File size: 21,112 Bytes
b1b3bae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
#region Copyright � 2009, De Santiago-Castillo JA. All rights reserved.

//Copyright � 2009 Jose Antonio De Santiago-Castillo 
//E-mail:JAntonioDeSantiago@gmail.com
//Web: www.DotNumerics.com
//
#endregion

using System;
using System.Collections.Generic;
using System.Text;
using System.Diagnostics;
using System.IO;
using DotNumerics.FortranLibrary;

namespace DotNumerics.LinearAlgebra
{
    /// <summary>
    /// Represents a Complex Vector.
    /// </summary>
    [DebuggerDisplay(": {Type} , Length : {Length}", Name = "vector")]
    [DebuggerTypeProxy(typeof(VectorComplexDebuggerDisplay))]
    public class ComplexVector
    {

        #region Fields
        /// <summary>
        /// Los datos del vector
        /// </summary>
        [DebuggerBrowsable(DebuggerBrowsableState.Never)]
        protected Complex[] _Data;

        /// <summary>
        /// El tipo de vector.
        /// </summary>
        [DebuggerBrowsable(DebuggerBrowsableState.Never)]
        protected VectorType _Type = VectorType.Column;

        #endregion

        #region Constructor

        /// <summary>
        /// Initializes a new instance of the VectorComplex class of the given size.
        /// </summary>
        /// <param name="length">The vector length</param>
        public ComplexVector(int length) : this(VectorType.Column, length) { }

        /// <summary>
        /// Initializes a new instance of the Vector class of the given size and type.
        /// </summary>
        /// <param name="type">The vector type</param>
        /// <param name="length">length">The vector length</param>
        public ComplexVector(VectorType type, int length)
        {
            if (length < 1) throw new System.ArgumentException("length < 1");
            this._Type = type;
            this._Data = new Complex[length];
        }

        /// <summary>
        /// Initializes a new instance of the Vector class that contains elements 
        /// copied from the specified array.
        /// </summary>
        /// <param name="data">The array whose elements are copied to the vector.</param>
        public ComplexVector(Complex[] data) : this(VectorType.Column, data) { }

        /// <summary>
        /// Initializes a new instance of the Vector class that contains elements
        /// copied from the specified array.
        /// </summary>
        /// <param name="type">The vector type</param>
        /// <param name="data">The array whose elements are copied to the vector.</param>
        public ComplexVector(VectorType type, Complex[] data)
        {
            if (data.Length < 1) throw new System.ArgumentException("data.Length < 1");
            this._Type = type;
            this._Data = new Complex[data.Length];

            data.CopyTo(this._Data, 0);

            //for (int i = 0; i < data.Length; i++)
            //{
            //    this.MeData[i] = data[i];
            //}
        }

        #endregion

        #region Public Properties

        /// <summary>
        /// Los datos del vector
        /// </summary>
        [DebuggerBrowsable(DebuggerBrowsableState.Never)]
        internal Complex[] Data
        {
            get { return this._Data; }
        }

        /// <summary>
        /// Returns the number of rows.
        /// </summary>
        [DebuggerBrowsable(DebuggerBrowsableState.Never)]
        public int Length
        {
            get { return this._Data.Length; }
        }

        public VectorType Type
        {
            get { return this._Type; }
            set { this._Type = value; }
        }

        /// <summary>
        /// Gets or sets the element at the specified index.
        /// </summary>
        /// <param name="index">The zero-based index of the element to get or set.</param>
        /// <returns>The element at the specified index.</returns>
        public virtual Complex this[int index]
        {
            get
            {
                return this._Data[index];
            }
            set
            {
                this._Data[index] = value;
            }
        }

        #endregion

        #region Operators

        /// <summary>
        /// Vector addition.
        /// </summary>
        /// <param name="A">The left side vector of the addition operator.</param>
        /// <param name="B">The right side vector of the addition operator.</param>
        /// <returns>A vector that represents the result of the addition.</returns>
        public static ComplexVector operator +(ComplexVector A, ComplexVector B)
        {
            return A.Add(B);
        }


        /// <summary>
        /// Unary minus.
        /// </summary>
        /// <param name="v">The vector.</param>
        /// <returns>Vector r[i] = -this[i]</returns>
        public static ComplexVector operator -(ComplexVector v)
        {
            return v.UnaryMinus();
        }


