File size: 19,085 Bytes
b1b3bae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 |
Option Strict Off
Option Explicit On
Imports System.Math
Namespace MathEx.MatrixOps
Public Class MatLib
Private Shared Sub Find_R_C(ByVal Mat(,) As Double, ByRef Row As Integer, ByRef Col As Integer)
Row = Mat.GetUpperBound(0)
Col = Mat.GetUpperBound(1)
End Sub
#Region "Add Matrices"
''''''''''''''''''''''''''''''''''''''''''''''''''''''''
' Add two matrices, their dimensions should be compatible!
' Function returns the summation or errors due to
' dimensions incompatibility
' Example:
' Check Main Form !!
''''''''''''''''''''''''''''''''''''''''''''''''''''''''
Public Shared Function Add(ByVal Mat1(,) As Double, ByVal Mat2(,) As Double) As Double(,)
Dim sol(,) As Double
Dim i, j As Integer
Dim Rows1, Cols1 As Integer
Dim Rows2, Cols2 As Integer
On Error GoTo Error_Handler
Find_R_C(Mat1, Rows1, Cols1)
Find_R_C(Mat2, Rows2, Cols2)
If Rows1 <> Rows2 Or Cols1 <> Cols2 Then
GoTo Error_Dimension
End If
ReDim sol(Rows1, Cols1)
For i = 0 To Rows1
For j = 0 To Cols1
sol(i, j) = Mat1(i, j) + Mat2(i, j)
Next j
Next i
Return sol
Error_Dimension:
Err.Raise("5005", , "Dimensions of the two matrices do not match !")
Error_Handler:
If Err.Number = 5005 Then
Err.Raise("5005", , "Dimensions of the two matrices do not match !")
Else
Err.Raise("5022", , "One or both of the matrices are null, this operation cannot be done !!")
End If
Return Nothing
End Function
#End Region
#Region "Subtract Matrices"
''''''''''''''''''''''''''''''''''''''''''''''''''''''''
' Subtracts two matrices from each other, their
' dimensions should be compatible!
' Function returns the solution or errors due to
' dimensions incompatibility
' Example:
' Check Main Form !!
''''''''''''''''''''''''''''''''''''''''''''''''''''''''
Public Shared Function Subtract(ByVal Mat1(,) As Double, ByVal Mat2(,) As Double) As Double(,)
Dim i, j As Integer
Dim sol(,) As Double
Dim Rows1, Cols1 As Integer
Dim Rows2, Cols2 As Integer
On Error GoTo Error_Handler
Find_R_C(Mat1, Rows1, Cols1)
Find_R_C(Mat2, Rows2, Cols2)
If Rows1 <> Rows2 Or Cols1 <> Cols2 Then
GoTo Error_Dimension
End If
ReDim sol(Rows1, Cols1)
For i = 0 To Rows1
For j = 0 To Cols1
sol(i, j) = Mat1(i, j) - Mat2(i, j)
Next j
Next i
Return sol
Error_Dimension:
Err.Raise("5007", , "Dimensions of the two matrices do not match !")
Error_Handler:
If Err.Number = 5007 Then
Err.Raise("5007", , "Dimensions of the two matrices do not match !")
Else
Err.Raise("5022", , "One or both of the matrices are null, this operation cannot be done !!")
End If
Return Nothing
End Function
#End Region
#Region "Multiply Matrices"
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
' Multiply two matrices, their dimensions should be compatible!
' Function returns the solution or errors due to
' dimensions incompatibility
' Example:
' Check Main Form !!
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
Public Shared Function Multiply(ByVal Mat1(,) As Double, ByVal Mat2(,) As Double) As Double(,)
Dim l, i, j As Integer
Dim OptiString As String
Dim sol(,) As Double, MulAdd As Double
Dim Rows1, Cols1 As Integer
Dim Rows2, Cols2 As Integer
On Error GoTo Error_Handler
MulAdd = 0
Find_R_C(Mat1, Rows1, Cols1)
Find_R_C(Mat2, Rows2, Cols2)
If Cols1 <> Rows2 Then
GoTo Error_Dimension
End If
ReDim sol(Rows1, Cols2)
For i = 0 To Rows1
For j = 0 To Cols2
For l = 0 To Cols1
MulAdd = MulAdd + Mat1(i, l) * Mat2(l, j)
Next l
sol(i, j) = MulAdd
MulAdd = 0
Next j
Next i
Return sol
Error_Dimension:
Err.Raise("5009", , "Dimensions of the two matrices not suitable for multiplication !")
