File size: 51,971 Bytes
b1b3bae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 |
Imports System.Math
Namespace MathEx.LM
Public Class levenbergmarquardt
'************************************************************************
'Minpack Copyright Notice (1999) University of Chicago. All rights reserved
'
'Redistribution and use in source and binary forms, with or
'without modification, are permitted provided that the
'following conditions are met:
'
'1. Redistributions of source code must retain the above
'copyright notice, this list of conditions and the following
'disclaimer.
'
'2. Redistributions in binary form must reproduce the above
'copyright notice, this list of conditions and the following
'disclaimer in the documentation and/or other materials
'provided with the distribution.
'
'3. The end-user documentation included with the
'redistribution, if any, must include the following
'acknowledgment:
'
' "This product includes software developed by the
' University of Chicago, as Operator of Argonne National
' Laboratory.
'
'Alternately, this acknowledgment may appear in the software
'itself, if and wherever such third-party acknowledgments
'normally appear.
'
'4. WARRANTY DISCLAIMER. THE SOFTWARE IS SUPPLIED "AS IS"
'WITHOUT WARRANTY OF ANY KIND. THE COPYRIGHT HOLDER, THE
'UNITED STATES, THE UNITED STATES DEPARTMENT OF ENERGY, AND
'THEIR EMPLOYEES: (1) DISCLAIM ANY WARRANTIES, EXPRESS OR
'IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES
'OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE
'OR NON-INFRINGEMENT, (2) DO NOT ASSUME ANY LEGAL LIABILITY
'OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS, OR
'USEFULNESS OF THE SOFTWARE, (3) DO NOT REPRESENT THAT USE OF
'THE SOFTWARE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS, (4)
'DO NOT WARRANT THAT THE SOFTWARE WILL FUNCTION
'UNINTERRUPTED, THAT IT IS ERROR-FREE OR THAT ANY ERRORS WILL
'BE CORRECTED.
'
'5. LIMITATION OF LIABILITY. IN NO EVENT WILL THE COPYRIGHT
'HOLDER, THE UNITED STATES, THE UNITED STATES DEPARTMENT OF
'ENERGY, OR THEIR EMPLOYEES: BE LIABLE FOR ANY INDIRECT,
'INCIDENTAL, CONSEQUENTIAL, SPECIAL OR PUNITIVE DAMAGES OF
'ANY KIND OR NATURE, INCLUDING BUT NOT LIMITED TO LOSS OF
'PROFITS OR LOSS OF DATA, FOR ANY REASON WHATSOEVER, WHETHER
'SUCH LIABILITY IS ASSERTED ON THE BASIS OF CONTRACT, TORT
'(INCLUDING NEGLIGENCE OR STRICT LIABILITY), OR OTHERWISE,
'EVEN IF ANY OF SAID PARTIES HAS BEEN WARNED OF THE
'POSSIBILITY OF SUCH LOSS OR DAMAGES.
'************************************************************************
'
' This members must be defined by you:
' static void funcvecjac(ref double[] x,
' ref double[] fvec,
' ref double[,] fjac,
' ref int iflag)
'
Public fv As funcvecjacdelegate
Delegate Sub funcvecjacdelegate(ByRef x As Double(), ByRef fvec As Double(), ByRef fjac As Double(,), ByRef iflag As Integer)
Sub New()
End Sub
Sub DefineFuncGradDelegate(ByVal fvj As funcvecjacdelegate)
Me.fv = fvj
End Sub
Public Sub funcvecjac(ByRef x As Double(), ByRef fvec As Double(), ByRef fjac As Double(,), ByRef iflag As Integer)
fv.Invoke(x, fvec, fjac, iflag)
End Sub
'************************************************************************
' The subroutine minimizes the sum of squares of M nonlinear finctions of
' N arguments with Levenberg-Marquardt algorithm using Jacobian and
' information about function values.
'
' Programmer should redefine FuncVecJac subroutine which takes array X
' (argument) whose index ranges from 1 to N as an input and if variable
' IFlag is equal to:
' * 1, returns vector of function values in array FVec (in elements from
' 1 to M), not changing FJac.
' * 2, returns Jacobian in array FJac (in elements [1..M,1..N]), not
' changing FVec.
' The subroutine can change the IFlag parameter by setting it into a negative
' number. It will terminate program.
'
' Programmer can also redefine LevenbergMarquardtNewIteration subroutine
' which is called on each new step. Current point X is passed into the
' subroutine. It is reasonable to redefine the subroutine for better
' debugging, for example, to visualize the solution process.
'
' The AdditionalLevenbergMarquardtStoppingCriterion could be redefined to
' modify stopping conditions.
'
' Input parameters:
' N � number of unknowns, N>0.
' M � number of summable functions, M>=N.
' X � initial solution approximation.
' Array whose index ranges from 1 to N.
' EpsG � stopping criterion. Iterations are stopped, if cosine of
' the angle between vector of function values and each of
' the Jacobian columns if less or equal EpsG by absolute
' value. In fact this value defines stopping condition which
' is based on the function gradient smallness.
' EpsF � stopping criterion. Iterations are stopped, if relative
' decreasing of sum of function values squares (real and
' predicted on the base of extrapolation) is less or equal
' EpsF.
' EpsX � stopping criterion. Iterations are stopped, if relative
' change of solution is less or equal EpsX.
' MaxIts � stopping criterion. Iterations are stopped, if their
' number exceeds MaxIts.
