File size: 25,734 Bytes
b1b3bae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 |
#region Copyright � 2009, De Santiago-Castillo JA. All rights reserved.
//Copyright � 2009 Jose Antonio De Santiago-Castillo
//E-mail:JAntonioDeSantiago@gmail.com
//Web: www.DotNumerics.com
//
#endregion
using System;
using System.Collections.Generic;
using System.Text;
using System.Diagnostics;
using System.IO;
using DotNumerics.FortranLibrary;
namespace DotNumerics.LinearAlgebra
{
//[DebuggerDisplay("[{RowCount},{ColumnCount}]", Name = "MatrixComplex")]
/// <summary>
/// Represents a Complex Matrix.
/// </summary>
[DebuggerDisplay("[{RowCount},{ColumnCount}]")]
[DebuggerTypeProxy(typeof(MatrixComplexDebuggerDisplay))]
public class ComplexMatrix : IMatrix<Complex>
{
#region Fields
/// <summary>
/// Los datos de la matriz, los datos se almacenan en un un array unidimensional,
/// Los elementos se almacenan por columnas, esto para que sean compatible con los Arrays de Fortran
/// </summary>
[DebuggerBrowsable(DebuggerBrowsableState.Never)]
protected Complex[] _Data;
/// <summary>
/// El numero de renglones
/// </summary>
[DebuggerBrowsable(DebuggerBrowsableState.Never)]
protected int _RowCount;
/// <summary>
/// El numero de columnas
/// </summary>
[DebuggerBrowsable(DebuggerBrowsableState.Never)]
protected int _ColumnCount;
#endregion
#region Public Constructors
/// <summary>
/// Initializes a new instance of the MatrixComplex class of the given size.
/// </summary>
/// <param name="rows">Number of rows.</param>
/// <param name="columns">Number of columns.</param>
public ComplexMatrix(int rows, int columns)
{
if (rows < 1) throw new System.ArgumentException("rows < 1");
if (columns < 1) throw new System.ArgumentException("columns < 1");
this._Data = new Complex[rows * columns];
this._RowCount = rows;
this._ColumnCount = columns;
}
/// <summary>
/// Initializes a new instance of the MatrixComplex class of the given size using a array
/// </summary>
/// <param name="rows">Number of rows.</param>
/// <param name="columns">Number of columns.</param>
/// <param name="Data">The data</param>
internal ComplexMatrix(int rows, int columns, Complex[] Data)
{
if (rows < 1) throw new System.ArgumentException("rows < 1");
if (columns < 1) throw new System.ArgumentException("columns < 1");
this._Data = new Complex[rows * columns];
this._RowCount = rows;
this._ColumnCount = columns;
//Si incluye la posibilidad de que los datos tengan menos valores que la matriz a crear
for (int i = 0; i < Math.Min(this._Data.Length, Data.Length); i++)
{
this._Data[i] = Data[i];
}
}
/// <summary>
/// Initializes a new instance of the MatrixComplex class of the given size.
/// </summary>
/// <param name="size">Size</param>
public ComplexMatrix(int size)
{
if (size < 1) throw new System.ArgumentException("size < 1");
this._Data = new Complex[size * size];
this._RowCount = size;
this._ColumnCount = size;
}
/// <summary>
/// Initializes a new instance of the MatrixComplex class of the given size using a array
/// </summary>
/// <param name="size">Size</param>
/// <param name="Data">The data</param>
internal ComplexMatrix(int size, Complex[] Data)
{
if (size < 1) throw new System.ArgumentException("size < 1");
this._Data = new Complex[size * size];
this._RowCount = size;
this._ColumnCount = size;
//Si incluye la posibilidad de que los datos tengan menos valores que la matriz a crear
for (int i = 0; i < Math.Min(this._Data.Length, Data.Length); i++)
{
this._Data[i] = Data[i];
}
}
#endregion
#region Public Properties
/// <summary>
/// Los datos de la matriz
/// </summary>
[DebuggerBrowsable(DebuggerBrowsableState.Never)]
internal Complex[] Data
{
get { return this._Data; }
}
/// <summary>
/// Returns the number of rows.