Error_Handler:
If Err.Number = 5009 Then
Err.Raise("5009", , "Dimensions of the two matrices not suitable for multiplication !")
Else
Err.Raise("5022", , "One or both of the matrices are null, this operation cannot be done !!")
End If
Return Nothing
End Function
#End Region
#Region "Determinant of a Matrix"
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
' Determinant of a matrix should be (nxn)
' Function returns the solution or errors due to
' dimensions incompatibility
' Example:
' Check Main Form !!
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
Public Shared Function Det(ByVal Mat(,) As Double) As Double
Dim DArray(,) As Double, S As Integer
Dim k, k1, i, j As Integer
Dim save, ArrayK As Double
Dim M1 As String
Dim Rows, Cols As Integer
On Error GoTo Error_Handler
Find_R_C(Mat, Rows, Cols)
If Rows <> Cols Then GoTo Error_Dimension
S = Rows
Det = 1
DArray = Mat.Clone()
For k = 0 To S
If DArray(k, k) = 0 Then
j = k
Do While ((j < S) And (DArray(k, j) = 0))
j = j + 1
Loop
If DArray(k, j) = 0 Then
Det = 0
Exit Function
Else
For i = k To S
save = DArray(i, j)
DArray(i, j) = DArray(i, k)
DArray(i, k) = save
Next i
End If
Det = -Det
End If
ArrayK = DArray(k, k)
Det = Det * ArrayK
If k < S Then
k1 = k + 1
For i = k1 To S
For j = k1 To S
DArray(i, j) = DArray(i, j) - DArray(i, k) * (DArray(k, j) / ArrayK)
Next j
Next i
End If
Next
Exit Function
Error_Dimension:
Err.Raise("5011", , "Matrix should be a square matrix !")
Error_Handler:
If Err.Number = 5011 Then
Err.Raise("5011", , "Matrix should be a square matrix !")
Else
Err.Raise("5022", , "In order to do this operation values must be assigned to the matrix !!")
End If
End Function
#End Region
#Region "Inverse of a Matrix"
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
' Inverse of a matrix, should be (nxn) and det(Mat)<>0
' Function returns the solution or errors due to
' dimensions incompatibility
' Example:
' Check Main Form !!
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
Public Shared Function Inv(ByVal Mat(,) As Double) As Double(,)
Dim AI(,) As Double, AIN As Double, AF As Double, _
Mat1(,) As Double
Dim LL As Integer, LLM As Integer, L1 As Integer, _
L2 As Integer, LC As Integer, LCA As Integer, _
LCB As Integer, i As Integer, j As Integer
Dim Rows, Cols As Integer
On Error GoTo Error_Handler
Find_R_C(Mat, Rows, Cols)
If Rows <> Cols Then GoTo Error_Dimension
If Det(Mat) = 0 Then GoTo Error_Zero
LL = Rows
LLM = Cols
Mat1 = Mat.Clone()
ReDim AI(LL, LL)
For L2 = 0 To LL
For L1 = 0 To LL
AI(L1, L2) = 0
Next
AI(L2, L2) = 1
Next
For LC = 0 To LL
If Abs(Mat1(LC, LC)) < 0.0000000001 Then
For LCA = LC + 1 To LL
If LCA = LC Then GoTo 1090
If Abs(Mat1(LC, LCA)) > 0.0000000001 Then
For LCB = 0 To LL
Mat1(LCB, LC) = Mat1(LCB, LC) + Mat1(LCB, LCA)
AI(LCB, LC) = AI(LCB, LC) + AI(LCB, LCA)
Next
GoTo 1100
End If
1090: Next
End If
1100:
AIN = 1 / Mat1(LC, LC)
For LCA = 0 To LL
Mat1(LCA, LC) = AIN * Mat1(LCA, LC)
AI(LCA, LC) = AIN * AI(LCA, LC)
Next
For LCA = 0 To LL
If LCA = LC Then GoTo 1150
AF = Mat1(LC, LCA)
For LCB = 0 To LL
Mat1(LCB, LCA) = Mat1(LCB, LCA) - AF * Mat1(LCB, LC)
AI(LCB, LCA) = AI(LCB, LCA) - AF * AI(LCB, LC)
Next
1150: Next
Next
Return AI
Error_Zero:
Err.Raise("5012", , "Determinent equals zero, inverse can't be found !")