'
' Output parameters:
' X � solution
' Array whose index ranges from 1 to N.
' Info � a reason of a program completion:
' * -1 wrong parameters were specified,
' * 0 interrupted by user,
' * 1 relative decrease of sum of function values
' squares (real and predicted on the base of
' extrapolation) is less or equal EpsF.
' * 2 relative change of solution is less or equal
' EpsX.
' * 3 conditions (1) and (2) are fulfilled.
' * 4 cosine of the angle between vector of function
' values and each of the Jacobian columns is less
' or equal EpsG by absolute value.
' * 5 number of iterations exceeds MaxIts.
' * 6 EpsF is too small.
' It is impossible to get a better result.
' * 7 EpsX is too small.
' It is impossible to get a better result.
' * 8 EpsG is too small. Vector of functions is
' orthogonal to Jacobian columns with near-machine
' precision.
' argonne national laboratory. minpack project. march 1980.
' burton s. garbow, kenneth e. hillstrom, jorge j. more
'
' Contributors:
' * Sergey Bochkanov (ALGLIB project). Translation from FORTRAN to
' pseudocode.
' ************************************************************************
Public Sub levenbergmarquardtminimize(ByVal n As Integer, ByVal m As Integer, ByRef x As Double(), ByVal epsg As Double, ByVal epsf As Double, ByVal epsx As Double, _
ByVal maxits As Integer, ByRef info As Integer)
Dim fvec As Double() = New Double(-1) {}
Dim qtf As Double() = New Double(-1) {}
Dim ipvt As Integer() = New Integer(-1) {}
Dim fjac As Double(,) = New Double(-1, -1) {}
Dim w2 As Double(,) = New Double(-1, -1) {}
Dim wa1 As Double() = New Double(-1) {}
Dim wa2 As Double() = New Double(-1) {}
Dim wa3 As Double() = New Double(-1) {}
Dim wa4 As Double() = New Double(-1) {}
Dim diag As Double() = New Double(-1) {}
Dim mode As Integer = 0
Dim nfev As Integer = 0
Dim njev As Integer = 0
Dim factor As Double = 0
Dim i As Integer = 0
Dim iflag As Integer = 0
Dim iter As Integer = 0
Dim j As Integer = 0
Dim l As Integer = 0
Dim actred As Double = 0
Dim delta As Double = 0
Dim dirder As Double = 0
Dim fnorm As Double = 0
Dim fnorm1 As Double = 0
Dim gnorm As Double = 0
Dim par As Double = 0
Dim pnorm As Double = 0
Dim prered As Double = 0
Dim ratio As Double = 0
Dim sum As Double = 0
Dim temp As Double = 0
Dim temp1 As Double = 0
Dim temp2 As Double = 0
Dim xnorm As Double = 0
Dim p1 As Double = 0
Dim p5 As Double = 0
Dim p25 As Double = 0
Dim p75 As Double = 0
Dim p0001 As Double = 0
Dim i_ As Integer = 0
'
' Factor is a positive input variable used in determining the
' initial step bound. This bound is set to the product of
' factor and the euclidean norm of diag*x if nonzero, or else
' to factor itself. in most cases factor should lie in the
' interval (.1,100.).
' 100.0 is a generally recommended value.
'
factor = 100.0R
'
' mode is an integer input variable. if mode = 1, the
' variables will be scaled internally. if mode = 2,
' the scaling is specified by the input diag. other
' values of mode are equivalent to mode = 1.
'
mode = 1
'
' diag is an array of length n. if mode = 1
' diag is internally set. if mode = 2, diag
' must contain positive entries that serve as
' multiplicative scale factors for the variables.
'
diag = New Double(n) {}
'
' Initialization
'
qtf = New Double(n) {}
fvec = New Double(m) {}
fjac = New Double(m, n) {}
w2 = New Double(n, m) {}
ipvt = New Integer(n) {}
wa1 = New Double(n) {}
wa2 = New Double(n) {}
wa3 = New Double(n) {}
wa4 = New Double(m) {}
p1 = 0.1R
p5 = 0.5R
p25 = 0.25R
p75 = 0.75R
p0001 = 0.0001
info = 0
iflag = 0
nfev = 0
njev = 0
'
' check the input parameters for errors.
'
If n <= 0 Or m < n Then
info = -1
Exit Sub
End If
If epsf < 0 Or epsx < 0 Or epsg < 0 Then
info = -1
Exit Sub
End If
If factor <= 0 Then
info = -1
Exit Sub
End If
If mode = 2 Then
For j = 1 To n
If diag(j) <= 0 Then
info = -1
Exit Sub
End If
Next
End If
'
' evaluate the function at the starting point
' and calculate its norm.
'
iflag = 1
funcvecjac(x, fvec, fjac, iflag)
nfev = 1
If iflag < 0 Then
info = 0
Exit Sub
End If
fnorm = 0.0R
For i_ = 1 To m
fnorm += fvec(i_) * fvec(i_)
Next
fnorm = Math.Sqrt(fnorm)
'
' initialize levenberg-marquardt parameter and iteration counter.
'
par = 0
iter = 1
'
' beginning of the outer loop.
'
While True
'
' New iteration
'
levenbergmarquardtnewiteration(x)
'
' calculate the jacobian matrix.
'
iflag = 2
funcvecjac(x, fvec, fjac, iflag)
njev = njev + 1
If iflag < 0 Then
info = 0
Exit Sub
End If
'
' compute the qr factorization of the jacobian.
