|
|
namespace Mapack |
|
|
{ |
|
|
using System; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
public class EigenvalueDecomposition |
|
|
{ |
|
|
private int n; |
|
|
private double[] d, e; |
|
|
private Matrix V; |
|
|
private Matrix H; |
|
|
private double[] ort; |
|
|
private double cdivr, cdivi; |
|
|
private bool symmetric; |
|
|
|
|
|
|
|
|
public EigenvalueDecomposition(Matrix value) |
|
|
{ |
|
|
if (value == null) |
|
|
{ |
|
|
throw new ArgumentNullException("value"); |
|
|
} |
|
|
|
|
|
if (value.Rows != value.Columns) |
|
|
{ |
|
|
throw new ArgumentException("Matrix is not a square matrix.", "value"); |
|
|
} |
|
|
|
|
|
n = value.Columns; |
|
|
V = new Matrix(n,n); |
|
|
d = new double[n]; |
|
|
e = new double[n]; |
|
|
|
|
|
|
|
|
this.symmetric = value.Symmetric; |
|
|
|
|
|
if (this.symmetric) |
|
|
{ |
|
|
for (int i = 0; i < n; i++) |
|
|
{ |
|
|
for (int j = 0; j < n; j++) |
|
|
{ |
|
|
V[i,j] = value[i,j]; |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
this.tred2(); |
|
|
|
|
|
|
|
|
this.tql2(); |
|
|
} |
|
|
else |
|
|
{ |
|
|
H = new Matrix(n,n); |
|
|
ort = new double[n]; |
|
|
|
|
|
for (int j = 0; j < n; j++) |
|
|
{ |
|
|
for (int i = 0; i < n; i++) |
|
|
{ |
|
|
H[i,j] = value[i,j]; |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
this.orthes(); |
|
|
|
|
|
|
|
|
this.hqr2(); |
|
|
} |
|
|
} |
|
|
|
|
|
private void tred2() |
|
|
{ |
|
|
|
|
|
|
|
|
|
|
|
for (int j = 0; j < n; j++) |
|
|
d[j] = V[n-1,j]; |
|
|
|
|
|
|
|
|
for (int i = n-1; i > 0; i--) |
|
|
{ |
|
|
|
|
|
double scale = 0.0; |
|
|
double h = 0.0; |
|
|
for (int k = 0; k < i; k++) |
|
|
scale = scale + Math.Abs(d[k]); |
|
|
|
|
|
if (scale == 0.0) |
|
|
{ |
|
|
e[i] = d[i-1]; |
|
|
for (int j = 0; j < i; j++) |
|
|
{ |
|
|
d[j] = V[i-1,j]; |
|
|
V[i,j] = 0.0; |
|
|
V[j,i] = 0.0; |
|
|
} |
|
|
} |
|
|
else |
|
|
{ |
|
|
|
|
|
for (int k = 0; k < i; k++) |
|
|
{ |
|
|
d[k] /= scale; |
|
|
h += d[k] * d[k]; |
|
|
} |
|
|
|
|
|
double f = d[i-1]; |
|
|
double g = Math.Sqrt(h); |
|
|
if (f > 0) g = -g; |
|
|
|
|
|
e[i] = scale * g; |
|
|
h = h - f * g; |
|
|
d[i-1] = f - g; |
|
|
for (int j = 0; j < i; j++) |
|
|
e[j] = 0.0; |
|
|
|
|
|
|
|
|
for (int j = 0; j < i; j++) |
|
|
{ |
|
|
f = d[j]; |
|
|
V[j,i] = f; |
|
|
g = e[j] + V[j,j] * f; |
|
|
for (int k = j+1; k <= i-1; k++) |
|
|
{ |
|
|
g += V[k,j] * d[k]; |
|
|
e[k] += V[k,j] * f; |
|
|
} |
|
|
e[j] = g; |
|
|
} |
|
|
|
|
|
f = 0.0; |
|
|
for (int j = 0; j < i; j++) |
|
|
{ |
|
|