        /// <summary>
        /// Vector subtraction.
        /// </summary>
        /// <param name="A"> The left side vector of the subtraction operator.</param>
        /// <param name="B">The right side vector of the subtraction operator.</param>
        /// <returns>A vector that represents the result of the vector subtraction.</returns>
        public static ComplexVector operator -(ComplexVector A, ComplexVector B)
        {
            return A.Subtract(B);
        }

        /// <summary>
        /// Scalar-Vector multiplication.
        /// </summary>
        /// <param name="c"> The left side complex number of the multiplication operator.</param>
        /// <param name="A">The right side vector of the multiplication operator.</param>
        /// <returns>A vector that represents the result of the multiplication.</returns>
        public static ComplexVector operator *(Complex c, ComplexVector A)
        {
            return A.Multiply(c);
        }

        /// <summary>
        /// Vector-Scalar multiplication.
        /// </summary>
        /// <param name="A">The left side vector of the multiplication operator.</param>
        /// <param name="c"> The right side complex number of the multiplication operator.</param>
        /// <returns>A vector that represents the result of the multiplication.</returns>
        public static ComplexVector operator *(ComplexVector A, Complex c)
        {
            return A.Multiply(c);
        }

        ///// <summary>Vector multiplication.</summary>
        //public static Complex operator *(VectorComplex A, VectorComplex B)
        //{
        //    if (A.Type != VectorType.Row || B.Type != VectorType.Column  || B.Length != A.Length)
        //    {
        //        throw new System.ArgumentException("Vector dimensions or type are not valid.");
        //    }

        //    Complex C = new Complex(0.0, 0.0);

        //    Complex[] AData = A.Data;
        //    Complex[] BData = B.Data;

        //    for (int i = 0; i < AData.Length; i++)
        //    {
        //        C += AData[i] * BData[i];
        //    }

        //    return C;
        //}

        ///// <summary>
        ///// The dot product
        ///// </summary>
        ///// <param name="A"></param>
        ///// <returns>The dot product of A.</returns>
        //public static double DotProduct(Vector A )
        //{
        //    double C = 0.0;
        //    double[] AData = A.Data;
        //    for (int i = 0; i < AData.Length; i++)
        //    {
        //        C += AData[i] * AData[i];
        //    }
        //    return C;
        //}

        /// <summary>
        /// Transposed vector.
        /// </summary>
        /// <returns></returns>
        public ComplexVector Transpose()
        {
            ComplexVector AT = new ComplexVector(this._Data);

            if (this._Type == VectorType.Column) AT.Type = VectorType.Row;
            else AT.Type = VectorType.Column;

            return AT;
        }

        ///// <summary>Matrix- Vector multiplication.</summary>
        //public static MatrixComplex operator *(MatrixComplex A, VectorComplex B)
        //{

        //    int BRows;
        //    int BColumns;

        //    if (B.Type == VectorType.Column)
        //    {
        //        BColumns = 1;
        //        BRows = B.Length;
        //    }
        //    else
        //    {
        //        BColumns = B.Length;
        //        BRows = 1;
        //    }



        //    if (BRows != A.Columns)
        //    {
        //        throw new System.ArgumentException("Matrix dimensions are not valid.");
        //    }

        //    MatrixComplex C = new MatrixComplex(A.Rows, BColumns);

        //    Complex[] AData = A.Data;
        //    Complex[] BData = B.Data;
        //    Complex[] CData = C.Data;

        //    int ARows = A.Rows;
        //    int AColumns = A.Columns;


        //    Complex Sum;
        //    for (int j = 0; j < BColumns; j++)
        //    {
        //        for (int i = 0; i < ARows; i++)
        //        {
        //            Sum = new Complex(0.0, 0.0);
        //            for (int k = 0; k < AColumns; k++)
        //            {
        //                Sum += AData[i + k * ARows] * BData[k + j * BRows];
        //            }
        //            CData[i + j * ARows] = Sum;
        //        }
        //    }
        //    return C;
        //}


        ///// <summary>Matrix- Vector multiplication.</summary>
        //public static MatrixComplex operator *(VectorComplex A, MatrixComplex B)
        //{

        //    int ARows;
        //    int AColumns;

        //    if (A.Type == VectorType.Column)
        //    {
        //        AColumns = 1;
        //        ARows = A.Length;
        //    }
        //    else
        //    {
        //        AColumns = A.Length;
        //        ARows = 1;
        //    }



        //    if (B.Rows != AColumns)
        //    {
        //        throw new System.ArgumentException("Matrix dimensions are not valid.");
        //    }

        //    MatrixComplex C = new MatrixComplex(ARows, B.Columns);

        //    Complex[] AData = A.Data;
        //    Complex[] BData = B.Data;
        //    Complex[] CData = C.Data;