'
levenbergmarquardtqrfac(m, n, fjac, True, ipvt, wa1, _
wa2, wa3, w2)
'
' on the first iteration and if mode is 1, scale according
' to the norms of the columns of the initial jacobian.
'
If iter = 1 Then
If mode <> 2 Then
For j = 1 To n
diag(j) = wa2(j)
If wa2(j) = 0 Then
diag(j) = 1
End If
Next
End If
'
' on the first iteration, calculate the norm of the scaled x
' and initialize the step bound delta.
'
For j = 1 To n
wa3(j) = diag(j) * x(j)
Next
xnorm = 0.0R
For i_ = 1 To n
xnorm += wa3(i_) * wa3(i_)
Next
xnorm = Math.Sqrt(xnorm)
delta = factor * xnorm
If delta = 0 Then
delta = factor
End If
End If
'
' form (q transpose)*fvec and store the first n components in
' qtf.
'
For i = 1 To m
wa4(i) = fvec(i)
Next
For j = 1 To n
If fjac(j, j) <> 0 Then
sum = 0
For i = j To m
sum = sum + fjac(i, j) * wa4(i)
Next
temp = -(sum / fjac(j, j))
For i = j To m
wa4(i) = wa4(i) + fjac(i, j) * temp
Next
End If
fjac(j, j) = wa1(j)
qtf(j) = wa4(j)
Next
'
' compute the norm of the scaled gradient.
'
gnorm = 0
If fnorm <> 0 Then
For j = 1 To n
l = ipvt(j)
If wa2(l) <> 0 Then
sum = 0
For i = 1 To j
sum = sum + fjac(i, j) * (qtf(i) / fnorm)
Next
gnorm = Math.Max(gnorm, Math.Abs(sum / wa2(l)))
End If
Next
End If
'
' test for convergence of the gradient norm.
'
If gnorm <= epsg Then
info = 4
End If
If info <> 0 Then
Exit Sub
End If
'
' rescale if necessary.
'
If mode <> 2 Then
For j = 1 To n
diag(j) = Math.Max(diag(j), wa2(j))
Next
End If
'
' beginning of the inner loop.
'
While True
'
' determine the levenberg-marquardt parameter.
'
levenbergmarquardtpar(n, fjac, ipvt, diag, qtf, delta, _
par, wa1, wa2, wa3, wa4)
'
' store the direction p and x + p. calculate the norm of p.
'
For j = 1 To n
wa1(j) = -wa1(j)
wa2(j) = x(j) + wa1(j)
wa3(j) = diag(j) * wa1(j)
Next
pnorm = 0.0R
For i_ = 1 To n
pnorm += wa3(i_) * wa3(i_)
Next
pnorm = Math.Sqrt(pnorm)
'
' on the first iteration, adjust the initial step bound.
'
If iter = 1 Then
delta = Math.Min(delta, pnorm)
End If
'
' evaluate the function at x + p and calculate its norm.
'
iflag = 1
funcvecjac(wa2, wa4, fjac, iflag)
nfev = nfev + 1
If iflag < 0 Then
info = 0
Exit Sub
End If
fnorm1 = 0.0R
For i_ = 1 To m
fnorm1 += wa4(i_) * wa4(i_)
Next
fnorm1 = Math.Sqrt(fnorm1)
'
' compute the scaled actual reduction.
'
actred = -1
If p1 * fnorm1 < fnorm Then
actred = 1 - AP.MathEx.Sqr(fnorm1 / fnorm)
End If
'
' compute the scaled predicted reduction and
' the scaled directional derivative.
'
For j = 1 To n
wa3(j) = 0
l = ipvt(j)
temp = wa1(l)
For i = 1 To j
wa3(i) = wa3(i) + fjac(i, j) * temp
Next
Next
temp1 = 0.0R
For i_ = 1 To n
temp1 += wa3(i_) * wa3(i_)
Next
temp1 = Math.Sqrt(temp1) / fnorm
temp2 = Math.Sqrt(par) * pnorm / fnorm
prered = AP.MathEx.Sqr(temp1) + AP.MathEx.Sqr(temp2) / p5
dirder = -(AP.MathEx.Sqr(temp1) + AP.MathEx.Sqr(temp2))
'
' compute the ratio of the actual to the predicted
' reduction.
'
ratio = 0
If prered <> 0 Then
ratio = actred / prered
End If
'
' update the step bound.
'
If ratio > p25 Then
If par = 0 Or ratio >= p75 Then
delta = pnorm / p5
par = p5 * par
End If
Else
If actred >= 0 Then
temp = p5
End If
If actred < 0 Then
temp = p5 * dirder / (dirder + p5 * actred)
End If
If p1 * fnorm1 >= fnorm Or temp < p1 Then
temp = p1
End If
delta = temp * Math.Min(delta, pnorm / p1)
par = par / temp
End If
'
' test for successful iteration.
'
If ratio >= p0001 Then
'
' successful iteration. update x, fvec, and their norms.
'
For j = 1 To n
x(j) = wa2(j)
wa2(j) = diag(j) * x(j)
Next
For i = 1 To m
fvec(i) = wa4(i)
Next
xnorm = 0.0R
For i_ = 1 To n
xnorm += wa2(i_) * wa2(i_)
Next
xnorm = Math.Sqrt(xnorm)
fnorm = fnorm1
iter = iter + 1
End If
'
' tests for convergence.