/// </summary>
[DebuggerBrowsable(DebuggerBrowsableState.Never)]
public int RowCount
{
get { return _RowCount; }
set { _RowCount = value; }
}
/// <summary>
/// Returns the number of columns.
/// </summary>
[DebuggerBrowsable(DebuggerBrowsableState.Never)]
public int ColumnCount
{
get { return _ColumnCount; }
set { _ColumnCount = value; }
}
/// <summary>
/// Gets a value indicating if the matrix is square.
/// </summary>
public bool IsSquare
{
get
{
bool isSquare = false;
if (this._ColumnCount == this.RowCount) isSquare = true;
return isSquare;
}
}
/// <summary>
/// Returns the value of a element of the matrix.
/// </summary>
/// <param name="row">The row value (zero-based).</param>
/// <param name="column">The column value (zero-based).</param>
/// <returns>The matrix value at (row, column).</returns>
public virtual Complex this[int row, int column]
{
get
{
if (column >= this._ColumnCount)
{
throw new ArgumentException("Index was outside the bounds of the matrix.");
}
return this._Data[row + column * this._RowCount];
}
set
{
if (column >= this._ColumnCount)
{
throw new ArgumentException("Index was outside the bounds of the matrix.");
}
this._Data[row + column * this._RowCount] = value;
}
}
#endregion
#region Private Methods
/// <summary>Check if size(this) == size(B) </summary>
private void CheckMatrixDimensions(ComplexMatrix B)
{
if (this._RowCount != B.RowCount || B.ColumnCount != this._ColumnCount)
{
throw new System.ArgumentException("Matrix dimensions must agree.");
}
}
/// <summary>Check if size(this) == size(B) </summary>
private void CheckMatrixDimensions(Matrix B)
{
if (this._RowCount != B.RowCount || B.ColumnCount != this._ColumnCount)
{
throw new System.ArgumentException("Matrix dimensions must agree.");
}
}
#endregion // Private Methods
#region Elementary linear operations
///// <summary>
///// aij=Math.Abs(aij)
///// </summary>
//public virtual void ElementsAbs()
//{
// for (int i = 0; i < this.MeData.Length; i++)
// {
// this.MeData[i] =Complex. Math.Abs(this.MeData[i]);
// }
//}
///// <summary>
///// Element-by-element division: aij = aij/bij
///// </summary>
///// <param name="B"></param>
//public virtual void ElemntsDiv(MatrixComplex B)
//{
// CheckMatrixDimensions(B);
// Complex[] BData = B.Data;
// for (int i = 0; i < this.MeData.Length; i++)
// {
// this.MeData[i] /= BData[i];
// }
//}
/// <summary>
/// Element-by-element multiplication: aij = aij*bij
/// </summary>
/// <param name="B">The B MatrixComplex</param>
public virtual void ElemntsMult(ComplexMatrix B)
{
CheckMatrixDimensions(B);
Complex[] BData = B.Data;
for (int i = 0; i < this._Data.Length; i++)
{
this._Data[i] = this._Data[i] * BData[i];
}
}
/// <summary>
/// In place addition A=A+B
/// </summary>
/// <param name="B">The B MatrixComplex</param>
public virtual void Add(ComplexMatrix B)
{
CheckMatrixDimensions(B);
Complex[] BData = B.Data;
for (int i = 0; i < this._Data.Length; i++)
{
this._Data[i] = this._Data[i] + BData[i];
}
}
/// <summary>
/// In place scalar-matrix multiplication, A=s*A
/// </summary>
/// <param name="s">The scalar s.</param>
public virtual void Multiply(double s)
{
for (int i = 0; i < this._Data.Length; i++)
{
this._Data[i].Real = s * this._Data[i].Real;
this._Data[i].Imaginary = s * this._Data[i].Imaginary;
}
}
/// <summary>
/// In place scalar-matrix multiplication, A=c*A
/// </summary>
/// <param name="s">The scalar s.</param>
public virtual void MultiplyC(Complex c)
{
for (int i = 0; i < this._Data.Length; i++)
{
this._Data[i] = c * this._Data[i];
}
}
/// <summary>
/// In place matrix subtraction, A=A-B.