Error_Dimension:
Err.Raise("5014", , "Matrix should be a square matrix !")
Error_Handler:
If Err.Number = 5012 Then
Err.Raise("5012", , "Determinent equals zero, inverse can't be found !")
ElseIf Err.Number = 5014 Then
Err.Raise("5014", , "Matrix should be a square matrix !")
End If
Return Nothing
End Function
#End Region
#Region "Multiply Vectors"
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
' Multiply two vectors, dimensions should be (3x1)
' Function returns the solution or errors due to
' dimensions incompatibility
' Example:
' Check Main Form !!
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
Public Shared Function MultiplyVectors(ByVal Mat1(,) As Double, ByVal Mat2(,) As Double) As Double(,)
Dim i, j, k As Double
Dim sol(2, 0) As Double
Dim Rows1, Cols1 As Integer
Dim Rows2, Cols2 As Integer
On Error GoTo Error_Handler
Find_R_C(Mat1, Rows1, Cols1)
Find_R_C(Mat2, Rows2, Cols2)
If Rows1 <> 2 Or Cols1 <> 0 Then
GoTo Error_Dimension
End If
If Rows2 <> 2 Or Cols2 <> 0 Then
GoTo Error_Dimension
End If
i = Mat1(1, 0) * Mat2(2, 0) - Mat1(2, 0) * Mat2(1, 0)
j = Mat1(2, 0) * Mat2(0, 0) - Mat1(0, 0) * Mat2(2, 0)
k = Mat1(0, 0) * Mat2(1, 0) - Mat1(1, 0) * Mat2(0, 0)
sol(0, 0) = i : sol(1, 0) = j : sol(2, 0) = k
Return sol
Error_Dimension:
Err.Raise("5016", , "Dimension should be (2 x 0) for both matrices in order to do cross multiplication !")
Error_Handler:
If Err.Number = 5016 Then
Err.Raise("5016", , "Dimension should be (2 x 0) for both matrices in order to do cross multiplication !")
Else
Err.Raise("5022", , "One or both of the matrices are null, this operation cannot be done !!")
End If
Return Nothing
End Function
#End Region
#Region "Magnitude of a Vector"
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
' Magnitude of a Vector, vector should be (3x1)
' Function returns the solution or errors due to
' dimensions incompatibility
' Example:
' Check Main Form !!
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
Public Shared Function VectorMagnitude(ByVal Mat(,) As Double) As Double
Dim Rows, Cols As Integer
On Error GoTo Error_Handler
Find_R_C(Mat, Rows, Cols)
If Rows <> 2 Or Cols <> 0 Then
GoTo Error_Dimension
End If
Return Sqrt(Mat(0, 0) * Mat(0, 0) + Mat(1, 0) * Mat(1, 0) + Mat(2, 0) * Mat(2, 0))
Error_Dimension:
Err.Raise("5018", , "Dimension of the matrix should be (2 x 0) in order to find the vector's norm !")
Error_Handler:
If Err.Number = 5018 Then
Err.Raise("5018", , "Dimension of the matrix should be (2 x 0) in order to find the vector's magnitude !")
Else
Err.Raise("5022", , "In order to do this operation values must be assigned to the matrix !!")
End If
End Function
#End Region
#Region "Transpose of a Matrix"
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
' Transpose of a matrix
' Function returns the solution or errors
' Example:
' Check Main Form !!