'
If Math.Abs(actred) <= epsf And prered <= epsf And p5 * ratio <= 1 Then
info = 1
End If
If delta <= epsx * xnorm Then
info = 2
End If
If Math.Abs(actred) <= epsf And prered <= epsf And p5 * ratio <= 1 And info = 2 Then
info = 3
End If
If info <> 0 Then
Exit Sub
End If
'
' tests for termination and stringent tolerances.
'
If iter >= maxits And maxits > 0 Then
info = 5
End If
If Math.Abs(actred) <= AP.MathEx.MachineEpsilon And prered <= AP.MathEx.MachineEpsilon And p5 * ratio <= 1 Then
info = 6
End If
If delta <= AP.MathEx.MachineEpsilon * xnorm Then
info = 7
End If
If gnorm <= AP.MathEx.MachineEpsilon Then
info = 8
End If
If info <> 0 Then
Exit Sub
End If
'
' end of the inner loop. repeat if iteration unsuccessful.
'
If ratio < p0001 Then
Continue While
End If
Exit While
End While
'
' Termination criterion
'
If additionallevenbergmarquardtstoppingcriterion(iter) Then
info = 0
Exit Sub
End If
'
' end of the outer loop.
'
End While
End Sub
Private Shared Sub levenbergmarquardtqrfac(ByVal m As Integer, ByVal n As Integer, ByRef a As Double(,), ByVal pivot As Boolean, ByRef ipvt As Integer(), ByRef rdiag As Double(), _
ByRef acnorm As Double(), ByRef wa As Double(), ByRef w2 As Double(,))
Dim i As Integer = 0
Dim j As Integer = 0
Dim jp1 As Integer = 0
Dim k As Integer = 0
Dim kmax As Integer = 0
Dim minmn As Integer = 0
Dim ajnorm As Double = 0
Dim sum As Double = 0
Dim temp As Double = 0
Dim v As Double = 0
Dim i_ As Integer = 0
'
' Copy from a to w2 and transpose
'
For i = 1 To m
For i_ = 1 To n
w2(i_, i) = a(i, i_)
Next
Next
'
' compute the initial column norms and initialize several arrays.
'
For j = 1 To n
v = 0.0R
For i_ = 1 To m
v += w2(j, i_) * w2(j, i_)
Next
acnorm(j) = Math.Sqrt(v)
rdiag(j) = acnorm(j)
wa(j) = rdiag(j)
If pivot Then
ipvt(j) = j
End If
Next
'
' reduce a to r with householder transformations.
'
minmn = Math.Min(m, n)
For j = 1 To minmn
If pivot Then
'
' bring the column of largest norm into the pivot position.
'
kmax = j
For k = j To n
If rdiag(k) > rdiag(kmax) Then
kmax = k
End If
Next
If kmax <> j Then
For i = 1 To m
temp = w2(j, i)
w2(j, i) = w2(kmax, i)
w2(kmax, i) = temp
Next
rdiag(kmax) = rdiag(j)
wa(kmax) = wa(j)
k = ipvt(j)
ipvt(j) = ipvt(kmax)
ipvt(kmax) = k
End If
End If
'
' compute the householder transformation to reduce the
' j-th column of a to a multiple of the j-th unit vector.
'
v = 0.0R
For i_ = j To m
v += w2(j, i_) * w2(j, i_)
Next
ajnorm = Math.Sqrt(v)
If ajnorm <> 0 Then
If w2(j, j) < 0 Then
ajnorm = -ajnorm
End If
v = 1 / ajnorm
For i_ = j To m
w2(j, i_) = v * w2(j, i_)
Next
w2(j, j) = w2(j, j) + 1.0R
'
' apply the transformation to the remaining columns
' and update the norms.
'
jp1 = j + 1
If n >= jp1 Then
For k = jp1 To n
sum = 0.0R
For i_ = j To m
sum += w2(j, i_) * w2(k, i_)
Next
temp = sum / w2(j, j)
For i_ = j To m
w2(k, i_) = w2(k, i_) - temp * w2(j, i_)
Next
If pivot And rdiag(k) <> 0 Then
temp = w2(k, j) / rdiag(k)
rdiag(k) = rdiag(k) * Math.Sqrt(Math.Max(0, 1 - AP.MathEx.Sqr(temp)))
If 0.05 * AP.MathEx.Sqr(rdiag(k) / wa(k)) <= AP.MathEx.MachineEpsilon Then
v = 0.0R
For i_ = jp1 To jp1 + m - j - 1
v += w2(k, i_) * w2(k, i_)
Next
rdiag(k) = Math.Sqrt(v)
wa(k) = rdiag(k)
End If
End If
Next
End If
End If
rdiag(j) = -ajnorm
Next
'
' Copy from w2 to a and transpose
'
For i = 1 To m
For i_ = 1 To n
a(i, i_) = w2(i_, i)
Next
Next
End Sub
Private Shared Sub levenbergmarquardtqrsolv(ByVal n As Integer, ByRef r As Double(,), ByRef ipvt As Integer(), ByRef diag As Double(), ByRef qtb As Double(), ByRef x As Double(), _
ByRef sdiag As Double(), ByRef wa As Double())
Dim i As Integer = 0
Dim j As Integer = 0
Dim jp1 As Integer = 0
Dim k As Integer = 0
Dim kp1 As Integer = 0
Dim l As Integer = 0
Dim nsing As Integer = 0
Dim cs As Double = 0
Dim ct As Double = 0
Dim qtbpj As Double = 0
Dim sn As Double = 0
Dim sum As Double = 0
Dim t As Double = 0
Dim temp As Double = 0
'
' copy r and (q transpose)*b to preserve input and initialize s.
