The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed
Error code: DatasetGenerationError
Exception: UnicodeDecodeError
Message: 'utf-8' codec can't decode byte 0x92 in position 15: invalid start byte
Traceback: Traceback (most recent call last):
File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1815, in _prepare_split_single
for _, table in generator:
^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/packaged_modules/text/text.py", line 73, in _generate_tables
batch = f.read(self.config.chunksize)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "<frozen codecs>", line 322, in decode
UnicodeDecodeError: 'utf-8' codec can't decode byte 0x92 in position 15: invalid start byte
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1339, in compute_config_parquet_and_info_response
parquet_operations = convert_to_parquet(builder)
^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 972, in convert_to_parquet
builder.download_and_prepare(
File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 894, in download_and_prepare
self._download_and_prepare(
File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 970, in _download_and_prepare
self._prepare_split(split_generator, **prepare_split_kwargs)
File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1702, in _prepare_split
for job_id, done, content in self._prepare_split_single(
^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1858, in _prepare_split_single
raise DatasetGenerationError("An error occurred while generating the dataset") from e
datasets.exceptions.DatasetGenerationError: An error occurred while generating the datasetNeed help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
text
string |
|---|
4
|
5
|
The transmission matrix $([T])$ of a circuit is defined as follows:
|
$$
|
\left[\begin{array}{l}
|
v_1(r) \\
|
i_1(t)
|
\end{array}\right]-\left[\begin{array}{ll}
|
r_{11} & r_{12} \\
|
r_{21} & r_{22}
|
\end{array}\right]\left[\begin{array}{l}
|
v_2(r) \\
|
t_2(t)
|
\end{array}\right]+[T]-\left[\begin{array}{ll}
|
t_{11} & t_{12} \\
|
t_{21} & t_{22}
|
\end{array}\right]
|
$$
|
The transmission matrix of the circuit shown in Figure 10.13.2 can be determined as follows:
|
Applying KVL in the loop:
|
$$
|
-v_1(r)+v_2(t)-0 \Rightarrow v_1(t)-v_2(t)
|
$$
|
Applying KVL in the right-side mesh:
|
$$
|
-v_2(r)+R\left(i_1(t)-i_2(r)\right)-0 \Rightarrow i_1(t)-\frac{1}{R} v_2(t)+i_2(t)
|
$$
|
Solving (1), (2), and (3):
|
$$
|
\left[\begin{array}{l}
|
v_1(t) \\
|
l_1(t)
|
\end{array}\right]-\left[\begin{array}{ll}
|
1 & 0 \\
|
\frac{1}{R} & 1
|
\end{array}\right]\left[\begin{array}{l}
|
v_2(t) \\
|
i_2(t)
|
\end{array}\right]+\left[T_P\right]-\left[\begin{array}{cc}
|
1 & 0 \\
|
\frac{1}{R} & 1
|
\end{array}\right]
|
$$
|
The transmission matrix of the circuit shown in Figure 10.13.3 can be determined as follows:
|
Applying KVL in the loop:
|
$$
|
-v_1(t)+R i_2(t)+v_2(t)-0 \Rightarrow v_1(t)-R i_2(t)+v_2(t)
|
$$
|
From the circuit, it is clear that:
|
$$
|
i_1(t)-i_2(t)
|
$$
|
Solving (1), (5), and (6):
|
$$
|
\left[\begin{array}{l}
|
v_1(r) \\
|
v_1(t)
|
\end{array}\right]=\left[\begin{array}{ll}
|
1 & R \\
|
0 & 1
|
\end{array}\right]\left[\begin{array}{l}
|
v_2(t) \\
|
t_2(t)
|
\end{array}\right] \Rightarrow\left|T_s\right|=\left[\begin{array}{ll}
|
1 & R \\
|
0 & 1
|
\end{array}\right]
|
$$
|
The circuit of Figure 10.13.1 can be assumed like the series connection of seven small circuits. The total transmission matrix of sach a circuit can be determined as follows:
|
$$
|
\begin{aligned}
|
{[T]-\left[T_{p 1}\right] \times\left[T_{s 1}\right] \times\left[T_{p 2}\right] \times\left[T_{s 1}\right] \times\left[T_{p 2}\right] \times\left[T_{s 1}\right] \times\left[T_{p 1}\right] } \\
|
-\left[\begin{array}{ll}
|
1 & 0 \\
|
\frac{1}{1} & 1
|
\end{array}\right] \times\left[\begin{array}{ll}
|
1 & 1 \\
|
0 & 1
|
End of preview.