File size: 8,715 Bytes
b1b3bae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
#region Copyright � 2009, De Santiago-Castillo JA. All rights reserved.
//Copyright � 2009 Jose Antonio De Santiago-Castillo
//E-mail:JAntonioDeSantiago@gmail.com
//Web: www.DotNumerics.com
//
#endregion
using System;
using System.Collections.Generic;
using System.Text;
using System.Diagnostics;
namespace DotNumerics.LinearAlgebra
{
/// <summary>
/// Represents a general Matrix.
/// </summary>
public sealed class Matrix : BaseMatrix
{
#region Public Constructors
/// <summary>
/// Initializes a new instance of the Matrix class of the given size.
/// </summary>
/// <param name="size">Size</param>
public Matrix(int size) : base(size) { }
/// <summary>
/// Initializes a new instance of the Matrix class of the given size.
/// </summary>
/// <param name="rows">Number of rows.</param>
/// <param name="columns">Number of columns.</param>
public Matrix(int rows, int columns) : base(rows, columns) { }
/// <summary>
/// Initializes a new instance of the Matrix class using a array.
/// </summary>
/// <param name="data">The data of the matrix.</param>
public Matrix(double[,] data)
: base(data.GetLength(0), data.GetLength(1))
{
for (int column = 0; column < base._ColumnCount; column++)
{
for (int row = 0; row < base._RowCount; row++)
{
this._Data[row + column * this._RowCount] = data[row, column];
}
}
}
/// <summary>
/// Initializes a new instance of the Matrix class of the given size using a array.
/// </summary>
/// <param name="rows">Number of rows.</param>
/// <param name="columns">Number of columns.</param>
/// <param name="Data">The data, the data is copied.</param>
internal Matrix(int rows, int columns, double[] Data) : base(rows, columns, Data) { }
#endregion
#region Public Methods
/// <summary>
/// In place addition A=A+B
/// </summary>
/// <param name="B">The Matrix</param>
public void AddInplace(BaseMatrix B)
{
base.CheckMatrixDimensions(B);
double[] BData = B.Data;
for (int i = 0; i < this._Data.Length; i++)
{
this._Data[i] += BData[i];
}
}
/// <summary>
/// In place matrix subtraction, A=A-B
/// </summary>
/// <param name="B">The Matrix</param>
public void SubtractInplace(BaseMatrix B)
{
CheckMatrixDimensions(B);
double[] BData = B.Data;
for (int i = 0; i < this._Data.Length; i++)
{
this._Data[i] -= BData[i];
}
}
/// <summary>
/// Unary minus.
/// </summary>
/// <returns> -this</returns>
public Matrix UnaryMinus()
{
Matrix C= new Matrix(this._RowCount, this._ColumnCount);
double[] dataC=C.Data;
for (int i = 0; i < this._Data.Length; i++)
{
dataC[i] = -this._Data[i];
}
return C;
}
#endregion
#region Overloading Operators
#region Matrix-Matrix Addition
/// <summary>
/// Matrix addition.
/// </summary>
/// <param name="A">The left side matrix of the addition operator.</param>
/// <param name="B">The right side matrix of the addition operator.</param>
/// <returns>A matrix that represents the result of the matrix addition.</returns>
public static Matrix operator +(Matrix A, Matrix B)
{
return A.Add(B);
}
#endregion
#region Matrix-Matrix Subtraction
///// <summary>Matrix Subtraction</summary>
/// <summary>
/// Matrix subtraction.
/// </summary>
/// <param name="A"> The left side matrix of the subtraction operator.</param>
/// <param name="B">The right side matrix of the subtraction operator.</param>
/// <returns>A matrix that represents the result of the matrix subtraction.</returns>
public static Matrix operator -(Matrix A, Matrix B)
{
return A.Subtract(B);
}
/// <summary>
/// Unary minus.
/// </summary>
/// <param name="A"> The Matric.</param>
/// <returns>Matrix r[i] = -this[i]</returns>
public static Matrix operator -(Matrix A)
{
return A.UnaryMinus();
}
#endregion
#region Scalar-Matrix Multiplication
/// <summary>
/// Scalar-Matrix multiplication.
/// </summary>
/// <param name="s"> The left side scalar of the multiplication operator.</param>
/// <param name="A">The right side matrix of the multiplication operator.</param>
/// <returns>A matrix that represents the result of the multiplication.</returns>
public static Matrix operator *(double s, Matrix A)
{
return A.Multiply(s);
}
/// <summary>
/// Scalar-Matrix multiplication.
/// </summary>
/// <param name="A">The right side matrix of the multiplication operator.</param>
/// <param name="s"> The left side scalar of the multiplication operator.</param>
/// <returns>A matrix that represents the result of the multiplication.</returns>
public static Matrix operator *(Matrix A, double s)
{
return A.Multiply(s);
}
internal static void MultiplicationSM(double s, double[] A, double[] C)
{
for (int i = 0; i < C.Length; i++)
{
C[i] = s * A[i];
}
}
#endregion
#endregion
#region Public Methods
//public double this[int row, int column]
//{
// get
// {
// return this.MeData[row - 1 + (column - 1) * this.MeRowCount];
// }
// set
// {
// this.MeData[row - 1 + (column - 1) * this.MeRowCount] = value;
// }
//}
/// <summary>
/// Creates a copy of the matrix.
/// </summary>
/// <returns>The copy of the Matrix.</returns>
public Matrix Clone()
{
Matrix NewMatrix = new Matrix(this._RowCount, this._ColumnCount, this._Data);
return NewMatrix;
}
#region Static methods
/// <summary>Generate a matrix with random elements</summary>
/// <param name="rows">Number of rows.</param>
/// <param name="columns">Number of columns.</param>
/// <returns>An m-by-n matrix with uniformly distributed
/// random elements in <c>[0, 1)</c> interval.</returns>
public static Matrix Random(int rows, int columns)
{
System.Random random = new System.Random();
Matrix X = new Matrix(rows, columns);
double[] XData = X.Data;
for (int i = 0; i < XData.Length; i++)
{
XData[i] = random.NextDouble();
}
return X;
}
/// <summary>Generate a matrix with random elements</summary>
/// <param name="rows">Number of rows.</param>
/// <param name="columns">Number of columns.</param>
/// <param name="Seed">
/// A number used to calculate a starting value for the pseudo-random number
/// sequence. If a negative number is specified, the absolute value of the number
/// is used.
/// </param>
/// <returns>
/// An m-by-n matrix with uniformly distributed
/// random elements in <c>[0, 1)</c> interval.
/// </returns>
public static Matrix Random(int rows, int columns, int Seed)
{
System.Random random = new System.Random(Seed);
Matrix X = new Matrix(rows, columns);
double[] XData = X.Data;
for (int i = 0; i < XData.Length; i++)
{
XData[i] = random.NextDouble();
}
return X;
}
#endregion
#endregion
}
}
|