' in particular, save the diagonal elements of r in x.
'
For j = 1 To n
For i = j To n
r(i, j) = r(j, i)
Next
x(j) = r(j, j)
wa(j) = qtb(j)
Next
'
' eliminate the diagonal matrix d using a givens rotation.
'
For j = 1 To n
'
' prepare the row of d to be eliminated, locating the
' diagonal element using p from the qr factorization.
'
l = ipvt(j)
If diag(l) <> 0 Then
For k = j To n
sdiag(k) = 0
Next
sdiag(j) = diag(l)
'
' the transformations to eliminate the row of d
' modify only a single element of (q transpose)*b
' beyond the first n, which is initially zero.
'
qtbpj = 0
For k = j To n
'
' determine a givens rotation which eliminates the
' appropriate element in the current row of d.
'
If sdiag(k) <> 0 Then
If Math.Abs(r(k, k)) >= Math.Abs(sdiag(k)) Then
t = sdiag(k) / r(k, k)
cs = 0.5 / Math.Sqrt(0.25 + 0.25 * AP.MathEx.Sqr(t))
sn = cs * t
Else
ct = r(k, k) / sdiag(k)
sn = 0.5 / Math.Sqrt(0.25 + 0.25 * AP.MathEx.Sqr(ct))
cs = sn * ct
End If
'
' compute the modified diagonal element of r and
' the modified element of ((q transpose)*b,0).
'
r(k, k) = cs * r(k, k) + sn * sdiag(k)
temp = cs * wa(k) + sn * qtbpj
qtbpj = -(sn * wa(k)) + cs * qtbpj
wa(k) = temp
'
' accumulate the tranformation in the row of s.
'
kp1 = k + 1
If n >= kp1 Then
For i = kp1 To n
temp = cs * r(i, k) + sn * sdiag(i)
sdiag(i) = -(sn * r(i, k)) + cs * sdiag(i)
r(i, k) = temp
Next
End If
End If
Next
End If
'
' store the diagonal element of s and restore
' the corresponding diagonal element of r.
'
sdiag(j) = r(j, j)
r(j, j) = x(j)
Next
'
' solve the triangular system for z. if the system is
' singular, then obtain a least squares solution.
'
nsing = n
For j = 1 To n
If sdiag(j) = 0 And nsing = n Then
nsing = j - 1
End If
If nsing < n Then
wa(j) = 0
End If
Next
If nsing >= 1 Then
For k = 1 To nsing
j = nsing - k + 1
sum = 0
jp1 = j + 1
If nsing >= jp1 Then
For i = jp1 To nsing
sum = sum + r(i, j) * wa(i)
Next
End If
wa(j) = (wa(j) - sum) / sdiag(j)
Next
End If
'
' permute the components of z back to components of x.
'
For j = 1 To n
l = ipvt(j)
x(l) = wa(j)
Next
End Sub
Private Shared Sub levenbergmarquardtpar(ByVal n As Integer, ByRef r As Double(,), ByRef ipvt As Integer(), ByRef diag As Double(), ByRef qtb As Double(), ByVal delta As Double, _
ByRef par As Double, ByRef x As Double(), ByRef sdiag As Double(), ByRef wa1 As Double(), ByRef wa2 As Double())
Dim i As Integer = 0
Dim iter As Integer = 0
Dim j As Integer = 0
Dim jm1 As Integer = 0
Dim jp1 As Integer = 0
Dim k As Integer = 0
Dim l As Integer = 0
Dim nsing As Integer = 0
Dim dxnorm As Double = 0
Dim dwarf As Double = 0
Dim fp As Double = 0
Dim gnorm As Double = 0
Dim parc As Double = 0
Dim parl As Double = 0
Dim paru As Double = 0
Dim sum As Double = 0
Dim temp As Double = 0
Dim v As Double = 0
Dim i_ As Integer = 0
dwarf = AP.MathEx.MinRealNumber
'
' compute and store in x the gauss-newton direction. if the
' jacobian is rank-deficient, obtain a least squares solution.
'
nsing = n
For j = 1 To n
wa1(j) = qtb(j)
If r(j, j) = 0 And nsing = n Then
nsing = j - 1
End If
If nsing < n Then
wa1(j) = 0
End If
Next
If nsing >= 1 Then
For k = 1 To nsing
j = nsing - k + 1
wa1(j) = wa1(j) / r(j, j)
temp = wa1(j)
jm1 = j - 1
If jm1 >= 1 Then
For i = 1 To jm1
wa1(i) = wa1(i) - r(i, j) * temp
Next
End If
Next
End If
For j = 1 To n
l = ipvt(j)
x(l) = wa1(j)
Next
'
' initialize the iteration counter.
' evaluate the function at the origin, and test
' for acceptance of the gauss-newton direction.
'
iter = 0
For j = 1 To n
wa2(j) = diag(j) * x(j)
Next
v = 0.0R
For i_ = 1 To n
v += wa2(i_) * wa2(i_)
Next
dxnorm = Math.Sqrt(v)
fp = dxnorm - delta
If fp <= 0.1 * delta Then
'
' termination.
