File size: 7,298 Bytes
b1b3bae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
#region Copyright � 2009, De Santiago-Castillo JA. All rights reserved.
//Copyright � 2009 Jose Antonio De Santiago-Castillo
//E-mail:JAntonioDeSantiago@gmail.com
//Web: www.DotNumerics.com
//
#endregion
using System;
using System.Collections.Generic;
using System.Text;
using System.Diagnostics;
//A general tridiagonal matrix is a matrix whose nonzero elements are found only on the diagonal, subdiagonal, and superdiagonal of the matrix; that is:
//aij = 0 if |i-j| > 1
namespace DotNumerics.LinearAlgebra
{
/// <summary>
/// Represents a Tridiagonal Matrix.
/// </summary>
public sealed class TridiagonalMatrix : BaseMatrix
{
#region Public Constructors
/// <summary>
/// Initializes a new instance of the TridiagonalMatrix class of the given size.
/// </summary>
/// <param name="size">Size</param>
public TridiagonalMatrix(int size) : base(size) { }
/// <summary>
/// Initializes a new instance of the TridiagonalMatrix class of the given size using a array
/// </summary>
/// <param name="size">Size</param>
/// <param name="Data">The data</param>
internal TridiagonalMatrix(int size, double[] Data) : base(size, Data) { }
#endregion
#region Public Methods
public override double this[int row, int column]
{
get
{
if (column >= this._ColumnCount)
{
throw new ArgumentException("Index was outside the bounds of the matrix.");
}
return this._Data[row + column * this._RowCount];
}
set
{
if (column >= this._ColumnCount)
{
throw new ArgumentException("Index was outside the bounds of the matrix.");
}
//aij = 0 if |i-j| > 1
if (Math.Abs(row - column) <= 1)
{
this._Data[row + column * this._RowCount] = value;
}
}
}
internal void GetPackedMatrix(out double[] SubDiagonal, out double[] SuperDiagonal, out double[] Diagonal)
{
Diagonal = new double[this._RowCount];
SubDiagonal = new double[this._RowCount - 1];
SuperDiagonal = new double[this._RowCount - 1];
//Para la diagonal
for (int i = 0; i < this._RowCount; i++)
{
Diagonal[i] = this._Data[i + i * this._RowCount];
}
//Para la SubDiagonal
for (int i = 0; i < this._RowCount - 1; i++)
{
SubDiagonal[i] = this._Data[i + 1 + i * this._RowCount];
}
//Para la SuperDiagonal
for (int i = 0; i < this._RowCount - 1; i++)
{
SuperDiagonal[i] = this._Data[i + (i + 1) * this._RowCount];
}
}
public TridiagonalMatrix Clone()
{
TridiagonalMatrix NewMatrix = new TridiagonalMatrix(this._RowCount, this._Data);
return NewMatrix;
}
#region Static methods
/// <summary>Generate a TridiagonalMatrix with random elements</summary>
/// <param name="size">Size</param>
public static TridiagonalMatrix Random(int size)
{
System.Random random = new System.Random();
TridiagonalMatrix X = new TridiagonalMatrix(size);
double[] XData = X.Data;
for (int j = 0; j < X.ColumnCount; j++)
{
for (int i = 0; i < X.RowCount; i++)
{
X[i, j] = random.NextDouble();
}
}
return X;
}
#endregion
#endregion
#region Overloading Operators
/// <summary>
/// Matrix addition.
/// </summary>
/// <param name="A">The left side matrix of the addition operator.</param>
/// <param name="B">The right side matrix of the addition operator.</param>
/// <returns>A matrix that represents the result of the matrix addition.</returns>
public static TridiagonalMatrix operator +(TridiagonalMatrix A, TridiagonalMatrix B)
{
if (B.RowCount != A.RowCount || B.ColumnCount != A.ColumnCount)
{
throw new System.ArgumentException("Matrix dimensions are not valid.");
}
TridiagonalMatrix C = new TridiagonalMatrix(A.RowCount);
double[] AData = A.Data;
double[] BData = B.Data;
double[] CData = C.Data;
for (int i = 0; i < AData.Length; i++)
{
CData[i] = AData[i] + BData[i];
}
return C;
}
/// <summary>
/// Matrix subtraction.
/// </summary>
/// <param name="A"> The left side matrix of the subtraction operator.</param>
/// <param name="B">The right side matrix of the subtraction operator.</param>
/// <returns>A matrix that represents the result of the matrix subtraction.</returns>
public static TridiagonalMatrix operator -(TridiagonalMatrix A, TridiagonalMatrix B)
{
if (B.RowCount != A.RowCount || B.ColumnCount != A.ColumnCount)
{
throw new System.ArgumentException("Matrix dimensions are not valid.");
}
TridiagonalMatrix C = new TridiagonalMatrix(A.RowCount);
double[] AData = A.Data;
double[] BData = B.Data;
double[] CData = C.Data;
for (int i = 0; i < AData.Length; i++)
{
CData[i] = AData[i] - BData[i];
}
return C;
}
#region Scalar-Matrix Multiplication
/// <summary>
/// Scalar-Matrix multiplication.
/// </summary>
/// <param name="s"> The left side scalar of the multiplication operator.</param>
/// <param name="A">The right side matrix of the multiplication operator.</param>
/// <returns>A matrix that represents the result of the multiplication.</returns>
public static TridiagonalMatrix operator *(double s, TridiagonalMatrix A)
{
TridiagonalMatrix C = new TridiagonalMatrix(A.RowCount);
double[] AData = A.Data;
double[] CData = C.Data;
Matrix.MultiplicationSM(s, AData, CData);
return C;
}
#endregion
/// <summary>
/// Implicit TridiagonalMatrix to Matrix conversion.
/// </summary>
/// <param name="tridiagonal"> The TridiagonalMatrix.</param>
/// <returns>The Matrix.</returns>
public static implicit operator Matrix(TridiagonalMatrix tridiagonal)
{
Matrix NewMatrix = new Matrix(tridiagonal.RowCount, tridiagonal.ColumnCount, tridiagonal.Data);
return NewMatrix;
}
#endregion
}
}
|