/// </summary>
/// <param name="B">The B MatrixComplex.</param>
public virtual void Subtract(ComplexMatrix B)
{
CheckMatrixDimensions(B);
Complex[] BData = B.Data;
for (int i = 0; i < this._Data.Length; i++)
{
this._Data[i].Real = this._Data[i].Real - BData[i].Real;
this._Data[i].Imaginary = this._Data[i].Imaginary - BData[i].Imaginary;
}
}
/// <summary>
/// In place unary minus -A.
/// </summary>
public virtual void UnaryMinus()
{
for (int i = 0; i < this._Data.Length; i++)
{
this._Data[i].Real = -this._Data[i].Real;
this._Data[i].Imaginary = -this._Data[i].Imaginary;
}
}
#endregion
#region Methods
/// <summary>
/// Gets the column vectors of this matrix.
/// </summary>
/// <returns>The columns vectors.</returns>
public ComplexVector[] GetColumnVectors()
{
ComplexVector[] columnVects = new ComplexVector[this._ColumnCount];
Complex[] VectData;
for (int j = 0; j < this._ColumnCount; j++)
{
columnVects[j] = new ComplexVector(VectorType.Column, this._RowCount);
VectData = columnVects[j].Data;
for (int i = 0; i < VectData.Length; i++)
{
VectData[i] = this._Data[i + j * this._RowCount];
}
}
return columnVects;
}
/// <summary>
/// Gets the row vectors of this matrix.
/// </summary>
/// <returns>The row vectors.</returns>
public ComplexVector[] GetRowVectors()
{
ComplexVector[] rowVects = new ComplexVector[this.RowCount];
Complex[] VectData;
for (int i = 0; i < this._RowCount; i++)
{
rowVects[i] = new ComplexVector(VectorType.Row, this._ColumnCount);
VectData = rowVects[i].Data;
for (int j = 0; j < VectData.Length; j++)
{
VectData[j] = this._Data[i + j * this._RowCount];
}
}
return rowVects;
}
/// <summary>
/// Gets a matrix that contains the real part of this matrix.
/// </summary>
/// <returns>A matrix that contains the real part of this matrix. </returns>
public Matrix GetReal()
{
Matrix RealMatrix = new Matrix(this.RowCount, this.ColumnCount);
double[] RealData = RealMatrix.Data;
for (int i = 0; i < this._Data.Length; i++)
{
RealData[i] = this._Data[i].Real;
}
return RealMatrix;
}
/// <summary>
/// Gets a matrix that contains the imaginary part of this matrix.
/// </summary>
/// <returns>A matrix that contains the imaginary part of this matrix. </returns>
public Matrix GetImag()
{
Matrix ImagMatrix = new Matrix(this.RowCount, this.ColumnCount);
double[] ImagData = ImagMatrix.Data;
for (int i = 0; i < this._Data.Length; i++)
{
ImagData[i] = this._Data[i].Imaginary;
}
return ImagMatrix;
}
/// <summary>
/// Sets the real part of the elements of this matrix equal to the elemnets of a real matrix.
/// </summary>
/// <param name="RM">A matrix that contains the values of the real part.</param>
public void SetReal(Matrix RM)
{
this.CheckMatrixDimensions(RM);
double[] RealData = RM.Data;
for (int i = 0; i < this._Data.Length; i++)
{
this._Data[i].Real = RealData[i];
}
}
/// <summary>
/// Sets the imaginary part of the elements of this matrix equal to the elemnets of a real matrix.
/// </summary>
/// <param name="IM">A matrix that contains the values of the imaginary part.</param>
public void SetImag(Matrix IM)
{
this.CheckMatrixDimensions(IM);
double[] ImagData = IM.Data;
for (int i = 0; i < this._Data.Length; i++)
{
this._Data[i].Imaginary = ImagData[i];
}
}
/// <summary>
/// Returns the string of the matrix.
/// </summary>
/// <returns>The string of the matrix.</returns>
public string MatrixToString()
{
using (StringWriter writer = new StringWriter())
{
for (int i = 0; i < this._RowCount; i++)
{
for (int j = 0; j < this._ColumnCount; j++)
writer.Write(this[i, j] + ", ");
writer.WriteLine();
}
return writer.ToString();
}
}
/// <summary>
/// Returns the string of the matrix.