e[j] /= h; |
|
|
f += e[j] * d[j]; |
|
|
} |
|
|
|
|
|
double hh = f / (h + h); |
|
|
for (int j = 0; j < i; j++) |
|
|
e[j] -= hh * d[j]; |
|
|
|
|
|
for (int j = 0; j < i; j++) |
|
|
{ |
|
|
f = d[j]; |
|
|
g = e[j]; |
|
|
for (int k = j; k <= i-1; k++) |
|
|
V[k,j] -= (f * e[k] + g * d[k]); |
|
|
|
|
|
d[j] = V[i-1,j]; |
|
|
V[i,j] = 0.0; |
|
|
} |
|
|
} |
|
|
d[i] = h; |
|
|
} |
|
|
|
|
|
|
|
|
for (int i = 0; i < n-1; i++) |
|
|
{ |
|
|
V[n-1,i] = V[i,i]; |
|
|
V[i,i] = 1.0; |
|
|
double h = d[i+1]; |
|
|
if (h != 0.0) |
|
|
{ |
|
|
for (int k = 0; k <= i; k++) |
|
|
d[k] = V[k,i+1] / h; |
|
|
|
|
|
for (int j = 0; j <= i; j++) |
|
|
{ |
|
|
double g = 0.0; |
|
|
for (int k = 0; k <= i; k++) |
|
|
g += V[k,i+1] * V[k,j]; |
|
|
for (int k = 0; k <= i; k++) |
|
|
V[k,j] -= g * d[k]; |
|
|
} |
|
|
} |
|
|
|
|
|
for (int k = 0; k <= i; k++) |
|
|
V[k,i+1] = 0.0; |
|
|
} |
|
|
|
|
|
for (int j = 0; j < n; j++) |
|
|
{ |
|
|
d[j] = V[n-1,j]; |
|
|
V[n-1,j] = 0.0; |
|
|
} |
|
|
|
|
|
V[n-1,n-1] = 1.0; |
|
|
e[0] = 0.0; |
|
|
} |
|
|
|
|
|
private void tql2() |
|
|
{ |
|
|
|
|
|
|
|
|
|
|
|
for (int i = 1; i < n; i++) |
|
|
e[i-1] = e[i]; |
|
|
|
|
|
e[n-1] = 0.0; |
|
|
|
|
|
double f = 0.0; |
|
|
double tst1 = 0.0; |
|
|
double eps = Math.Pow(2.0,-52.0); |
|
|
|
|
|
for (int l = 0; l < n; l++) |
|
|
{ |
|
|
|
|
|
tst1 = Math.Max(tst1,Math.Abs(d[l]) + Math.Abs(e[l])); |
|
|
int m = l; |
|
|
while (m < n) |
|
|
{ |
|
|
if (Math.Abs(e[m]) <= eps*tst1) |
|
|
break; |
|
|
m++; |
|
|
} |
|
|
|
|
|
|
|
|
if (m > l) |
|
|
{ |
|
|
int iter = 0; |
|
|
do |
|
|
{ |
|
|
iter = iter + 1; |
|
|
|
|
|
|
|
|
double g = d[l]; |
|
|
double p = (d[l+1] - g) / (2.0 * e[l]); |
|
|
double r = Hypotenuse(p,1.0); |
|
|
if (p < 0) |
|
|
{ |
|
|
r = -r; |
|
|
} |
|
|
|
|
|
d[l] = e[l] / (p + r); |
|
|
d[l+1] = e[l] * (p + r); |
|
|
double dl1 = d[l+1]; |
|
|
double h = g - d[l]; |
|
|
for (int i = l+2; i < n; i++) |
|
|
{ |
|
|
d[i] -= h; |
|
|
} |
|
|
|
|
|
f = f + h; |
|
|
|
|
|
|
|
|
p = d[m]; |
|
|
double c = 1.0; |
|
|
double c2 = c; |
|
|
double c3 = c; |
|
|
double el1 = e[l+1]; |
|
|
double s = 0.0; |
|
|
double s2 = 0.0; |
|
|
for (int i = m-1; i >= l; i--) |
|
|
{ |
|
|
c3 = c2; |
|
|
c2 = c; |
|
|
s2 = s; |
|
|
g = c * e[i]; |
|
|
h = c * p; |
|
|
r = Hypotenuse(p,e[i]); |
|
|
e[i+1] = s * r; |
|
|
s = e[i] / r; |
|
|
c = p / r; |
|
|
p = c * d[i] - s * g; |
|
|
d[i+1] = h + s * (c * g + s * d[i]); |
|
|
|
|
|
|
|
|
for (int k = 0; k < n; k++) |
|
|
{ |
|
|