        //    int BRows = B.Rows;
        //    int BColumns = B.Columns;


        //    Complex Sum;
        //    for (int j = 0; j < BColumns; j++)
        //    {
        //        for (int i = 0; i < ARows; i++)
        //        {
        //            Sum = new Complex(0.0, 0.0);
        //            for (int k = 0; k < AColumns; k++)
        //            {
        //                Sum += AData[i + k * ARows] * BData[k + j * BRows];
        //            }
        //            CData[i + j * ARows] = Sum;
        //        }
        //    }
        //    return C;
        //}

        #endregion


        /// <summary>
        /// Implicit Vector to Matrix conversion.
        /// </summary>
        /// <param name="V">The Vector</param>
        /// <returns>The Matrix.</returns>
        public static implicit operator ComplexMatrix(ComplexVector V)
        {
            ComplexMatrix NewMatrix;
            if (V.Type == VectorType.Column)
            {
                NewMatrix = new ComplexMatrix(V.Length, 1, V.Data); 
            }
            else
            {
                NewMatrix = new ComplexMatrix(1, V.Length, V.Data);
            }
            return NewMatrix;
        }

        #region Public Methods


        #region Add

        /// <summary>
        /// Add a complex number to all elements of this vector.
        /// </summary>
        /// <param name="c">The complex number.</param>
        /// <returns>
        /// VectorComplex r[i] = this[i] + c
        /// </returns>
        public ComplexVector Add(Complex c)
        {
            ComplexVector v = new ComplexVector(this._Type, this._Data.Length);
            Complex[] vData = v.Data;
            for (int i = 0; i < vData.Length; i++)
            {
                vData[i] = this._Data[i] + c;
            }

            return v;
        }

        /// <summary>
        /// In place add a scalar to all elements of this vector.
        /// </summary>
        /// <param name="c">The complex number.</param>
        public void AddInplace(Complex c)
        {
            for (int i = 0; i < this._Data.Length; i++)
            {
                this._Data[i] += c;
            }
        }


        /// <summary>
        /// Add a VectorComplex.
        /// </summary>
        /// <param name="B">The vector B.</param>
        /// <returns>
        /// VectorComplex r[i] = this[i] + B[i]
        /// </returns>
        public ComplexVector Add(ComplexVector B)
        {
            if (B.Type != this.Type || B.Length != this.Length)
            {
                throw new System.ArgumentException("Vector dimensions or type are not valid.");
            }

            ComplexVector r = new ComplexVector(this._Type, this.Length);
            Complex[] rData = r.Data;
            for (int i = 0; i < rData.Length; i++)
            {
                rData[i] = this._Data[i] + B[i];
            }

            return r;
        }

        /// <summary>
        /// In place add a VectorComplex.
        /// </summary>
        /// <param name="B">The vector B.</param>
        public void AddInplace(ComplexVector B)
        {
            if (B.Type != this.Type || B.Length != this.Length)
            {
                throw new System.ArgumentException("Vector dimensions or type are not valid.");
            }

            for (int i = 0; i < this._Data.Length; i++)
            {
                this._Data[i] += B[i];
            }

        }

        #endregion



        #region Subtract

        /// <summary>
        /// Subtract a scalar to all elements of this vector.
        /// </summary>
        /// <param name="c">The complex number.</param>
        /// <returns>
        /// VectorComplex r[i] = this[i] - c
        /// </returns>
        public ComplexVector Subtract(Complex c)
        {
            ComplexVector v = new ComplexVector(this._Type, this.Length);
            Complex[] vData = v.Data;
            for (int i = 0; i < vData.Length; i++)
            {
                vData[i] = this._Data[i] - c;
            }

            return v;
        }

        /// <summary>
        /// In place subtract a scalar to all elements of this vector.
        /// </summary>
        /// <param name="c">The complex number.</param>
        public void SubtractInplace(Complex c)
        {
            for (int i = 0; i < this._Data.Length; i++)
            {
                this._Data[i] -= c;
            }
        }


        /// <summary>
        /// Subtract a VectorComplex.
        /// </summary>
        /// <param name="B">The vector B.</param>
        /// <returns>
        /// VectorComplex r[i] = this[i] - B[i]
        /// </returns>
        public ComplexVector Subtract(ComplexVector B)
        {
            if (B.Type != this.Type || B.Length != this.Length)
            {
                throw new System.ArgumentException("Vector dimensions or type are not valid.");
            }

