File size: 18,293 Bytes
b1b3bae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
'    Copyright 2020 Daniel Wagner O. de Medeiros
'
'    This file is part of DWSIM.
'
'    DWSIM is free software: you can redistribute it and/or modify
'    it under the terms of the GNU General Public License as published by
'    the Free Software Foundation, either version 3 of the License, or
'    (at your option) any later version.
'
'    DWSIM is distributed in the hope that it will be useful,
'    but WITHOUT ANY WARRANTY; without even the implied warranty of
'    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
'    GNU General Public License for more details.
'
'    You should have received a copy of the GNU General Public License
'    along with DWSIM.  If not, see <http://www.gnu.org/licenses/>.

Namespace MathEx.Optimization

    Public Class NewtonSolver

        Public Property Tolerance As Double = 0.0001

        Public Property MaxIterations As Integer = 100

        Public Property EnableDamping As Boolean = True

        Public Property UseBroydenApproximation As Boolean = False

        Public Property ExpandFactor As Double = 1.5

        Public Property MaximumDelta As Double = 0.5

        Public Property Epsilon As Double = Double.NaN

        Private _Iterations As Integer = 0

        Private fxb As Func(Of Double(), Double())

        Private broydengrad As Double(,)

        Private brentsolver As New BrentOpt.BrentMinimize

        Private tmpx As Double(), tmpdx As Double()

        Private _jacobian As Boolean

        Private dfdx As Func(Of Double(), Double(,))

        Private _error As Double

        Private _jac As Double(,)

        Public ReadOnly Property Jacobian As Double(,)
            Get
                Return _jac
            End Get
        End Property

        Public ReadOnly Property BuildingJacobian As Boolean
            Get
                Return _jacobian
            End Get
        End Property

        Public ReadOnly Property Iterations As Integer
            Get
                Return _Iterations
            End Get
        End Property

        Sub New()

            brentsolver.DefineFuncDelegate(AddressOf minimizeerror)

        End Sub

        Public Sub Reset()

            _Iterations = 0
            _error = 0.0

        End Sub

        Public Shared Function FindRoots(functionbody As Func(Of Double(), Double()), vars As Double(),
                                         maxits As Integer, tol As Double) As Double()

            Dim newton As New NewtonSolver
            newton.Tolerance = tol
            newton.MaxIterations = maxits

            Return newton.Solve(functionbody, vars)

        End Function

        ''' <summary>
        ''' Solves a system of non-linear equations [f(x) = 0] using newton's method.
        ''' </summary>
        ''' <param name="functionbody">f(x) where x is a vector of double, returns the error values for each x</param>
        ''' <param name="vars">initial values for x</param>
        ''' <returns>vector of variables which solve the equations according to the minimum allowable error value (tolerance).</returns>
        Function Solve(functionbody As Func(Of Double(), Double()), vars As Double()) As Double()

            Dim dfacs As Double() = New Double() {0.1, 0.2, 0.4, 0.6, 0.8, 1.0}
            Dim epsilons As Double() = New Double() {0.000000000001, 0.00000001, 0.0001, 0.001, 0.01, 0.1}

            Dim leave As Boolean = False
            Dim finalx As Double() = vars

            dfdx = Nothing

            If Not Double.IsNaN(Epsilon) Then epsilons = New Double() {Epsilon}

            If EnableDamping Then
                For Each d In dfacs
                    If leave Then Exit For
                    For Each eps In epsilons
                        If leave Then Exit For
                        Try
                            finalx = solve_internal(d, eps, functionbody, vars)
                            leave = True
                        Catch ex As ArgumentException
                            'try next parameters
                        End Try
                    Next
                Next
            Else
                For Each eps In epsilons
                    If leave Then Exit For
                    Try
                        finalx = solve_internal(1.0, eps, functionbody, vars)
                        leave = True
                    Catch ex As ArgumentException
                        'try next parameters
                    End Try
                Next
            End If

            If Not leave Then Throw New Exception("Newton Convergence Error")