h = V[k,i+1]; |
|
|
V[k,i+1] = s * V[k,i] + c * h; |
|
|
V[k,i] = c * V[k,i] - s * h; |
|
|
} |
|
|
} |
|
|
|
|
|
p = -s * s2 * c3 * el1 * e[l] / dl1; |
|
|
e[l] = s * p; |
|
|
d[l] = c * p; |
|
|
|
|
|
|
|
|
} |
|
|
while (Math.Abs(e[l]) > eps*tst1); |
|
|
} |
|
|
d[l] = d[l] + f; |
|
|
e[l] = 0.0; |
|
|
} |
|
|
|
|
|
|
|
|
for (int i = 0; i < n-1; i++) |
|
|
{ |
|
|
int k = i; |
|
|
double p = d[i]; |
|
|
for (int j = i+1; j < n; j++) |
|
|
{ |
|
|
if (d[j] < p) |
|
|
{ |
|
|
k = j; |
|
|
p = d[j]; |
|
|
} |
|
|
} |
|
|
|
|
|
if (k != i) |
|
|
{ |
|
|
d[k] = d[i]; |
|
|
d[i] = p; |
|
|
for (int j = 0; j < n; j++) |
|
|
{ |
|
|
p = V[j,i]; |
|
|
V[j,i] = V[j,k]; |
|
|
V[j,k] = p; |
|
|
} |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
private void orthes() |
|
|
{ |
|
|
|
|
|
|
|
|
|
|
|
int low = 0; |
|
|
int high = n-1; |
|
|
|
|
|
for (int m = low+1; m <= high-1; m++) |
|
|
{ |
|
|
|
|
|
|
|
|
double scale = 0.0; |
|
|
for (int i = m; i <= high; i++) |
|
|
scale = scale + Math.Abs(H[i,m-1]); |
|
|
|
|
|
if (scale != 0.0) |
|
|
{ |
|
|
|
|
|
double h = 0.0; |
|
|
for (int i = high; i >= m; i--) |
|
|
{ |
|
|
ort[i] = H[i,m-1]/scale; |
|
|
h += ort[i] * ort[i]; |
|
|
} |
|
|
|
|
|
double g = Math.Sqrt(h); |
|
|
if (ort[m] > 0) g = -g; |
|
|
|
|
|
h = h - ort[m] * g; |
|
|
ort[m] = ort[m] - g; |
|
|
|
|
|
|
|
|
|
|
|
for (int j = m; j < n; j++) |
|
|
{ |
|
|
double f = 0.0; |
|
|
for (int i = high; i >= m; i--) |
|
|
f += ort[i]*H[i,j]; |
|
|
|
|
|
f = f/h; |
|
|
for (int i = m; i <= high; i++) |
|
|
H[i,j] -= f*ort[i]; |
|
|
} |
|
|
|
|
|
for (int i = 0; i <= high; i++) |
|
|
{ |
|
|
double f = 0.0; |
|
|
for (int j = high; j >= m; j--) |
|
|
f += ort[j]*H[i,j]; |
|
|
|
|
|
f = f/h; |
|
|
for (int j = m; j <= high; j++) |
|
|
H[i,j] -= f*ort[j]; |
|
|
} |
|
|
|
|
|
ort[m] = scale*ort[m]; |
|
|
H[m,m-1] = scale*g; |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
for (int i = 0; i < n; i++) |
|
|
for (int j = 0; j < n; j++) |
|
|
V[i,j] = (i == j ? 1.0 : 0.0); |
|
|
|
|
|
for (int m = high-1; m >= low+1; m--) |
|
|
{ |
|
|
if (H[m,m-1] != 0.0) |
|
|
{ |
|
|
for (int i = m+1; i <= high; i++) |
|
|
ort[i] = H[i,m-1]; |
|
|
|
|
|
for (int j = m; j <= high; j++) |
|
|
{ |
|
|
double g = 0.0; |
|
|
for (int i = m; i <= high; i++) |
|
|
g += ort[i] * V[i,j]; |
|
|
|
|
|
|
|
|
g = (g / ort[m]) / H[m,m-1]; |
|
|
for (int i = m; i <= high; i++) |
|
|
V[i,j] += g * ort[i]; |
|
|
} |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