'
If iter = 0 Then
par = 0
End If
Exit Sub
End If
'
' if the jacobian is not rank deficient, the newton
' step provides a lower bound, parl, for the zero of
' the function. otherwise set this bound to zero.
'
parl = 0
If nsing >= n Then
For j = 1 To n
l = ipvt(j)
wa1(j) = diag(l) * (wa2(l) / dxnorm)
Next
For j = 1 To n
sum = 0
jm1 = j - 1
If jm1 >= 1 Then
For i = 1 To jm1
sum = sum + r(i, j) * wa1(i)
Next
End If
wa1(j) = (wa1(j) - sum) / r(j, j)
Next
v = 0.0R
For i_ = 1 To n
v += wa1(i_) * wa1(i_)
Next
temp = Math.Sqrt(v)
parl = fp / delta / temp / temp
End If
'
' calculate an upper bound, paru, for the zero of the function.
'
For j = 1 To n
sum = 0
For i = 1 To j
sum = sum + r(i, j) * qtb(i)
Next
l = ipvt(j)
wa1(j) = sum / diag(l)
Next
v = 0.0R
For i_ = 1 To n
v += wa1(i_) * wa1(i_)
Next
gnorm = Math.Sqrt(v)
paru = gnorm / delta
If paru = 0 Then
paru = dwarf / Math.Min(delta, 0.1)
End If
'
' if the input par lies outside of the interval (parl,paru),
' set par to the closer endpoint.
'
par = Math.Max(par, parl)
par = Math.Min(par, paru)
If par = 0 Then
par = gnorm / dxnorm
End If
'
' beginning of an iteration.
'
While True
iter = iter + 1
'
' evaluate the function at the current value of par.
'
If par = 0 Then
par = Math.Max(dwarf, 0.001 * paru)
End If
temp = Math.Sqrt(par)
For j = 1 To n
wa1(j) = temp * diag(j)
Next
levenbergmarquardtqrsolv(n, r, ipvt, wa1, qtb, x, _
sdiag, wa2)
For j = 1 To n
wa2(j) = diag(j) * x(j)
Next
v = 0.0R
For i_ = 1 To n
v += wa2(i_) * wa2(i_)
Next
dxnorm = Math.Sqrt(v)
temp = fp
fp = dxnorm - delta
'
' if the function is small enough, accept the current value
' of par. also test for the exceptional cases where parl
' is zero or the number of iterations has reached 10.
'
If Math.Abs(fp) <= 0.1 * delta Or parl = 0 And fp <= temp And temp < 0 Or iter = 10 Then
Exit While
End If
'
' compute the newton correction.
'
For j = 1 To n
l = ipvt(j)
wa1(j) = diag(l) * (wa2(l) / dxnorm)
Next
For j = 1 To n
wa1(j) = wa1(j) / sdiag(j)
temp = wa1(j)
jp1 = j + 1
If n >= jp1 Then
For i = jp1 To n
wa1(i) = wa1(i) - r(i, j) * temp
Next
End If
Next
v = 0.0R
For i_ = 1 To n
v += wa1(i_) * wa1(i_)
Next
temp = Math.Sqrt(v)
parc = fp / delta / temp / temp
'
' depending on the sign of the function, update parl or paru.
'
If fp > 0 Then
parl = Math.Max(parl, par)
End If
If fp < 0 Then
paru = Math.Min(paru, par)
End If
'
' compute an improved estimate for par.
'
par = Math.Max(parl, par + parc)
'
' end of an iteration.
'
End While
'
' termination.
'
If iter = 0 Then
par = 0
End If
End Sub
Private Shared Sub levenbergmarquardtnewiteration(ByRef x As Double())
End Sub
Private Shared Function additionallevenbergmarquardtstoppingcriterion(ByVal iter As Integer) As Boolean
Dim result As New Boolean()
result = False
Return result
End Function
End Class
Public Class LMFit
Public Enum FitType
Pvap = 0
Cp = 1
LiqVisc = 2
HVap = 3
LiqDens = 4
SecondDegreePoly = 5
End Enum
Private _x, _y As Double()
Private sum As Double
Private its As Integer = 0
Public Function GetCoeffs(ByVal x As Double(), ByVal y As Double(), ByVal inest As Double(), ByVal fittype As FitType, _
ByVal epsg As Double, ByVal epsf As Double, ByVal epsx As Double, ByVal maxits As Integer) As Object
Dim lmsolve As New MathEx.LM.levenbergmarquardt
Select Case fittype
Case LMFit.FitType.Pvap
lmsolve.DefineFuncGradDelegate(AddressOf fvpvap)
Case LMFit.FitType.Cp
