File size: 8,240 Bytes
b1b3bae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
namespace Mapack
{
    using System;

    /// <summary>QR decomposition for a rectangular matrix.</summary>
    /// <remarks>
    /// For an m-by-n matrix <c>A</c> with <c>m &gt;= n</c>, the QR decomposition is an m-by-n
    /// orthogonal matrix <c>Q</c> and an n-by-n upper triangular 
    /// matrix <c>R</c> so that <c>A = Q * R</c>.
    /// The QR decompostion always exists, even if the matrix does not have
    /// full rank, so the constructor will never fail.  The primary use of the
    /// QR decomposition is in the least squares solution of nonsquare systems
    /// of simultaneous linear equations.
    /// This will fail if <see cref="FullRank"/> returns <see langword="false"/>.
    /// </remarks>
    public class QrDecomposition
    {
        private Matrix QR;
        private double[] Rdiag;

        /// <summary>Construct a QR decomposition.</summary>
        public QrDecomposition(Matrix value)
        {
            if (value == null)
            {
                throw new ArgumentNullException("value");
            }

            this.QR = (Matrix) value.Clone();
            double[][] qr = this.QR.Array;
            int m = value.Rows;
            int n = value.Columns;
            this.Rdiag = new double[n];
    
            for (int k = 0; k < n; k++) 
            {
                // Compute 2-norm of k-th column without under/overflow.
                double nrm = 0;
                for (int i = k; i < m; i++)
                {
                    nrm = Hypotenuse(nrm,qr[i][k]);
                }
                 
                if (nrm != 0.0) 
                {
                    // Form k-th Householder vector.
                    if (qr[k][k] < 0)
                    {
                        nrm = -nrm;
                    }
                    
                    for (int i = k; i < m; i++)
                    {
                        qr[i][k] /= nrm;
                    }

                    qr[k][k] += 1.0;
    
                    // Apply transformation to remaining columns.
                    for (int j = k+1; j < n; j++) 
                    {
                        double s = 0.0;

                        for (int i = k; i < m; i++)
                        {
                            s += qr[i][k]*qr[i][j];
                        }

                        s = -s/qr[k][k];

                        for (int i = k; i < m; i++)
                        {
                            qr[i][j] += s*qr[i][k];
                        }
                    }
                }

                this.Rdiag[k] = -nrm;
            }
        }

        /// <summary>Least squares solution of <c>A * X = B</c></summary>
        /// <param name="value">Right-hand-side matrix with as many rows as <c>A</c> and any number of columns.</param>
        /// <returns>A matrix that minimized the two norm of <c>Q * R * X - B</c>.</returns>
        /// <exception cref="T:System.ArgumentException">Matrix row dimensions must be the same.</exception>
        /// <exception cref="T:System.InvalidOperationException">Matrix is rank deficient.</exception>
        public Matrix Solve(Matrix value)
        {
            if (value == null)
            {
                throw new ArgumentNullException("value");
            }

            if (value.Rows != QR.Rows)
            {
                throw new ArgumentException("Matrix row dimensions must agree.");
            }
            
            if (!this.FullRank) 
            {
                throw new InvalidOperationException("Matrix is rank deficient.");
            }
                
            // Copy right hand side
            int count = value.Columns;
            Matrix X = value.Clone();
            int m = QR.Rows;
            int n = QR.Columns;
            double[][] qr = QR.Array;
            
            // Compute Y = transpose(Q)*B
            for (int k = 0; k < n; k++) 
            {
                for (int j = 0; j < count; j++) 
                {
                    double s = 0.0; 
                    
                    for (int i = k; i < m; i++)
                    {
                        s += qr[i][k] * X[i,j];
                    }

                    s = -s / qr[k][k];
                    
                    for (int i = k; i < m; i++)
                    {
                        X[i,j] += s * qr[i][k];
                    }
                }
            }
                
            // Solve R*X = Y;
            for (int k = n-1; k >= 0; k--) 
            {
                for (int j = 0; j < count; j++) 
                {
                    X[k,j] /= Rdiag[k];
                }
    
                for (int i = 0; i < k; i++) 
                {
                    for (int j = 0; j < count; j++) 
                    {
                        X[i,j] -= X[k,j] * qr[i][k];
                    }
                }
            }
    
            return X.Submatrix(0, n-1, 0, count-1);
        }

        /// <summary>Shows if the matrix <c>A</c> is of full rank.</summary>
        /// <value>The value is <see langword="true"/> if <c>R</c>, and hence <c>A</c>, has full rank.</value>
        public bool FullRank
        {
            get
            {
                int columns = this.QR.Columns;
                for (int i = 0; i < columns; i++)
                {
                    if (this.Rdiag[i] == 0)
                    {
                        return false;
                    }
                }

                return true;
            }           
        }
    
        /// <summary>Returns the upper triangular factor <c>R</c>.</summary>
        public Matrix UpperTriangularFactor
        {
            get
            {
                int n = this.QR.Columns;
                Matrix X = new Matrix(n, n);
                double[][] x = X.Array;
                double[][] qr = QR.Array;
                for (int i = 0; i < n; i++) 
                {
                    for (int j = 0; j < n; j++) 
                    {
                        if (i < j)
                        {
                            x[i][j] = qr[i][j];
                        }
                        else if (i == j) 
                        {
                            x[i][j] = Rdiag[i];
                        }
                        else
                        {
                            x[i][j] = 0.0;
                        }
                    }
                }
    
                return X;
            }
        }

        /// <summary>Returns the orthogonal factor <c>Q</c>.</summary>
        public Matrix OrthogonalFactor
        {
            get
            {
                Matrix X = new Matrix(QR.Rows, QR.Columns);
                double[][] x = X.Array;
                double[][] qr = QR.Array;
                for (int k = QR.Columns - 1; k >= 0; k--) 
                {
                    for (int i = 0; i < QR.Rows; i++)
                    {
                        x[i][k] = 0.0;
                    }

                    x[k][k] = 1.0;
                    for (int j = k; j < QR.Columns; j++) 
                    {
                        if (qr[k][k] != 0) 
                        {
                            double s = 0.0;
                
                            for (int i = k; i < QR.Rows; i++)
                            {
                                s += qr[i][k] * x[i][j];
                            }

                            s = -s / qr[k][k];
                
                            for (int i = k; i < QR.Rows; i++)
                            {
                                x[i][j] += s * qr[i][k];
                            }
                        }
                    }
                }

                return X;
            }
        }

        private static double Hypotenuse(double a, double b)
        {
            if (Math.Abs(a) > Math.Abs(b))
            {
                double r = b / a;
                return Math.Abs(a) * Math.Sqrt(1 + r * r);
            }

            if (b != 0)
            {
                double r = a / b;
                return Math.Abs(b) * Math.Sqrt(1 + r * r);
            }

            return 0.0;
        }
    }
}