/// </summary>
/// <param name="format">A numeric format string.</param>
/// <returns>The string of the matrix.</returns>
public string MatrixToString(string format)
{
using (StringWriter writer = new StringWriter())
{
for (int i = 0; i < this._RowCount; i++)
{
for (int j = 0; j < this._ColumnCount; j++)
writer.Write(this[i, j].ToString(format) + ", ");
writer.WriteLine();
}
return writer.ToString();
}
}
///// <summary>
///// maximum column sum.
///// </summary>
///// <returns>maximum column sum.</returns>
//public double Norm1()
//{
// double n = 0.0;
// double ColSum = 0.0;
// int NRows = this.MeRowCount;
// for (int j = 0; j < this.MeColumnCount; j++)
// {
// ColSum = 0.0;
// for (int i = 0; i < this.MeRowCount; i++)
// {
// ColSum += Math.Abs(this.MeData[i + j * NRows]);
// }
// n = Math.Max(n, ColSum);
// }
// return n;
//}
///// <summary>
/////
///// </summary>
///// <returns></returns>
//public double InfinityNorm()
//{
// double n = 0.0;
// double RowSum = 0.0;
// int NRows = this.MeRowCount;
// for (int i = 0; i < this.MeRowCount; i++)
// {
// RowSum = 0.0;
// for (int j = 0; j < this.MeColumnCount; j++)
// {
// RowSum += Math.Abs(this.MeData[i + j * NRows]);
// }
// n = Math.Max(n, RowSum);
// }
// return n;
//}
///// <summary>Frobenius norm</summary>
///// <returns>Sqrt of sum of squares of all elements.</returns>
//public double FrobeniusNorm()
//{
// double n=0;
// for(int i=0; i<this.MeData.Length; i++)
// {
// n=this.Hypot(n,this.MeData[i]);
// }
// return n;
//}
///// <summary>sqrt(a^2 + b^2) without under/overflow.</summary>
//private double Hypot(double a, double b)
//{
// double r;
// if (Math.Abs(a) > Math.Abs(b))
// {
// r = b/a;
// r = Math.Abs(a) * Math.Sqrt(1 + r * r);
// }
// else if (b != 0)
// {
// r = a/b;
// r = Math.Abs(b) * Math.Sqrt(1 + r * r);
// }
// else
// {
// r = 0.0;
// }
// return r;
//}
#endregion
#region Matrix-Matrix Multiplication
/// <summary>
/// Matrix multiplication.
/// </summary>
/// <param name="A"> The left side matrix of the multiplication operator.</param>
/// <param name="B">The right side matrix of the multiplication operator.</param>
/// <returns>A matrix that represents the result of the matrix multiplication.</returns>
public static ComplexMatrix operator *(ComplexMatrix A, ComplexMatrix B)
{
if (B.RowCount != A.ColumnCount)
{
throw new System.ArgumentException("Matrix dimensions are not valid.");
}
ComplexMatrix C = new ComplexMatrix(A.RowCount, B.ColumnCount);
Complex[] AData = A.Data;
Complex[] BData = B.Data;
Complex[] CData = C.Data;
int ARows = A.RowCount;
int AColumns = A.ColumnCount;
int BRows = B.RowCount;
int BColumns = B.ColumnCount;
Complex Sum = new Complex(0.0, 0.0);
for (int j = 0; j < BColumns; j++)
{
for (int i = 0; i < ARows; i++)
{
Sum.Imaginary = 0.0;
Sum.Real = 0.0;
for (int k = 0; k < AColumns; k++)
{
Sum += AData[i + k * ARows] * BData[k + j * BRows];
}
CData[i + j * ARows] = Sum;
}
}
return C;
}
/// <summary>
/// Matrix multiplication.