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
Public Shared Function Transpose(ByVal Mat(,) As Double) As Double(,)
Dim Tr_Mat(,) As Double
Dim i, j, Rows, Cols As Integer
On Error GoTo Error_Handler
Find_R_C(Mat, Rows, Cols)
ReDim Tr_Mat(Cols, Rows)
For i = 0 To Cols
For j = 0 To Rows
Tr_Mat(j, i) = Mat(i, j)
Next j
Next i
Return Tr_Mat
Error_Handler:
Err.Raise("5028", , "In order to do this operation values must be assigned to the matrix !!")
End Function
#End Region
#Region "Multiply a matrix or a vector with a scalar quantity"
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
' Multiply a matrix or a vector with a scalar quantity
' Function returns the solution or errors
' Example:
' Check Main Form !!
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
Public Shared Function ScalarMultiply(ByVal Value As Double, ByVal Mat(,) As Double) As Double(,)
Dim i, j, Rows, Cols As Integer
Dim sol(,) As Double
On Error GoTo Error_Handler
Find_R_C(Mat, Rows, Cols)
ReDim sol(Rows, Cols)
For i = 0 To Rows
For j = 0 To Cols
sol(i, j) = Mat(i, j) * Value
Next j
Next i
Return (sol)
Error_Handler:
Err.Raise("5022", , "Matrix was not assigned")
End Function
#End Region
#Region "Divide a matrix or a vector with a scalar quantity"
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
' Divide matrix elements or a vector by a scalar quantity
' Function returns the solution or errors
' Example:
' Check Main Form !!
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
Public Shared Function ScalarDivide(ByVal Value As Double, ByVal Mat(,) As Double) As Double(,)
Dim i, j, Rows, Cols As Integer
Dim sol(,) As Double
On Error GoTo Error_Handler
Find_R_C(Mat, Rows, Cols)
ReDim sol(Rows, Cols)
For i = 0 To Rows
For j = 0 To Cols
sol(i, j) = Mat(i, j) / Value
Next j
Next i
Return sol
Exit Function
Error_Handler:
Err.Raise("5022", , "Matrix was not assigned")
End Function
#End Region
#Region "Print Matrix"
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
' Print a matrix to multitext text box
' Function returns the solution or errors
' Example:
' Check Main Form !!
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
Public Shared Function PrintMat(ByVal Mat(,) As Double) As String
Dim N_Rows As Integer, N_Columns, k As Integer, _
i As Integer, j As Integer, m As Integer
Dim StrElem As String, StrLen As Long, _
Greatest() As Integer, LarString As String = ""
Dim OptiString As String, sol As String
Find_R_C(Mat, N_Rows, N_Columns)
sol = ""
OptiString = ""
ReDim Greatest(N_Columns)
For i = 0 To N_Rows
For j = 0 To N_Columns
If i = 0 Then
Greatest(j) = 0
For m = 0 To N_Rows
StrElem = Format$(Mat(m, j), "0.0000")
StrLen = Len(StrElem)
If Greatest(j) < StrLen Then
Greatest(j) = StrLen
LarString = StrElem
End If
Next m
If Mid$(LarString, 1, 1) = "-" Then Greatest(j) = Greatest(j) + 1
End If
StrElem = Format$(Mat(i, j), "0.0000")
If Mid$(StrElem, 1, 1) = "-" Then
StrLen = Len(StrElem)
If Greatest(j) >= StrLen Then
For k = 1 To (Greatest(j) - StrLen)
OptiString = OptiString & " "
Next k
OptiString = OptiString & " "
End If
Else
StrLen = Len(StrElem)
If Greatest(j) > StrLen Then
For k = 1 To (Greatest(j) - StrLen)
OptiString = OptiString & " "
Next k
End If
End If
OptiString = OptiString & " " & Format$(Mat(i, j), "0.0000")
Next j
If i <> N_Rows Then
sol = sol & OptiString & vbCrLf
OptiString = ""
End If
sol = sol & OptiString
OptiString = ""
Next i
PrintMat = sol
Exit Function
End Function
#End Region
End Class
End Namespace
|