File size: 23,171 Bytes
b1b3bae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
Namespace MathEx.MatrixOps

    '/*************************************************************************
    'Copyright (c) 1992-2007 The University of Tennessee.  All rights reserved.

    'Contributors:
    '    * Sergey Bochkanov (ALGLIB project). Translation from FORTRAN to
    '      pseudocode.

    'See subroutines comments for additional copyrights.

    'Redistribution and use in source and binary forms, with or without
    'modification, are permitted provided that the following conditions are
    'met:

    '- Redistributions of source code must retain the above copyright
    '  notice, this list of conditions and the following disclaimer.

    '- Redistributions in binary form must reproduce the above copyright
    '  notice, this list of conditions and the following disclaimer listed
    '  in this license in the documentation and/or other materials
    '  provided with the distribution.

    '- Neither the name of the copyright holders nor the names of its
    '  contributors may be used to endorse or promote products derived from
    '  this software without specific prior written permission.

    'THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
    '"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
    'LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
    'A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
    'OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
    'SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
    'LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
    'DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
    'THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
    '(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
    'OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
    '*************************************************************************/

    Public Class Determinant

        '/*************************************************************************
        'Calculation of the determinant of a general matrix

        'Input parameters:
        '    A       -   matrix, array[0..N-1, 0..N-1]
        '    N       -   size of matrix A.

        'Result: determinant of matrix A.

        '  -- ALGLIB --
        '     Copyright 2005 by Bochkanov Sergey
        '*************************************************************************/

        Public Shared Function rmatrixdet(ByVal a As Double(,), ByVal n As Integer) As Double
            Dim pivots As Integer() = New Integer(0) {}
            Dim a2 = DirectCast(a.Clone, Double(,))
            MathEx.SysLin.lu.rmatrixlu(a2, n, n, pivots)
            Return MathEx.MatrixOps.Determinant.rmatrixludet(a2, pivots, n)
        End Function

        '/*************************************************************************
        'Determinant calculation of the matrix given by its LU decomposition.

        'Input parameters:
        '    A       -   LU decomposition of the matrix (output of
        '                RMatrixLU subroutine).
        '    Pivots  -   table of permutations which were made during
        '                the LU decomposition.
        '                Output of RMatrixLU subroutine.
        '    N       -   size of matrix A.

        'Result: matrix determinant.

        '  -- ALGLIB --
        '     Copyright 2005 by Bochkanov Sergey
        '*************************************************************************/

        Public Shared Function rmatrixludet(ByRef a As Double(,), ByRef pivots As Integer(), ByVal n As Integer) As Double
            Dim num As Double = 0
            Dim index As Integer = 0
            Dim num3 As Integer = 0
            num = 1
            num3 = 1
            index = 0
            Do While (index <= (n - 1))
                num = (num * a(index, index))
                If (pivots(index) <> index) Then
                    num3 = -num3
                End If
                index += 1
            Loop
            Return (num * num3)
        End Function

        Public Shared Function determinant(ByVal a As Double(,), ByVal n As Integer) As Double
            Dim pivots As Integer() = New Integer(0) {}
            a = DirectCast(a.Clone, Double(,))
            MathEx.SysLin.lu.ludecomposition(a, n, n, pivots)
            Return MathEx.MatrixOps.Determinant.determinantlu(a, pivots, n)
        End Function

        Public Shared Function determinantlu(ByRef a As Double(,), ByRef pivots As Integer(), ByVal n As Integer) As Double
            Dim num As Double = 0
            Dim index As Integer = 0
            Dim num3 As Integer = 0
            num = 1
            num3 = 1
            index = 1
            Do While (index <= n)
                num = (num * a(index, index))
                If (pivots(index) <> index) Then
                    num3 = -num3
                End If
                index += 1
            Loop
            Return (num * num3)
        End Function

    End Class

    Public Class Inverse

        '/*************************************************************************
        'Inversion of a general matrix.

        'Input parameters:
        '    A   -   matrix. Array whose indexes range within [0..N-1, 0..N-1].
        '    N   -   size of matrix A.

        'Output parameters:
        '    A   -   inverse of matrix A.
        '            Array whose indexes range within [0..N-1, 0..N-1].

        'Result:
        '    True, if the matrix is not singular.
        '    False, if the matrix is singular.