            ComplexVector r = new ComplexVector(this._Type, this.Length);
            Complex[] rData = r.Data;
            for (int i = 0; i < rData.Length; i++)
            {
                rData[i] = this._Data[i] - B[i];
            }

            return r;
        }

        /// <summary>
        /// In place add a VectorComplex.
        /// </summary>
        /// <param name="B">The vector B.</param>
        public void SubtractInplace(ComplexVector B)
        {
            if (B.Type != this.Type || B.Length != this.Length)
            {
                throw new System.ArgumentException("Vector dimensions or type are not valid.");
            }

            for (int i = 0; i < this._Data.Length; i++)
            {
                this._Data[i] -= B[i];
            }

        }

        #endregion


        #region Multiply


        /// <summary>
        /// Multiply a scalar to all elements of this vector.
        /// </summary>
        /// <param name="c">The complex number.</param>
        /// <returns>
        /// VectorComplex r[i] = this[i] * c
        /// </returns>
        public ComplexVector Multiply(Complex c)
        {
            ComplexVector v = new ComplexVector(this._Type, this.Length);
            Complex[] vData = v.Data;
            for (int i = 0; i < vData.Length; i++)
            {
                vData[i] = this._Data[i] * c;
            }

            return v;
        }


        /// <summary>
        /// In place multiply this vector with a scalar.
        /// </summary>
        /// <param name="scalar">The scalar </param>
        public void MultiplyInplace(Complex scalar)
        {
            for (int i = 0; i < this._Data.Length; i++)
            {
                this._Data[i] *= scalar;
            }
        }

        #endregion


        #region UnaryMinus

        /// <summary>
        /// Unary minus this vector.
        /// </summary>
        /// <returns>
        /// Vector r[i] = -this[i]
        /// </returns>
        public ComplexVector UnaryMinus()
        {
            ComplexVector v = new ComplexVector(this._Type, this.Length);
            Complex[] vData = v.Data;
            for (int i = 0; i < vData.Length; i++)
            {
                vData[i] -= this._Data[i];
            }

            return v;
        }

        /// <summary>
        /// In place unary minus of this vector.
        /// </summary>
        public void UnaryMinusInplace()
        {
            for (int i = 0; i < this._Data.Length; i++)
            {
                this._Data[i] = -this._Data[i];
            }
        }


        #endregion

        #region Conjugate

        /// <summary>
        /// Conjugate this vector.
        /// </summary>
        /// <returns>
        /// Vector r[i] = Real(this[i]) - Imaginary(this[i])
        /// </returns>
        public ComplexVector Conjugate()
        {
            ComplexVector conjVect= new ComplexVector(this._Data.Length);

            Complex[] v = conjVect.Data;
            for (int i = 0; i < v.Length; i++)
            {
                v[i] = this._Data[i].Conjugate;
            }

            return conjVect;
        }

        /// <summary>
        /// In place conjugation of this vector.
        /// </summary>
        public void ConjugateInplace()
        {
            for (int i = 0; i < this._Data.Length; i++)
            {
                this._Data[i] = this._Data[i].Conjugate;
            }
        }


        #endregion


        /// <summary>
        /// Calculate the 1-norm of the vector.
        /// </summary>
        /// <returns>
        /// r = sum(abs(this[i]))
        /// </returns>
        public double Norm1()
        {
            double sum = 0;
            for (int i = 0; i < this._Data.Length; i++)
            {
                sum += this._Data[i].Modulus;
            }

            return sum;
        }


        ///// <summary>
        ///// Calculate the norm of the vector
        ///// </summary>
        ///// <returns>The norm</returns>
        //public double Norm()
        //{
        //    double norm = Vector.DotProduct(this);
        //    norm = Math.Sqrt(norm);
        //    return norm;
        //}


        /// <summary>
        /// Returns the equivalent string representation of the vector.
        /// </summary>
        /// <returns>The string representation of the vector.</returns>
        public string VectorToString()
        {
            using (StringWriter writer = new StringWriter())
            {
                if (this._Type == VectorType.Column)
                {
                    for (int i = 0; i < this._Data.Length; i++)
                    {
                        writer.Write(this._Data[i]);
                        if (i < this._Data.Length - 1) writer.WriteLine();
                    }
                }
                else if (this._Type == VectorType.Row)
                {
                    for (int i = 0; i < this._Data.Length; i++)
                    {
                        if (i < this._Data.Length - 1)
                            writer.Write(this._Data[i] + ", ");
                        else
                            writer.Write(this._Data[i]);
                    }
                }
                return writer.ToString();
            }
        }


        #endregion

    }
}