            Return finalx

        End Function

        ''' <summary>
        ''' Solves a system of non-linear equations [f(x) = 0] using newton's method.
        ''' </summary>
        ''' <param name="functionbody">f(x) where x is a vector of double, returns the error values for each x</param>
        ''' <param name="vars">initial values for x</param>
        ''' <returns>vector of variables which solve the equations according to the minimum allowable error value (tolerance).</returns>
        Function Solve(functionbody As Func(Of Double(), Double()), functiongradient As Func(Of Double(), Double(,)), vars As Double()) As Double()

            Dim dfacs As Double() = New Double() {0.1, 0.2, 0.4, 0.6, 0.8, 1.0}
            Dim epsilons As Double() = New Double() {0.000000000001, 0.00000001, 0.0001, 0.001, 0.01, 0.1}

            Dim leave As Boolean = False
            Dim finalx As Double() = vars

            dfdx = functiongradient

            If EnableDamping Then
                For Each d In dfacs
                    If leave Then Exit For
                    For Each eps In epsilons
                        If leave Then Exit For
                        Try
                            finalx = solve_internal(d, eps, functionbody, vars)
                            leave = True
                        Catch ex As ArgumentException
                            'try next parameters
                        End Try
                    Next
                Next
            Else
                For Each eps In epsilons
                    If leave Then Exit For
                    Try
                        finalx = solve_internal(1.0, eps, functionbody, vars)
                        leave = True
                    Catch ex As ArgumentException
                        'try next parameters
                    End Try
                Next
            End If

            If Not leave Then Throw New Exception("Newton Convergence Error")

            Return finalx

        End Function


        Private Function solve_internal(mindamp As Double, epsilon As Double, functionbody As Func(Of Double(), Double()), vars As Double()) As Double()

            fxb = functionbody

            Dim fx(), x(), dx(), dfdx(,), df, fxsum, fxsum0 As Double
            Dim success As Boolean = False

            x = vars.Clone

            dx = x.Clone

            _Iterations = 0

            Do

                If _Iterations = 0 Then
                    fxsum0 = 1.0E+20
                Else
                    fxsum0 = MathEx.Common.SumSqr(fx)
                End If

                _jacobian = False

                fx = fxb.Invoke(x)

                _error = MathEx.Common.SumSqr(fx)
                fxsum = _error

                If fxsum < Tolerance Then
                    Exit Do
                End If

                _jacobian = True

                dfdx = gradient(epsilon, x, fx)

                Dim A = MathNet.Numerics.LinearAlgebra.Matrix(Of Double).Build.DenseOfArray(dfdx)
                Dim B = MathNet.Numerics.LinearAlgebra.Vector(Of Double).Build.DenseOfArray(fx)

                dx = A.Solve(B).ToArray()

                'SysLin.rsolve.rmatrixsolve(dfdx, fx, x.Length, dx)

                'If success Then

                If Common.SumSqr(dx) < Tolerance And _Iterations > MaxIterations / 2 Then
                    Exit Do
                End If

                If EnableDamping Then
                    If _Iterations > 5 Then
                        df = df * ExpandFactor
                        If df > 1.0 Then df = 1.0
                    Else
                        df = mindamp
                    End If
                Else
                    df = 1.0#
                End If

                For i = 0 To x.Length - 1
                    If Math.Abs(x(i)) < 1.0E-20 Then
                        x(i) -= dx(i) * df
                    Else
                        If Math.Abs(dx(i) / x(i)) > MaximumDelta Then
                            dx(i) = Math.Sign(dx(i)) * Math.Abs(x(i)) * MaximumDelta
                        End If
                        x(i) -= dx(i) * df
                    End If
                Next

                'Else

                '    For i = 0 To x.Length - 1
                '        x(i) *= 0.999
                '    Next

                'End If

                _Iterations += 1

                If _Iterations > 50 And fxsum > fxsum0 Then
                    Throw New ArgumentException("not converging")
                End If

                If Double.IsNaN(fxsum) Then
                    Throw New ArgumentException("not converging")
                End If

