File size: 11,315 Bytes
b1b3bae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
#region Copyright � 2009 Jose Antonio De Santiago-Castillo.
//Copyright � 2009 Jose Antonio De Santiago-Castillo
//E-mail:JAntonioDeSantiago@gmail.com
//Web: www.DotNumerics.com
//
#endregion
using System;
using System.Collections.Generic;
using System.Text;
using System.Diagnostics;
namespace DotNumerics
{
//[DebuggerDisplay("{_real} + {_imaginary} i")]
/// <summary>
/// Represents a Complex number.
/// </summary>
public struct Complex: IFormattable
{
#region Fields
private double _real;
private double _imaginary;
#endregion
#region Constructor
/// <summary>
/// Initializes a new instance of the Complex class.
/// </summary>
/// <param name="real">The real part of the Complex number.</param>
/// <param name="imaginary">The imaginary part of the complex number. </param>
[DebuggerStepThrough()]
public Complex(double real, double imaginary)
{
this._real = real;
this._imaginary = imaginary;
}
#endregion
#region Properties
/// <summary>
/// Gets or sets the real value of the complex number.
/// </summary>
public double Real
{
get { return _real; }
set { _real = value; }
}
/// <summary>
/// Gets or sets the imaginary value of the complex number.
/// </summary>
public double Imaginary
{
get { return _imaginary; }
set { _imaginary = value; }
}
#endregion
#region Methods
/// <summary>
/// Returns the conjugate of this complex number.
/// </summary>
[DebuggerBrowsableAttribute(DebuggerBrowsableState.Never)]
public Complex Conjugate
{
[DebuggerStepThrough()]
get { return new Complex(_real, -_imaginary); }
}
///// <summary>
/////
///// </summary>
//[DebuggerBrowsableAttribute(DebuggerBrowsableState.Never)]
//public double Norm
//{
// [DebuggerStepThrough()]
// get { return _real * _real + _imaginary * _imaginary; }
//}
/// <summary>
/// Gets the modulus or absolute value of this complex number.
/// </summary>
[DebuggerBrowsableAttribute(DebuggerBrowsableState.Never)]
public double Modulus
{
[DebuggerStepThrough()]
get { return System.Math.Sqrt(_real * _real + _imaginary * _imaginary); }
}
/// <summary>
/// Gets or stes the argument of a this complex number.
/// </summary>
[DebuggerBrowsableAttribute(DebuggerBrowsableState.Never)]
public double Argument
{
[DebuggerStepThrough()]
get { return System.Math.Atan2(_imaginary, _real); }
set
{
double modulus = Modulus;
this._real = Math.Cos(value) * modulus;
this._imaginary = Math.Sin(value) * modulus;
}
}
//[DebuggerStepThrough()]
//public static Complex Polar(double modulus, double argument)
//{
// return new Complex(
// modulus * System.Math.Cos(argument),
// modulus * System.Math.Sin(argument));
//}
#endregion
/// <summary>
/// Complex addition.
/// </summary>
/// <param name="z1">The left side of the addition operator.</param>
/// <param name="z2">The right side matrix of the addition operator.</param>
/// <returns>A value that represents the result of the addition.</returns>
public static Complex operator +(Complex z1, Complex z2)
{
return new Complex(z1._real + z2._real, z1._imaginary + z2._imaginary);
}
/// <summary>
/// Unary addition.
/// </summary>
/// <param name="c">The value.</param>
/// <returns>The value.</returns>
public static Complex operator +(Complex c)
{
return c;
}
/// <summary>
/// Unary minus.
/// </summary>
/// <param name="c">The value</param>
/// <returns> -value</returns>
public static Complex operator -(Complex c)
{
return new Complex(-c.Real, -c.Imaginary);
}
/// <summary>
/// Complex subtraction.
/// </summary>
/// <param name="z1">The left side of the operator.</param>
/// <param name="z2">The right side of the operator.</param>
/// <returns>A value that represents the result of the operation.</returns>
public static Complex operator -(Complex z1, Complex z2)
{
return new Complex(z1._real - z2._real, z1._imaginary - z2._imaginary);
}
/// <summary>
/// Complex multiplication.
/// </summary>
/// <param name="z1">The left side of the operator.</param>
/// <param name="z2">The right side of the operator.</param>
/// <returns>A value that represents the result of the operation.</returns>
public static Complex operator *(Complex z1, Complex z2)
{
return new Complex(
z1._real * z2._real - z1._imaginary * z2._imaginary,
z1._real * z2._imaginary + z1._imaginary * z2._real);
}
/// <summary>
/// Complex multiplication.
