| for f in as_completed(fs): | |
| if f.exception() is None: | |
| res = f.result() | |
| print(res[0]) | |
| if res[1] is not None: | |
| generated_maze_files.append(res[1]) | |
| return generated_maze_files | |
| if __name__ == "__main__": | |
| NMs = [(j,j) for j in range(6, 22, 2)] | |
| NMs = [(it[0], it[1], i) for it in NMs for i in range(9,11)] | |
| print(NMs) | |
| generated_maze_files = run_maze_generation( | |
| NMs, num_instances_per_parameter_combination=1000 | |
| ) | |
| print(generated_maze_files) | |
| # fix weird behavior you are seeing with 8,8,6 reduced key count to 1 for maze_8_8_6_0.5_0.0_True/745275.pkl | |
| # cognetive load is constraints on key lock distributions | |
| # can we introduce a "time pressure" on cognetive load | |
| # starting with small problems and deeply understanding the behaviors | |
| # constraint reduction behavior of the model - as we reduce the number of keys distributed | |
| # | |