File size: 7,298 Bytes
b1b3bae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
#region Copyright � 2009, De Santiago-Castillo JA. All rights reserved.

//Copyright � 2009 Jose Antonio De Santiago-Castillo 
//E-mail:JAntonioDeSantiago@gmail.com
//Web: www.DotNumerics.com
//
#endregion

using System;
using System.Collections.Generic;
using System.Text;
using System.Diagnostics;

//A general tridiagonal matrix is a matrix whose nonzero elements are found only on the diagonal, subdiagonal, and superdiagonal of the matrix; that is: 
//aij = 0    if |i-j| > 1 

namespace DotNumerics.LinearAlgebra
{
    /// <summary>
    /// Represents a Tridiagonal Matrix.
    /// </summary>
    public sealed class TridiagonalMatrix : BaseMatrix
    {
        #region  Public Constructors

        /// <summary>
        /// Initializes a new instance of the TridiagonalMatrix class of the given size.
        /// </summary>
        /// <param name="size">Size</param>
        public TridiagonalMatrix(int size) : base(size) { }

        /// <summary>
        /// Initializes a new instance of the TridiagonalMatrix class of the given size using a array
        /// </summary>
        /// <param name="size">Size</param>
        /// <param name="Data">The data</param>
        internal TridiagonalMatrix(int size, double[] Data) : base(size, Data) { }

        #endregion


        #region Public Methods

        public override double this[int row, int column]
        {
            get
            {
                if (column >= this._ColumnCount)
                {
                    throw new ArgumentException("Index was outside the bounds of the matrix.");
                }
                return this._Data[row + column * this._RowCount];
            }
            set
            {
                if (column >= this._ColumnCount)
                {
                    throw new ArgumentException("Index was outside the bounds of the matrix.");
                }
                //aij = 0    if |i-j| > 1 
                if (Math.Abs(row - column) <= 1)
                {
                    this._Data[row + column * this._RowCount] = value;
                }
            }
        }


        internal void GetPackedMatrix(out double[] SubDiagonal, out double[] SuperDiagonal, out double[] Diagonal)
        {
            Diagonal = new double[this._RowCount];
            SubDiagonal = new double[this._RowCount - 1];
            SuperDiagonal = new double[this._RowCount - 1];

            //Para la diagonal
            for (int i = 0; i < this._RowCount; i++)
            {
                Diagonal[i] = this._Data[i + i * this._RowCount];
            }

            //Para la SubDiagonal
            for (int i = 0; i < this._RowCount - 1; i++)
            {
                SubDiagonal[i] = this._Data[i + 1 + i * this._RowCount];
            }

            //Para la SuperDiagonal
            for (int i = 0; i < this._RowCount - 1; i++)
            {
                SuperDiagonal[i] = this._Data[i + (i + 1) * this._RowCount];
            }
        }

        public TridiagonalMatrix Clone()
        {
            TridiagonalMatrix NewMatrix = new TridiagonalMatrix(this._RowCount, this._Data);
            return NewMatrix;
        }



        #region Static methods


        /// <summary>Generate a TridiagonalMatrix with random elements</summary>
        /// <param name="size">Size</param>
        public static TridiagonalMatrix Random(int size)
        {
            System.Random random = new System.Random();

            TridiagonalMatrix X = new TridiagonalMatrix(size);

            double[] XData = X.Data;

            for (int j = 0; j < X.ColumnCount; j++)
            {
                for (int i = 0; i < X.RowCount; i++)
                {
                    X[i, j] = random.NextDouble();
                }
            }
            return X;
        }

        #endregion

        #endregion

        #region Overloading Operators

        /// <summary>
        /// Matrix addition.
        /// </summary>
        /// <param name="A">The left side matrix of the addition operator.</param>
        /// <param name="B">The right side matrix of the addition operator.</param>
        /// <returns>A matrix that represents the result of the matrix addition.</returns>
        public static TridiagonalMatrix operator +(TridiagonalMatrix A, TridiagonalMatrix B)
        {
            if (B.RowCount != A.RowCount || B.ColumnCount != A.ColumnCount)
            {
                throw new System.ArgumentException("Matrix dimensions are not valid.");
            }

            TridiagonalMatrix C = new TridiagonalMatrix(A.RowCount);

            double[] AData = A.Data;
            double[] BData = B.Data;
            double[] CData = C.Data;

            for (int i = 0; i < AData.Length; i++)
            {
                CData[i] = AData[i] + BData[i];
            }

            return C;
        }

        /// <summary>
        /// Matrix subtraction.
        /// </summary>
        /// <param name="A"> The left side matrix of the subtraction operator.</param>
        /// <param name="B">The right side matrix of the subtraction operator.</param>
        /// <returns>A matrix that represents the result of the matrix subtraction.</returns>
        public static TridiagonalMatrix operator -(TridiagonalMatrix A, TridiagonalMatrix B)
        {
            if (B.RowCount != A.RowCount || B.ColumnCount != A.ColumnCount)
            {
                throw new System.ArgumentException("Matrix dimensions are not valid.");
            }

            TridiagonalMatrix C = new TridiagonalMatrix(A.RowCount);

            double[] AData = A.Data;
            double[] BData = B.Data;
            double[] CData = C.Data;

            for (int i = 0; i < AData.Length; i++)
            {
                CData[i] = AData[i] - BData[i];
            }

            return C;
        }

        #region Scalar-Matrix Multiplication

        /// <summary>
        /// Scalar-Matrix multiplication.
        /// </summary>
        /// <param name="s"> The left side scalar of the multiplication operator.</param>
        /// <param name="A">The right side matrix of the multiplication operator.</param>
        /// <returns>A matrix that represents the result of the multiplication.</returns>
        public static TridiagonalMatrix operator *(double s, TridiagonalMatrix A)
        {
            TridiagonalMatrix C = new TridiagonalMatrix(A.RowCount);

            double[] AData = A.Data;
            double[] CData = C.Data;


            Matrix.MultiplicationSM(s, AData, CData);

            return C;
        }

        #endregion

        /// <summary>
        /// Implicit TridiagonalMatrix to Matrix conversion.
        /// </summary>
        /// <param name="tridiagonal"> The TridiagonalMatrix.</param>
        /// <returns>The Matrix.</returns>
        public static implicit operator Matrix(TridiagonalMatrix tridiagonal)
        {
            Matrix NewMatrix = new Matrix(tridiagonal.RowCount, tridiagonal.ColumnCount, tridiagonal.Data);
            return NewMatrix;
        }


        #endregion

    }
}