private void cdiv(double xr, double xi, double yr, double yi) |
|
|
{ |
|
|
|
|
|
double r; |
|
|
double d; |
|
|
if (Math.Abs(yr) > Math.Abs(yi)) |
|
|
{ |
|
|
r = yi/yr; |
|
|
d = yr + r*yi; |
|
|
cdivr = (xr + r*xi)/d; |
|
|
cdivi = (xi - r*xr)/d; |
|
|
} |
|
|
else |
|
|
{ |
|
|
r = yr/yi; |
|
|
d = yi + r*yr; |
|
|
cdivr = (r*xr + xi)/d; |
|
|
cdivi = (r*xi - xr)/d; |
|
|
} |
|
|
} |
|
|
|
|
|
private void hqr2() |
|
|
{ |
|
|
|
|
|
|
|
|
|
|
|
int nn = this.n; |
|
|
int n = nn-1; |
|
|
int low = 0; |
|
|
int high = nn-1; |
|
|
double eps = Math.Pow(2.0,-52.0); |
|
|
double exshift = 0.0; |
|
|
double p = 0; |
|
|
double q = 0; |
|
|
double r = 0; |
|
|
double s = 0; |
|
|
double z = 0; |
|
|
double t; |
|
|
double w; |
|
|
double x; |
|
|
double y; |
|
|
|
|
|
|
|
|
double norm = 0.0; |
|
|
for (int i = 0; i < nn; i++) |
|
|
{ |
|
|
if (i < low | i > high) |
|
|
{ |
|
|
d[i] = H[i,i]; |
|
|
e[i] = 0.0; |
|
|
} |
|
|
|
|
|
for (int j = Math.Max(i-1,0); j < nn; j++) |
|
|
norm = norm + Math.Abs(H[i,j]); |
|
|
} |
|
|
|
|
|
|
|
|
int iter = 0; |
|
|
while (n >= low) |
|
|
{ |
|
|
|
|
|
int l = n; |
|
|
while (l > low) |
|
|
{ |
|
|
s = Math.Abs(H[l-1,l-1]) + Math.Abs(H[l,l]); |
|
|
if (s == 0.0) s = norm; |
|
|
if (Math.Abs(H[l,l-1]) < eps * s) |
|
|
break; |
|
|
|
|
|
l--; |
|
|
} |
|
|
|
|
|
|
|
|
if (l == n) |
|
|
{ |
|
|
|
|
|
H[n,n] = H[n,n] + exshift; |
|
|
d[n] = H[n,n]; |
|
|
e[n] = 0.0; |
|
|
n--; |
|
|
iter = 0; |
|
|
} |
|
|
else if (l == n-1) |
|
|
{ |
|
|
|
|
|
w = H[n,n-1] * H[n-1,n]; |
|
|
p = (H[n-1,n-1] - H[n,n]) / 2.0; |
|
|
q = p * p + w; |
|
|
z = Math.Sqrt(Math.Abs(q)); |
|
|
H[n,n] = H[n,n] + exshift; |
|
|
H[n-1,n-1] = H[n-1,n-1] + exshift; |
|
|
x = H[n,n]; |
|
|
|
|
|
if (q >= 0) |
|
|
{ |
|
|
|
|
|
z = (p >= 0) ? (p + z) : (p - z); |
|
|
d[n-1] = x + z; |
|
|
d[n] = d[n-1]; |
|
|
if (z != 0.0) |
|
|
d[n] = x - w / z; |
|
|
e[n-1] = 0.0; |
|
|
e[n] = 0.0; |
|
|
x = H[n,n-1]; |
|
|
s = Math.Abs(x) + Math.Abs(z); |
|
|
p = x / s; |
|
|
q = z / s; |
|
|
r = Math.Sqrt(p * p+q * q); |
|
|
p = p / r; |
|
|
q = q / r; |
|
|
|
|
|
|
|
|
for (int j = n-1; j < nn; j++) |
|
|
{ |
|
|
z = H[n-1,j]; |
|
|
H[n-1,j] = q * z + p * H[n,j]; |
|
|
H[n,j] = q * H[n,j] - p * z; |
|
|
} |
|
|
|
|
|
|
|
|
for (int i = 0; i <= n; i++) |
|
|
{ |
|
|
z = H[i,n-1]; |
|
|
H[i,n-1] = q * z + p * H[i,n]; |
|
|
H[i,n] = q * H[i,n] - p * z; |
|
|
} |
|
|
|
|
|
|
|
|
for (int i = low; i <= high; i++) |
|
|
{ |
|
|
z = V[i,n-1]; |
|
|
V[i,n-1] = q * z + p * V[i,n]; |
