File size: 8,078 Bytes
b1b3bae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
namespace Mapack
{
    using System;

    /// <summary>LU decomposition of a rectangular matrix.</summary>
    /// <remarks>
    /// For an m-by-n matrix <c>A</c> with m >= n, the LU decomposition is an m-by-n
    /// unit lower triangular matrix <c>L</c>, an n-by-n upper triangular matrix <c>U</c>,
    /// and a permutation vector <c>piv</c> of length m so that <c>A(piv)=L*U</c>.
    /// If m &lt; n, then <c>L</c> is m-by-m and <c>U</c> is m-by-n.
    /// The LU decompostion with pivoting always exists, even if the matrix is
    /// singular, so the constructor will never fail.  The primary use of the
    /// LU decomposition is in the solution of square systems of simultaneous
    /// linear equations. This will fail if <see cref="NonSingular"/> returns <see langword="false"/>.
    /// </remarks>
    public class LuDecomposition
    {
        private Matrix LU;
        private int pivotSign;
        private int[] pivotVector;

        /// <summary>Construct a LU decomposition.</summary>    
        public LuDecomposition(Matrix value)
        {
            if (value == null)
            {
                throw new ArgumentNullException("value");   
            }
            
            this.LU = (Matrix) value.Clone();
            double[][] lu = LU.Array;
            int rows = value.Rows;
            int columns = value.Columns;
            pivotVector = new int[rows];
            for (int i = 0; i < rows; i++)
            {
                pivotVector[i] = i;
            }

            pivotSign = 1;
            double[] LUrowi;
            double[] LUcolj = new double[rows];
    
            // Outer loop.
            for (int j = 0; j < columns; j++)
            {
                // Make a copy of the j-th column to localize references.
                for (int i = 0; i < rows; i++)
                {
                    LUcolj[i] = lu[i][j];
                }
    
                // Apply previous transformations.
                for (int i = 0; i < rows; i++) 
                {
                    LUrowi = lu[i];
    
                    // Most of the time is spent in the following dot product.
                    int kmax = Math.Min(i,j);
                    double s = 0.0;
                    for (int k = 0; k < kmax; k++)
                    {
                        s += LUrowi[k]*LUcolj[k];
                    }
                    LUrowi[j] = LUcolj[i] -= s;
                }
         
                // Find pivot and exchange if necessary.
                int p = j;
                for (int i = j+1; i < rows; i++)
                {
                    if (Math.Abs(LUcolj[i]) > Math.Abs(LUcolj[p]))
                    {
                        p = i;
                    }
                }
    
                if (p != j)
                {
                    for (int k = 0; k < columns; k++) 
                    {
                        double t = lu[p][k]; 
                        lu[p][k] = lu[j][k]; 
                        lu[j][k] = t;
                    }
                        
                    int v = pivotVector[p]; 
                    pivotVector[p] = pivotVector[j]; 
                    pivotVector[j] = v;
                        
                    pivotSign = - pivotSign;
                }
    
                // Compute multipliers.
                     
                if (j < rows & lu[j][j] != 0.0) 
                {
                    for (int i = j+1; i < rows; i++) 
                    {
                        lu[i][j] /= lu[j][j];
                    }
                }
            }
        }

        /// <summary>Returns if the matrix is non-singular.</summary>
        public bool NonSingular
        {
            get 
            {
                for (int j = 0; j < LU.Columns; j++)
                    if (LU[j, j] == 0)
                        return false;
                return true;
            }
        }
    
        /// <summary>Returns the determinant of the matrix.</summary>
        public double Determinant
        {
            get
            {
                if (LU.Rows != LU.Columns) throw new ArgumentException("Matrix must be square.");
                double determinant = (double) pivotSign;
                for (int j = 0; j < LU.Columns; j++) 
                    determinant *= LU[j, j];
                return determinant; 
            }
        }

        /// <summary>Returns the lower triangular factor <c>L</c> with <c>A=LU</c>.</summary>
        public Matrix LowerTriangularFactor
        {
            get
            {
                int rows = LU.Rows;
                int columns = LU.Columns;
                Matrix X = new Matrix(rows, columns);
                for (int i = 0; i < rows; i++) 
                    for (int j = 0; j < columns; j++)
                        if (i > j)
                            X[i,j] = LU[i,j];
                        else if (i == j)
                            X[i,j] = 1.0;
                        else
                            X[i,j] = 0.0;
                return X;
            }
        }

        /// <summary>Returns the lower triangular factor <c>L</c> with <c>A=LU</c>.</summary>
        public Matrix UpperTriangularFactor
        {
            get
            {
                int rows = LU.Rows;
                int columns = LU.Columns;
                Matrix X = new Matrix(rows, columns);
                for (int i = 0; i < rows; i++)
                    for (int j = 0; j < columns; j++) 
                        if (i <= j)
                            X[i,j] = LU[i,j];
                        else
                            X[i,j] = 0.0;
                return X;
            }
        }       

        /// <summary>Returns the pivot permuation vector.</summary>
        public double[] PivotPermutationVector
        {
            get
            {
                int rows = LU.Rows;

                double[] p = new double[rows];
                for (int i = 0; i < rows; i++)
                {
                    p[i] = (double) this.pivotVector[i];
                }

                return p;
            }
        }   

        /// <summary>Solves a set of equation systems of type <c>A * X = B</c>.</summary>
        /// <param name="value">Right hand side matrix with as many rows as <c>A</c> and any number of columns.</param>
        /// <returns>Matrix <c>X</c> so that <c>L * U * X = B</c>.</returns>
        public Matrix Solve(Matrix value)
        {
            if (value == null)
            {
                throw new ArgumentNullException("value");   
            }

            if (value.Rows != this.LU.Rows)
            {
                throw new ArgumentException("Invalid matrix dimensions.", "value");
            }
            
            if (!this.NonSingular) 
            {
                throw new InvalidOperationException("Matrix is singular");
            }
    
            // Copy right hand side with pivoting
            int count = value.Columns;
            Matrix X = value.Submatrix(pivotVector, 0, count-1);
    
            int rows = LU.Rows;
            int columns = LU.Columns;
            double[][] lu = LU.Array;
    
            // Solve L*Y = B(piv,:)
            for (int k = 0; k < columns; k++)
            {
                for (int i = k + 1; i < columns; i++)
                {
                    for (int j = 0; j < count; j++)
                    {
                        X[i,j] -= X[k,j] * lu[i][k];
                    }
                }
            }
    
            // Solve U*X = Y;
            for (int k = columns - 1; k >= 0; k--)
            {
                for (int j = 0; j < count; j++)
                {
                    X[k,j] /= lu[k][k];
                }
    
                for (int i = 0; i < k; i++)
                {
                    for (int j = 0; j < count; j++)
                    {
                        X[i,j] -= X[k,j] * lu[i][k];
                    }
                }
            }
                
            return X;
        }
    }
}