        '  -- ALGLIB --
        '     Copyright 2005 by Bochkanov Sergey
        '*************************************************************************/
        Public Shared Function rmatrixinverse(ByRef a As Double(,), ByVal n As Integer) As Boolean
            Dim pivots As Integer() = New Integer() {}
            MathEx.SysLin.lu.rmatrixlu(a, n, n, pivots)
            Return rmatrixluinverse(a, pivots, n)
        End Function

        '/*************************************************************************
        'Inversion of a matrix given by its LU decomposition.

        'Input parameters:
        '    A       -   LU decomposition of the matrix (output of RMatrixLU subroutine).
        '    Pivots  -   table of permutations which were made during the LU decomposition
        '                (the output of RMatrixLU subroutine).
        '    N       -   size of matrix A.

        'Output parameters:
        '    A       -   inverse of matrix A.
        '                Array whose indexes range within [0..N-1, 0..N-1].

        'Result:
        '    True, if the matrix is not singular.
        '    False, if the matrix is singular.

        '  -- LAPACK routine (version 3.0) --
        '     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
        '     Courant Institute, Argonne National Lab, and Rice University
        '     February 29, 1992
        '*************************************************************************/

        Public Shared Function rmatrixluinverse(ByRef a As Double(,), ByRef pivots As Integer(), ByVal n As Integer) As Boolean
            Dim flag As Boolean = False
            Dim numArray As Double() = New Double() {}
            Dim index As Integer = 0
            Dim num2 As Integer = 0
            Dim num3 As Integer = 0
            Dim num4 As Double = 0
            Dim num5 As Integer = 0
            flag = True
            If (n <> 0) Then
                numArray = New Double(((n - 1) + 1)) {}
                If Not TRInverse.rmatrixtrinverse(a, n, True, False) Then
                    Return False
                End If
                num2 = (n - 1)
                Do While (num2 >= 0)
                    index = (num2 + 1)
                    Do While (index <= (n - 1))
                        numArray(index) = a(index, num2)
                        a(index, num2) = 0
                        index += 1
                    Loop
                    If (num2 < (n - 1)) Then
                        index = 0
                        Do While (index <= (n - 1))
                            num4 = 0
                            num5 = (num2 + 1)
                            Do While (num5 <= (n - 1))
                                num4 = (num4 + (a(index, num5) * numArray(num5)))
                                num5 += 1
                            Loop
                            a(index, num2) = (a(index, num2) - num4)
                            index += 1
                        Loop
                    End If
                    num2 -= 1
                Loop
                num2 = (n - 2)
                Do While (num2 >= 0)
                    num3 = pivots(num2)
                    If (num3 <> num2) Then
                        num5 = 0
                        Do While (num5 <= (n - 1))
                            numArray(num5) = a(num5, num2)
                            num5 += 1
                        Loop
                        num5 = 0
                        Do While (num5 <= (n - 1))
                            a(num5, num2) = a(num5, num3)
                            num5 += 1
                        Loop
                        num5 = 0
                        Do While (num5 <= (n - 1))
                            a(num5, num3) = numArray(num5)
                            num5 += 1
                        Loop
                    End If
                    num2 -= 1
                Loop
            End If
            Return flag
        End Function

        Public Shared Function inverse(ByRef a As Double(,), ByVal n As Integer) As Boolean
            Dim pivots As Integer() = New Integer() {}
            MathEx.SysLin.lu.ludecomposition(a, n, n, pivots)
            Return MathEx.MatrixOps.Inverse.inverselu(a, pivots, n)
        End Function

        Public Shared Function inverselu(ByRef a As Double(,), ByRef pivots As Integer(), ByVal n As Integer) As Boolean
            Dim flag As Boolean = False
            Dim numArray As Double() = New Double() {}
            Dim index As Integer = 0
            Dim num2 As Integer = 0
            Dim num3 As Integer = 0
            Dim num4 As Integer = 0
            Dim num5 As Double = 0
            Dim num6 As Integer = 0
            flag = True
            If (n <> 0) Then
                numArray = New Double((n + 1)) {}
                If Not TRInverse.invtriangular(a, n, True, False) Then
                    Return False
                End If
                num2 = n
                Do While (num2 >= 1)
                    index = (num2 + 1)
                    Do While (index <= n)
                        numArray(index) = a(index, num2)
                        a(index, num2) = 0
                        index += 1
                    Loop
                    If (num2 < n) Then
                        num4 = (num2 + 1)
                        index = 1
                        Do While (index <= n)
                            num5 = 0
                            num6 = num4
                            Do While (num6 <= n)
                                num5 = (num5 + (a(index, num6) * numArray(num6)))
                                num6 += 1
                            Loop
                            a(index, num2) = (a(index, num2) - num5)
                            index += 1
                        Loop
                    End If
                    num2 -= 1
                Loop
                num2 = (n - 1)
                Do While (num2 >= 1)
                    num3 = pivots(num2)
                    If (num3 <> num2) Then
                        num6 = 1
                        Do While (num6 <= n)
                            numArray(num6) = a(num6, num2)
                            num6 += 1
                        Loop
                        num6 = 1
                        Do While (num6 <= n)
                            a(num6, num2) = a(num6, num3)
                            num6 += 1
                        Loop
                        num6 = 1
                        Do While (num6 <= n)
                            a(num6, num3) = numArray(num6)
                            num6 += 1
                        Loop
                    End If
                    num2 -= 1
                Loop
            End If
            Return flag
        End Function