lmsolve.DefineFuncGradDelegate(AddressOf fvcp)
Case LMFit.FitType.LiqVisc
lmsolve.DefineFuncGradDelegate(AddressOf fvlvisc)
Case LMFit.FitType.HVap
lmsolve.DefineFuncGradDelegate(AddressOf fvhvap)
Case LMFit.FitType.LiqDens
lmsolve.DefineFuncGradDelegate(AddressOf fvliqdens)
Case LMFit.FitType.SecondDegreePoly
lmsolve.DefineFuncGradDelegate(AddressOf fvsdp)
End Select
Dim newc(UBound(inest) + 1) As Double
Dim i As Integer = 1
Do
newc(i) = inest(i - 1)
i = i + 1
Loop Until i = UBound(inest) + 2
Me._x = x
Me._y = y
Dim info As Integer = 56
its = 0
lmsolve.levenbergmarquardtminimize(inest.Length, _x.Length, newc, epsg, epsf, epsx, maxits, info)
Dim coeffs(UBound(inest)) As Double
i = 0
Do
coeffs(i) = newc(i + 1)
i = i + 1
Loop Until i = UBound(inest) + 1
Return New Object() {coeffs, info, sum, its}
End Function
Public Sub fvpvap(ByRef x As Double(), ByRef fvec As Double(), ByRef fjac As Double(,), ByRef iflag As Integer)
If Double.IsNaN(x(1)) Or Double.IsNegativeInfinity(x(1)) Or Double.IsPositiveInfinity(x(1)) Then iflag = -1
If Double.IsNaN(fvec(1)) Or Double.IsNegativeInfinity(fvec(1)) Or Double.IsPositiveInfinity(fvec(1)) Then iflag = -1
sum = 0.0#
Dim i As Integer
If iflag = 1 Then
i = 1
Do
fvec(i) = -_y(i - 1) + (Math.Exp(x(1) + x(2) / _x(i - 1) + x(3) * Math.Log(_x(i - 1)) + x(4) * _x(i - 1) ^ x(5)))
sum += (fvec(i)) ^ 2
i = i + 1
Loop Until i = UBound(_y) + 2
ElseIf iflag = 2 Then
Dim fval As Double = 0
i = 1
Do
'Math.Exp(A + B / T + C * Math.Log(T) + D * T ^ E)
fval = (Math.Exp(x(1) + x(2) / _x(i - 1) + x(3) * Math.Log(_x(i - 1)) + x(4) * _x(i - 1) ^ x(5)))
fjac(i, 1) = fval
fjac(i, 2) = fval * 1 / _x(i - 1)
fjac(i, 3) = fval * Math.Log(_x(i - 1))
fjac(i, 4) = fval * _x(i - 1) ^ x(5)
fjac(i, 5) = fval * x(5) * _x(i - 1) ^ x(5) * Math.Log(_x(i - 1))
i = i + 1
Loop Until i = UBound(_y) + 2
End If
its += 1
End Sub
Public Sub fvcp(ByRef x As Double(), ByRef fvec As Double(), ByRef fjac As Double(,), ByRef iflag As Integer)
If Double.IsNaN(x(1)) Or Double.IsNegativeInfinity(x(1)) Or Double.IsPositiveInfinity(x(1)) Then iflag = -1
If Double.IsNaN(fvec(1)) Or Double.IsNegativeInfinity(fvec(1)) Or Double.IsPositiveInfinity(fvec(1)) Then iflag = -1
'A + B * T + C * T ^ 2 + D * T ^ 3 + E * T ^ 4
sum = 0.0#
Dim i As Integer
If iflag = 1 Then
i = 1
Do
fvec(i) = -_y(i - 1) + (x(1) + x(2) * _x(i - 1) + x(3) * _x(i - 1) ^ 2 + x(4) * _x(i - 1) ^ 3 + x(5) * _x(i - 1) ^ 4)
sum += (fvec(i)) ^ 2
i = i + 1
Loop Until i = UBound(_y) + 2
ElseIf iflag = 2 Then
i = 1
Do
'A + B * T + C * T ^ 2 + D * T ^ 3 + E * T ^ 4
fjac(i, 1) = 1
fjac(i, 2) = _x(i - 1)
fjac(i, 3) = _x(i - 1) ^ 2
fjac(i, 4) = _x(i - 1) ^ 3
fjac(i, 5) = _x(i - 1) ^ 4
i = i + 1
Loop Until i = UBound(_y) + 2
End If
its += 1
End Sub
Public Sub fvlvisc(ByRef x As Double(), ByRef fvec As Double(), ByRef fjac As Double(,), ByRef iflag As Integer)
If Double.IsNaN(x(1)) Or Double.IsNegativeInfinity(x(1)) Or Double.IsPositiveInfinity(x(1)) Then iflag = -1
If Double.IsNaN(fvec(1)) Or Double.IsNegativeInfinity(fvec(1)) Or Double.IsPositiveInfinity(fvec(1)) Then iflag = -1
sum = 0
Dim i As Integer
If iflag = 1 Then
i = 1
Do
fvec(i) = -_y(i - 1) + (Math.Exp(x(1) + x(2) / _x(i - 1) + x(3) * Math.Log(_x(i - 1)) + x(4) * _x(i - 1) ^ x(5)))
sum += (fvec(i)) ^ 2
i = i + 1
Loop Until i = UBound(_y) + 2
ElseIf iflag = 2 Then
Dim fval As Double = 0
i = 1
Do
'Math.Exp(A + B / T + C * Math.Log(T) + D * T ^ E)