/// </summary>
/// <param name="A"> The left side matrix of the multiplication operator.</param>
/// <param name="B">The right side matrix of the multiplication operator.</param>
/// <returns>A matrix that represents the result of the matrix multiplication.</returns>
public static ComplexMatrix operator *(BaseMatrix A, ComplexMatrix B)
{
if (B.RowCount != A.ColumnCount)
{
throw new System.ArgumentException("Matrix dimensions are not valid.");
}
ComplexMatrix C = new ComplexMatrix(A.RowCount, B.ColumnCount);
double[] AData = A.Data;
Complex[] BData = B.Data;
Complex[] CData = C.Data;
int ARows = A.RowCount;
int AColumns = A.ColumnCount;
int BRows = B.RowCount;
int BColumns = B.ColumnCount;
Complex Sum = new Complex(0.0, 0.0);
for (int j = 0; j < BColumns; j++)
{
for (int i = 0; i < ARows; i++)
{
Sum.Imaginary = 0.0;
Sum.Real = 0.0;
for (int k = 0; k < AColumns; k++)
{
Sum += AData[i + k * ARows] * BData[k + j * BRows];
}
CData[i + j * ARows] = Sum;
}
}
return C;
}
/// <summary>complex-Matrix multiplication.</summary>
/// <param name="c"> The left side scalar of the multiplication operator.</param>
/// <param name="B">The right side matrix of the multiplication operator.</param>
/// <returns>A matrix that represents the result of the multiplication.</returns>
public static ComplexMatrix operator *(Complex c, ComplexMatrix B)
{
ComplexMatrix C = new ComplexMatrix(B.RowCount, B.ColumnCount);
Complex[] BData = B.Data;
Complex[] CData = C.Data;
for (int i = 0; i < BData.Length; i++)
{
CData[i] = c * BData[i];
}
return C;
}
#endregion
#region Matrix-Matrix Addition
/// <summary>
/// Matrix addition.
/// </summary>
/// <param name="A">The left side matrix of the addition operator.</param>
/// <param name="B">The right side matrix of the addition operator.</param>
/// <returns>A matrix that represents the result of the matrix addition.</returns>
public static ComplexMatrix operator +(ComplexMatrix A, ComplexMatrix B)
{
if (B.RowCount != A.RowCount || B.ColumnCount != A.ColumnCount)
{
throw new System.ArgumentException("Matrix dimensions are not valid.");
}
ComplexMatrix C = new ComplexMatrix(A.RowCount, A.ColumnCount);
Complex[] AData = A.Data;
Complex[] BData = B.Data;
Complex[] CData = C.Data;
for (int i = 0; i < AData.Length; i++)
{
CData[i] = AData[i] + BData[i];
}
return C;
}
#endregion
#region Matrix-Matrix Subtraction
///// <summary>Matrix Subtraction</summary>
/// <summary>
/// Matrix subtraction.
/// </summary>
/// <param name="A"> The left side matrix of the subtraction operator.</param>
/// <param name="B">The right side matrix of the subtraction operator.</param>
/// <returns>A matrix that represents the result of the matrix subtraction.</returns>
public static ComplexMatrix operator -(ComplexMatrix A, ComplexMatrix B)
{
if (B.RowCount != A.RowCount || B.ColumnCount != A.ColumnCount)
{
throw new System.ArgumentException("Matrix dimensions are not valid.");
}
ComplexMatrix C = new ComplexMatrix(A.RowCount, A.ColumnCount);
Complex[] AData = A.Data;
Complex[] BData = B.Data;
Complex[] CData = C.Data;
for (int i = 0; i < AData.Length; i++)
{
CData[i] = AData[i] - BData[i];
}
return C;
}
#endregion
#region IMatrix<Complex> Members
/// <summary>
/// Copy all elements of this matrix to a rectangular 2D array.
/// </summary>
/// <returns>A rectangular 2D array.</</returns>
public Complex[,] CopyToArray()
{
Complex[,] matrixData = new Complex[this._RowCount, this._ColumnCount];
for (int j = 0; j < this._ColumnCount; j++)
{
for (int i = 0; i < this._RowCount; i++)
{
matrixData[i, j] = this._Data[i + j * this._RowCount];
}
}
return matrixData;
}
/// <summary>
/// Copy all elements of this matrix to a jagged array.
/// </summary>
/// <returns>A jagged array.</returns>
public Complex[][] CopyToJaggedArray()
{
Complex[][] newData = new Complex[this._RowCount][];
for (int i = 0; i < this._RowCount; i++)
{
Complex[] row = new Complex[this._ColumnCount];
for (int j = 0; j < this._ColumnCount; j++)
{
row[j] = this._Data[i + j * this._RowCount];
}
newData[i] = row;
}
return newData;
}
#endregion
}
} |