            Loop Until _Iterations > MaxIterations

            If _Iterations > MaxIterations Then
                Throw New ArgumentException("not converged")
            End If

            If dfdx Is Nothing Then dfdx = gradient(epsilon, x, fx)

            _jac = dfdx

            Return x

        End Function

        Private Function gradient(epsilon As Double, ByVal x() As Double, fx() As Double) As Double(,)

            Dim f1(), f2() As Double
            Dim g(x.Length - 1, x.Length - 1), x1(x.Length - 1), x2(x.Length - 1), dx(x.Length - 1), xbr(x.Length - 1), fbr(x.Length - 1) As Double
            Dim i, j, k, n As Integer

            n = x.Length - 1

            If UseBroydenApproximation Then

                If broydengrad Is Nothing Then broydengrad = g.Clone()

                If _Iterations = 0 Then
                    For i = 0 To n
                        For j = 0 To n
                            If i = j Then broydengrad(i, j) = 1.0 Else broydengrad(i, j) = 0.0
                        Next
                    Next
                    Broyden.broydn(n, x, fx, dx, xbr, fbr, broydengrad, 0)
                Else
                    Broyden.broydn(n, x, fx, dx, xbr, fbr, broydengrad, 1)
                End If

                Return broydengrad

            Else

                If dfdx IsNot Nothing Then

                    g = dfdx.Invoke(x)

                Else

                    For i = 0 To x.Length - 1
                        For j = 0 To x.Length - 1
                            If i <> j Then
                                x1(j) = x(j)
                                x2(j) = x(j)
                            Else
                                If x(j) = 0.0# Then
                                    x1(j) = epsilon
                                    x2(j) = 2 * epsilon
                                Else
                                    x1(j) = x(j) * (1 - epsilon)
                                    x2(j) = x(j) * (1 + epsilon)
                                End If
                            End If
                        Next
                        f1 = fxb.Invoke(x1)
                        f2 = fxb.Invoke(x2)
                        For k = 0 To x.Length - 1
                            g(k, i) = (f2(k) - f1(k)) / (x2(i) - x1(i))
                        Next
                    Next

                End If

            End If

            Return g

        End Function

        Public Function minimizeerror(ByVal t As Double) As Double

            Dim tmpx0 As Double() = tmpx.Clone

            For i = 0 To tmpx.Length - 1
                tmpx0(i) -= tmpdx(i) * t
            Next

            Dim abssum0 = MathEx.Common.SumSqr(fxb.Invoke(tmpx0))
            If Double.IsNaN(abssum0) Then abssum0 = 1.0E+20
            Return abssum0

        End Function

    End Class

    Public Class NewtonSolver_Old

        Public Property Tolerance As Double = 0.0001

        Public Property MaxIterations As Integer = 1000

        Public Property EnableDamping As Boolean = True

        Private _Iterations As Integer = 0

        Private fxb As Func(Of Double(), Double())

        Private brentsolver As New BrentOpt.BrentMinimize

        Private tmpx As Double(), tmpdx As Double()

        Private _error As Double

        Public ReadOnly Property Iterations
            Get
                Return _Iterations
            End Get
        End Property

        Sub New()

            brentsolver.DefineFuncDelegate(AddressOf minimizeerror)

        End Sub

        ''' <summary>
        ''' Solves a system of non-linear equations [f(x) = 0] using newton's method.
        ''' </summary>
        ''' <param name="functionbody">f(x) where x is a vector of double, returns the error values for each x</param>
        ''' <param name="vars">initial values for x</param>
        ''' <returns>vector of variables which solve the equations according to the minimum allowable error value (tolerance).</returns>
        Function Solve(functionbody As Func(Of Double(), Double()), vars As Double()) As Double()

            Dim minimaldampings As Double() = New Double() {1.0E-20, 0.000000000000001, 0.0000000001, 0.00001, 0.0001, 0.001, 0.01, 0.1}
            Dim epsilons As Double() = New Double() {0.0000000001, 0.000000001, 0.00000001, 0.0000001, 0.000001, 0.00001, 0.0001, 0.001, 0.01, 0.1}