fval = (Math.Exp(x(1) + x(2) / _x(i - 1) + x(3) * Math.Log(_x(i - 1)) + x(4) * _x(i - 1) ^ x(5)))
fjac(i, 1) = fval
fjac(i, 2) = fval * 1 / _x(i - 1)
fjac(i, 3) = fval * Math.Log(_x(i - 1))
fjac(i, 4) = fval * _x(i - 1) ^ x(5)
fjac(i, 5) = fval * x(5) * _x(i - 1) ^ x(5) * Math.Log(_x(i - 1))
i = i + 1
Loop Until i = UBound(_y) + 2
End If
its += 1
End Sub
Public Sub fvhvap(ByRef x As Double(), ByRef fvec As Double(), ByRef fjac As Double(,), ByRef iflag As Integer)
If Double.IsNaN(x(1)) Or Double.IsNegativeInfinity(x(1)) Or Double.IsPositiveInfinity(x(1)) Then iflag = -1
If Double.IsNaN(fvec(1)) Or Double.IsNegativeInfinity(fvec(1)) Or Double.IsPositiveInfinity(fvec(1)) Then iflag = -1
'A * (1 - Tr) ^ (B + C * Tr + D * Tr ^ 2)
sum = 0.0#
Dim i As Integer
If iflag = 1 Then
i = 1
Do
fvec(i) = -_y(i - 1) + (x(1) * (1 - _x(i - 1)) ^ (x(2) + x(3) * _x(i - 1) + x(4) * _x(i - 1) ^ 2))
sum += (fvec(i)) ^ 2
i = i + 1
Loop Until i = UBound(_y) + 2
ElseIf iflag = 2 Then
i = 1
Do
Dim fval As Double = 0
'A * (1 - Tr) ^ (B + C * Tr + D * Tr ^ 2)
fval = (x(1) * (1 - _x(i - 1)) ^ (x(2) + x(3) * _x(i - 1) + x(4) * _x(i - 1) ^ 2))
fjac(i, 1) = fval
fjac(i, 2) = fval
fjac(i, 3) = fval * _x(i - 1)
fjac(i, 4) = fval * _x(i - 1) ^ 2
i = i + 1
Loop Until i = UBound(_y) + 2
End If
its += 1
End Sub
Public Sub fvliqdens(ByRef x As Double(), ByRef fvec As Double(), ByRef fjac As Double(,), ByRef iflag As Integer)
If Double.IsNaN(x(1)) Or Double.IsNegativeInfinity(x(1)) Or Double.IsPositiveInfinity(x(1)) Then iflag = -1
If Double.IsNaN(fvec(1)) Or Double.IsNegativeInfinity(fvec(1)) Or Double.IsPositiveInfinity(fvec(1)) Then iflag = -1
'a / b^[1 + (1 - t/c)^d]
sum = 0.0#
Dim i As Integer
If iflag = 1 Then
i = 1
Do
fvec(i) = -_y(i - 1) + (x(1) / x(2) ^ (1 + (1 - _x(i - 1) / x(3)) ^ x(4)))
sum += (fvec(i)) ^ 2
i = i + 1
Loop Until i = UBound(_y) + 2
ElseIf iflag = 2 Then
i = 1
Do
'a / b^[1 + (1 - t/c)^d]
fjac(i, 1) = 1 / x(2) ^ (1 + (1 - _x(i - 1) / x(3)) ^ x(4))
fjac(i, 2) = -(x(1) * (x(3) - _x(i - 1)) ^ x(4) + x(1) * x(3) ^ x(4)) / (x(2) ^ (((x(3) - _x(i - 1)) ^ x(4) + 2 * x(3) ^ x(4)) / x(3) ^ x(4)) * x(3) ^ x(4))
fjac(i, 3) = x(1) * Log(x(2)) * x(4) * (x(3) - _x(i - 1)) ^ x(4) * _x(i - 1) / (x(2) ^ (((x(3) - _x(i - 1)) ^ x(4) + x(3) ^ x(4)) / x(3) ^ x(4)) * x(3) ^ (x(4) + 1) * _x(i - 1) - x(2) ^ (((x(3) - _x(i - 1)) ^ x(4) + x(3) ^ x(4)) / x(3) ^ x(4)) * x(3) ^ (x(4) + 2))
fjac(i, 4) = -(x(1) * Log(x(2)) * Log(x(3) - _x(i - 1)) - x(1) * Log(x(2)) * Log(x(3))) * (x(3) - _x(i - 1)) ^ x(4) / (x(2) ^ (((x(3) - _x(i - 1)) ^ x(4) + x(3) ^ x(4)) / x(3) ^ x(4)) * x(3) ^ x(4))
fjac(i, 5) = 0
i = i + 1
Loop Until i = UBound(_y) + 2
End If
its += 1
End Sub
Public Sub fvsdp(ByRef x As Double(), ByRef fvec As Double(), ByRef fjac As Double(,), ByRef iflag As Integer)
If Double.IsNaN(x(1)) Or Double.IsNegativeInfinity(x(1)) Or Double.IsPositiveInfinity(x(1)) Then iflag = -1
If Double.IsNaN(fvec(1)) Or Double.IsNegativeInfinity(fvec(1)) Or Double.IsPositiveInfinity(fvec(1)) Then iflag = -1
'A + B * T + C * T ^ 2
sum = 0.0#
Dim i As Integer
If iflag = 1 Then
i = 1
Do
fvec(i) = -_y(i - 1) + (x(1) + x(2) * _x(i - 1) + x(3) * _x(i - 1) ^ 2)
sum += (fvec(i)) ^ 2
i = i + 1
Loop Until i = UBound(_y) + 2
ElseIf iflag = 2 Then
i = 1
Do
'A + B * T + C * T ^ 2
fjac(i, 1) = 1
fjac(i, 2) = _x(i - 1)
fjac(i, 3) = _x(i - 1) ^ 2
i = i + 1
Loop Until i = UBound(_y) + 2
End If
its += 1
End Sub
End Class
End Namespace
|