/// </summary>
/// <param name="z1">The left side of the operator.</param>
/// <param name="z2">The right side of the operator.</param>
/// <returns>A value that represents the result of the operation.</returns>
public static Complex operator *(double d1, Complex z2)
{
return new Complex(d1 * z2._real, d1 * z2._imaginary);
}
/// <summary>
/// Complex multiplication.
/// </summary>
/// <param name="z1">The left side of the operator.</param>
/// <param name="z2">The right side of the operator.</param>
/// <returns>A value that represents the result of the operation.</returns>
public static Complex operator *(Complex z1, double d2)
{
return d2 * z1;
}
/// <summary>
/// Complex division.
/// </summary>
/// <param name="z1">The left side of the operator.</param>
/// <param name="z2">The right side of the operator.</param>
/// <returns>A value that represents the result of the operation.</returns>
public static Complex operator /(Complex z1, Complex z2)
{
double value = z2._real * z2._real + z2._imaginary * z2._imaginary;
return new Complex(
(z1._real * z2._real + z1._imaginary * z2._imaginary) / value,
(z1._imaginary * z2._real - z1._real * z2._imaginary) / value);
}
/// <summary>
/// Equality operator.
/// </summary>
/// <param name="z1">The left side of the operator.</param>
/// <param name="z2">The right side of the operator.</param>
/// <returns>A value that represents the result of the operation.</returns>
public static bool operator ==(Complex z1, Complex z2)
{
return (z1._real == z2._real && z1._imaginary == z2._imaginary);
}
/// <summary>
/// Inequality operator.
/// </summary>
/// <param name="z1">The left side of the operator.</param>
/// <param name="z2">The right side of the operator.</param>
/// <returns>A value that represents the result of the operation.</returns>
public static bool operator !=(Complex z1, Complex z2)
{
return (z1._real != z2._real || z1._imaginary != z2._imaginary);
}
/// <summary>
/// Indicates whether this instance and a specific object are equals.
/// </summary>
/// <param name="obj">Another object to compare to.</param>
/// <returns>true if obj and this instance are the same type and represent the same value;
/// otherwise, false.</returns>
public override bool Equals(object obj)
{
return base.Equals(obj);
}
/// <summary>
/// Returns the hash code for this instance.
/// </summary>
/// <returns>A 32-bit signed integer that is the hash code for this instance.</returns>
public override int GetHashCode()
{
return _real.GetHashCode() ^ _imaginary.GetHashCode();
}
/// <summary>
/// Converts this instance to its equivalent string representation.
/// </summary>
/// <returns>The string representation.</returns>
public override string ToString()
{
//return (String.Format("{0} + {1}i", _real, _imaginary));
return (_imaginary >= 0) ? _real.ToString() + " +" + _imaginary.ToString() + " i" : _real.ToString() + " " + _imaginary.ToString() + " i";
}
/// <summary>
/// Converts this instance to its equivalent string representation,
/// using the specified format.
/// </summary>
/// <param name="format">A numeric format string.</param>
/// <returns>The string representation of the value of this instance as specified by format.</returns>
public string ToString(string format)
{
//return (String.Format("{0} + {1}i", _real, _imaginary));
return (_imaginary >= 0) ? _real.ToString(format) + " +" + _imaginary.ToString(format) + " i" : _real.ToString(format) + " " + _imaginary.ToString(format) + " i";
}
#region IFormattable Members
/// <summary>
/// Converts the numeric value of this instance to its equivalent string representation
/// using the specified format and culture-specific format information.
/// </summary>
/// <param name="format">
/// A numeric format string.
/// </param>
/// <param name="formatProvider">
/// An System.IFormatProvider that supplies culture-specific formatting information.
/// </param>
/// <returns>
/// The string representation of the value of this instance as specified by format and provider.
/// </returns>
public string ToString(string format, IFormatProvider formatProvider)
{
string s = "";
if (_imaginary >= 0)
{
s = _real.ToString(format, formatProvider) + " +" + _imaginary.ToString(format, formatProvider) + " i";
}
else
{
s = _real.ToString(format, formatProvider) + " " + _imaginary.ToString(format, formatProvider) + " i";
}
return s;
}
#endregion
}
}
|