    End Class

    Public Class TRInverse

        '/*************************************************************************
        '    Triangular matrix inversion

        '    The subroutine inverts the following types of matrices:
        '        * upper triangular
        '        * upper triangular with unit diagonal
        '        * lower triangular
        '        * lower triangular with unit diagonal

        '    In case of an upper (lower) triangular matrix,  the  inverse  matrix  will
        '    also be upper (lower) triangular, and after the end of the algorithm,  the
        '    inverse matrix replaces the source matrix. The elements  below (above) the
        '    main diagonal are not changed by the algorithm.

        '    If  the matrix  has a unit diagonal, the inverse matrix also  has  a  unit
        '    diagonal, and the diagonal elements are not passed to the algorithm.

        '    Input parameters:
        '        A       -   matrix.
        '                    Array whose indexes range within [0..N-1, 0..N-1].
        '        N       -   size of matrix A.
        '        IsUpper -   True, if the matrix is upper triangular.
        '        IsUnitTriangular
        '                -   True, if the matrix has a unit diagonal.

        '    Output parameters:
        '        A       -   inverse matrix (if the problem is not degenerate).

        '    Result:
        '        True, if the matrix is not singular.
        '        False, if the matrix is singular.

        '      -- LAPACK routine (version 3.0) --
        '         Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
        '         Courant Institute, Argonne National Lab, and Rice University
        '         February 29, 1992
        '    *************************************************************************/

        Public Shared Function rmatrixtrinverse(ByRef a As Double(,), ByVal n As Integer, ByVal isupper As Boolean, ByVal isunittriangular As Boolean) As Boolean
            Dim flag As Boolean = False
            Dim flag2 As Boolean = False
            Dim index As Integer = 0
            Dim num2 As Integer = 0
            Dim num3 As Double = 0
            Dim num4 As Double = 0
            Dim numArray As Double() = New Double() {}
            Dim num5 As Integer = 0
            flag = True
            numArray = New Double(((n - 1) + 1)) {}
            flag2 = Not isunittriangular
            If isupper Then
                num2 = 0
                Do While (num2 <= (n - 1))
                    If flag2 Then
                        If (a(num2, num2) = 0) Then
                            Return False
                        End If
                        a(num2, num2) = (1 / a(num2, num2))
                        num4 = -a(num2, num2)
                    Else
                        num4 = -1
                    End If
                    If (num2 > 0) Then
                        num5 = 0
                        Do While (num5 <= (num2 - 1))
                            numArray(num5) = a(num5, num2)
                            num5 += 1
                        Loop
                        index = 0
                        Do While (index <= (num2 - 1))
                            If (index < (num2 - 1)) Then
                                num3 = 0
                                num5 = (index + 1)
                                Do While (num5 <= (num2 - 1))
                                    num3 = (num3 + (a(index, num5) * numArray(num5)))
                                    num5 += 1
                                Loop
                            Else
                                num3 = 0
                            End If
                            If flag2 Then
                                a(index, num2) = (num3 + (a(index, index) * numArray(index)))
                            Else
                                a(index, num2) = (num3 + numArray(index))
                            End If
                            index += 1
                        Loop
                        num5 = 0
                        Do While (num5 <= (num2 - 1))
                            a(num5, num2) = (num4 * a(num5, num2))
                            num5 += 1
                        Loop
                    End If
                    num2 += 1
                Loop
                Return flag
            End If
            num2 = (n - 1)
            Do While (num2 >= 0)
                If flag2 Then
                    If (a(num2, num2) = 0) Then
                        Return False
                    End If
                    a(num2, num2) = (1 / a(num2, num2))
                    num4 = -a(num2, num2)
                Else
                    num4 = -1
                End If
                If (num2 < (n - 1)) Then
                    num5 = (num2 + 1)
                    Do While (num5 <= (n - 1))
                        numArray(num5) = a(num5, num2)
                        num5 += 1
                    Loop
                    index = (num2 + 1)
                    Do While (index <= (n - 1))
                        If (index > (num2 + 1)) Then
                            num3 = 0
                            num5 = (num2 + 1)
                            Do While (num5 <= (index - 1))
                                num3 = (num3 + (a(index, num5) * numArray(num5)))
                                num5 += 1
                            Loop
                        Else
                            num3 = 0
                        End If
                        If flag2 Then
                            a(index, num2) = (num3 + (a(index, index) * numArray(index)))
                        Else
                            a(index, num2) = (num3 + numArray(index))
                        End If
                        index += 1
                    Loop
                    num5 = (num2 + 1)
                    Do While (num5 <= (n - 1))
                        a(num5, num2) = (num4 * a(num5, num2))
                        num5 += 1
                    Loop
                End If
                num2 -= 1
            Loop
            Return flag
        End Function