            Dim leave As Boolean = False
            Dim finalx As Double() = vars

            If EnableDamping Then
                For Each mindamp In minimaldampings
                    If leave Then Exit For
                    For Each eps In epsilons
                        If leave Then Exit For
                        Try
                            finalx = solve_internal(mindamp, eps, functionbody, vars)
                            leave = True
                        Catch ex As ArgumentException
                            'try next parameters
                        End Try
                    Next
                Next
            Else
                For Each eps In epsilons
                    If leave Then Exit For
                    Try
                        finalx = solve_internal(1.0, eps, functionbody, vars)
                        leave = True
                    Catch ex As ArgumentException
                        'try next parameters
                    End Try
                Next
            End If

            If Not leave Then Throw New Exception("newton convergence error")

            Return finalx

        End Function

        Private Function solve_internal(mindamp As Double, epsilon As Double, functionbody As Func(Of Double(), Double()), vars As Double()) As Double()

            fxb = functionbody

            Dim fx(), x(), dx(), dfdx(,), df, fxsum, fxsum0 As Double
            Dim success As Boolean = False

            x = vars.Clone

            dx = x.Clone

            _Iterations = 0

            Do

                If _Iterations = 0 Then
                    fxsum0 = 1.0E+20
                Else
                    fxsum0 = MathEx.Common.SumSqr(fx)
                End If

                fx = fxb.Invoke(x)

                _error = MathEx.Common.SumSqr(fx)
                fxsum = _error

                If Common.SumSqr(fx) < Tolerance Then Exit Do

                dfdx = gradient(epsilon, x)

                success = SysLin.rsolve.rmatrixsolve(dfdx, fx, x.Length, dx)

                If success Then

                    'this call to the brent solver calculates the damping factor which minimizes the error (fval).

                    If EnableDamping Then

                        tmpx = x.Clone
                        tmpdx = dx.Clone
                        brentsolver.brentoptimize(mindamp, 1.0, mindamp / 10.0#, df)

                    Else

                        df = 1.0#

                    End If

                    For i = 0 To x.Length - 1
                        x(i) -= dx(i) * df
                    Next

                Else

                    For i = 0 To x.Length - 1
                        x(i) *= 0.999
                    Next

                End If

                _Iterations += 1

                If _Iterations > 50 And fxsum > fxsum0 Then
                    Throw New ArgumentException("not converging")
                End If

                If Double.IsNaN(fxsum) Then
                    Throw New ArgumentException("not converging")
                End If

            Loop Until _Iterations > MaxIterations

            If _Iterations > MaxIterations Then
                Throw New ArgumentException("not converged")
            End If

            Return x

        End Function

        Private Function gradient(epsilon As Double, ByVal x() As Double) As Double(,)

            Dim f1(), f2() As Double
            Dim g(x.Length - 1, x.Length - 1), x2(x.Length - 1) As Double
            Dim i, j, k As Integer

            f1 = fxb.Invoke(x)
            For i = 0 To x.Length - 1
                For j = 0 To x.Length - 1
                    If i <> j Then
                        x2(j) = x(j)
                    Else
                        If x(j) = 0.0# Then
                            x2(j) = epsilon
                        Else
                            x2(j) = x(j) * (1 + epsilon)
                        End If
                    End If
                Next
                f2 = fxb.Invoke(x2)
                For k = 0 To x.Length - 1
                    g(k, i) = (f2(k) - f1(k)) / (x2(i) - x(i))
                Next
            Next

            Return g

        End Function

        Public Function minimizeerror(ByVal t As Double) As Double

            Dim tmpx0 As Double() = tmpx.Clone

            For i = 0 To tmpx.Length - 1
                tmpx0(i) -= tmpdx(i) * t
            Next

            Dim abssum0 = MathEx.Common.SumSqr(fxb.Invoke(tmpx0))
            If Double.IsNaN(abssum0) Then abssum0 = 1.0E+20
            Return abssum0

        End Function

    End Class


End Namespace