File size: 4,613 Bytes
b1b3bae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
Public Class BFGSBMinimizer

    Public Property Tolerance As Double = 0.0001

    Public Property MaxIterations As Integer = 1000

    Public Property ReturnLowestObjFuncValue As Boolean = True

    Private _Iterations As Integer = 0

    Private fxb As Func(Of Double(), Double)

    Private fxg As Func(Of Double(), Double())

    Private _error As Double

    Private objval, objval0 As Double

    Public ReadOnly Property Iterations As Integer
        Get
            Return _Iterations
        End Get
    End Property

    Sub New()

    End Sub

    Public Shared Function FindRoots(functionbody As Func(Of Double(), Double), vars As Double(), maxits As Integer, tol As Double,
                                     Optional lbounds As Double() = Nothing, Optional ubounds As Double() = Nothing) As Double()

        Dim bfgsb As New BFGSBMinimizer
        bfgsb.Tolerance = tol
        bfgsb.MaxIterations = maxits

        Return bfgsb.Solve(functionbody, Nothing, vars, lbounds, ubounds)

    End Function


    ''' <summary>
    ''' Minimizes a function value using IPOPT solver.
    ''' </summary>
    ''' <param name="functionbody">f(x) where x is a vector of doubles, returns the value of the function.</param>
    ''' <param name="functiongradient">Optional. g(x) where x is a vector of doubles, returns the value of the gradient of the function with respect to each variable.</param>
    ''' <param name="vars">initial values for x</param>
    ''' <param name="lbounds">lower bounds for x</param>
    ''' <param name="ubounds">upper bounds for x</param>
    ''' <returns>vector of variables corresponding to the function's minimum value.</returns>
    Public Function Solve(functionbody As Func(Of Double(), Double), functiongradient As Func(Of Double(), Double()), vars As Double(), Optional lbounds As Double() = Nothing, Optional ubounds As Double() = Nothing) As Double()

        _Iterations = 0

        Dim obj As Double = 0.0#

        fxb = functionbody
        fxg = functiongradient

        If functiongradient Is Nothing Then
            fxg = Function(xv)
                      Return FunctionGradientInternal(xv)
                  End Function
        Else
            fxg = functiongradient
        End If

        If lbounds Is Nothing Then
            lbounds = vars.Clone()
            For i As Integer = 0 To lbounds.Length - 1
                lbounds(i) = -1.0E+19
            Next
        End If

        If ubounds Is Nothing Then
            ubounds = vars.Clone()
            For i As Integer = 0 To ubounds.Length - 1
                ubounds(i) = 1.0E+19
            Next
        End If

        Dim slv As New MathNet.Numerics.Optimization.BfgsBMinimizer(Tolerance, Tolerance, Tolerance, MaxIterations)

        Dim objf = MathNet.Numerics.Optimization.ObjectiveFunction.Gradient(Function(xvec)
                                                                                Return fxb.Invoke(xvec.ToArray())
                                                                            End Function, Function(xvec)
                                                                                              Return New MathNet.Numerics.LinearAlgebra.[Double].DenseVector(fxg.Invoke(xvec.ToArray()))
                                                                                          End Function)

        Dim solution = slv.FindMinimum(objf, New MathNet.Numerics.LinearAlgebra.[Double].DenseVector(lbounds),
                                                           New MathNet.Numerics.LinearAlgebra.[Double].DenseVector(ubounds),
                                                           New MathNet.Numerics.LinearAlgebra.[Double].DenseVector(vars))

        vars = solution.MinimizingPoint.ToArray()

        Return vars

    End Function

    Private Function FunctionGradientInternal(ByVal x() As Double) As Double()

        Dim epsilon As Double = 0.001

        Dim f1, f2 As Double
        Dim g(x.Length - 1), x1(x.Length - 1), x2(x.Length - 1) As Double
        Dim j, k As Integer

        For j = 0 To x.Length - 1
            For k = 0 To x.Length - 1
                x1(k) = x(k)
                x2(k) = x(k)
            Next
            If x(j) <> 0.0# Then
                x1(j) = x(j) * (1.0# + epsilon)
                x2(j) = x(j) * (1.0# - epsilon)
            Else
                x1(j) = x(j) + epsilon
                x2(j) = x(j) - epsilon
            End If
            f1 = fxb.Invoke(x1)
            f2 = fxb.Invoke(x2)
            g(j) = (f2 - f1) / (x2(j) - x1(j))
        Next

        Return g

    End Function

End Class