        Public Shared Function invtriangular(ByRef a As Double(,), ByVal n As Integer, ByVal isupper As Boolean, ByVal isunittriangular As Boolean) As Boolean
            Dim flag As Boolean = False
            Dim flag2 As Boolean = False
            Dim index As Integer = 0
            Dim num2 As Integer = 0
            Dim num3 As Integer = 0
            Dim num4 As Integer = 0
            Dim num5 As Double = 0
            Dim num6 As Double = 0
            Dim numArray As Double() = New Double() {}
            Dim num7 As Integer = 0
            flag = True
            numArray = New Double((n + 1)) {}
            flag2 = Not isunittriangular
            If isupper Then
                num2 = 1
                Do While (num2 <= n)
                    If flag2 Then
                        If (a(num2, num2) = 0) Then
                            Return False
                        End If
                        a(num2, num2) = (1 / a(num2, num2))
                        num6 = -a(num2, num2)
                    Else
                        num6 = -1
                    End If
                    If (num2 > 1) Then
                        num3 = (num2 - 1)
                        num7 = 1
                        Do While (num7 <= num3)
                            numArray(num7) = a(num7, num2)
                            num7 += 1
                        Loop
                        index = 1
                        Do While (index <= (num2 - 1))
                            If (index < (num2 - 1)) Then
                                num5 = 0
                                num7 = (index + 1)
                                Do While (num7 <= num3)
                                    num5 = (num5 + (a(index, num7) * numArray(num7)))
                                    num7 += 1
                                Loop
                            Else
                                num5 = 0
                            End If
                            If flag2 Then
                                a(index, num2) = (num5 + (a(index, index) * numArray(index)))
                            Else
                                a(index, num2) = (num5 + numArray(index))
                            End If
                            index += 1
                        Loop
                        num7 = 1
                        Do While (num7 <= num3)
                            a(num7, num2) = (num6 * a(num7, num2))
                            num7 += 1
                        Loop
                    End If
                    num2 += 1
                Loop
                Return flag
            End If
            num2 = n
            Do While (num2 >= 1)
                If flag2 Then
                    If (a(num2, num2) = 0) Then
                        Return False
                    End If
                    a(num2, num2) = (1 / a(num2, num2))
                    num6 = -a(num2, num2)
                Else
                    num6 = -1
                End If
                If (num2 < n) Then
                    num4 = (num2 + 1)
                    num7 = num4
                    Do While (num7 <= n)
                        numArray(num7) = a(num7, num2)
                        num7 += 1
                    Loop
                    index = (num2 + 1)
                    Do While (index <= n)
                        If (index > (num2 + 1)) Then
                            num5 = 0
                            num7 = num4
                            Do While (num7 <= (index - 1))
                                num5 = (num5 + (a(index, num7) * numArray(num7)))
                                num7 += 1
                            Loop
                        Else
                            num5 = 0
                        End If
                        If flag2 Then
                            a(index, num2) = (num5 + (a(index, index) * numArray(index)))
                        Else
                            a(index, num2) = (num5 + numArray(index))
                        End If
                        index += 1
                    Loop
                    num7 = num4
                    Do While (num7 <= n)
                        a(num7, num2) = (num6 * a(num7, num2))
                        num7 += 1
                    Loop
                End If
                num2 -= 1
            Loop
            Return flag
        End Function

    End Class

End Namespace