|
|
V[i,n] = q * V[i,n] - p * z; |
|
|
} |
|
|
} |
|
|
else |
|
|
{ |
|
|
|
|
|
d[n-1] = x + p; |
|
|
d[n] = x + p; |
|
|
e[n-1] = z; |
|
|
e[n] = -z; |
|
|
} |
|
|
|
|
|
n = n - 2; |
|
|
iter = 0; |
|
|
} |
|
|
else |
|
|
{ |
|
|
|
|
|
|
|
|
|
|
|
x = H[n,n]; |
|
|
y = 0.0; |
|
|
w = 0.0; |
|
|
if (l < n) |
|
|
{ |
|
|
y = H[n-1,n-1]; |
|
|
w = H[n,n-1] * H[n-1,n]; |
|
|
} |
|
|
|
|
|
|
|
|
if (iter == 10) |
|
|
{ |
|
|
exshift += x; |
|
|
for (int i = low; i <= n; i++) |
|
|
H[i,i] -= x; |
|
|
|
|
|
s = Math.Abs(H[n,n-1]) + Math.Abs(H[n-1,n-2]); |
|
|
x = y = 0.75 * s; |
|
|
w = -0.4375 * s * s; |
|
|
} |
|
|
|
|
|
|
|
|
if (iter == 30) |
|
|
{ |
|
|
s = (y - x) / 2.0; |
|
|
s = s * s + w; |
|
|
if (s > 0) |
|
|
{ |
|
|
s = Math.Sqrt(s); |
|
|
if (y < x) s = -s; |
|
|
s = x - w / ((y - x) / 2.0 + s); |
|
|
for (int i = low; i <= n; i++) |
|
|
H[i,i] -= s; |
|
|
exshift += s; |
|
|
x = y = w = 0.964; |
|
|
} |
|
|
} |
|
|
|
|
|
iter = iter + 1; |
|
|
|
|
|
|
|
|
int m = n-2; |
|
|
while (m >= l) |
|
|
{ |
|
|
z = H[m,m]; |
|
|
r = x - z; |
|
|
s = y - z; |
|
|
p = (r * s - w) / H[m+1,m] + H[m,m+1]; |
|
|
q = H[m+1,m+1] - z - r - s; |
|
|
r = H[m+2,m+1]; |
|
|
s = Math.Abs(p) + Math.Abs(q) + Math.Abs(r); |
|
|
p = p / s; |
|
|
q = q / s; |
|
|
r = r / s; |
|
|
if (m == l) |
|
|
break; |
|
|
if (Math.Abs(H[m,m-1]) * (Math.Abs(q) + Math.Abs(r)) < eps * (Math.Abs(p) * (Math.Abs(H[m-1,m-1]) + Math.Abs(z) + Math.Abs(H[m+1,m+1])))) |
|
|
break; |
|
|
m--; |
|
|
} |
|
|
|
|
|
for (int i = m+2; i <= n; i++) |
|
|
{ |
|
|
H[i,i-2] = 0.0; |
|
|
if (i > m+2) |
|
|
H[i,i-3] = 0.0; |
|
|
} |
|
|
|
|
|
|
|
|
for (int k = m; k <= n-1; k++) |
|
|
{ |
|
|
bool notlast = (k != n-1); |
|
|
if (k != m) |
|
|
{ |
|
|
p = H[k,k-1]; |
|
|
q = H[k+1,k-1]; |
|
|
r = (notlast ? H[k+2,k-1] : 0.0); |
|
|
x = Math.Abs(p) + Math.Abs(q) + Math.Abs(r); |
|
|
if (x != 0.0) |
|
|
{ |
|
|
p = p / x; |
|
|
q = q / x; |
|
|
r = r / x; |
|
|
} |
|
|
} |
|
|
|
|
|
if (x == 0.0) break; |
|
|
|
|
|
s = Math.Sqrt(p * p + q * q + r * r); |
|
|
if (p < 0) s = -s; |
|
|
|
|
|
if (s != 0) |
|
|
{ |
|
|
if (k != m) |
|
|
H[k,k-1] = -s * x; |
|
|
else |
|
|
if (l != m) |
|
|
H[k,k-1] = -H[k,k-1]; |
|
|
|
|
|
p = p + s; |
|
|
x = p / s; |
|
|
y = q / s; |
|
|
z = r / s; |
|
|
q = q / p; |
|
|
r = r / p; |
|
|
|
|
|
|
|
|
for (int j = k; j < nn; j++) |
|
|
{ |
|
|
p = H[k,j] + q * H[k+1,j]; |
|
|
if (notlast) |
|
|
{ |
|
|
p = p + r * H[k+2,j]; |
|
|
H[k+2,j] = H[k+2,j] - p * z; |
|
|
} |
|
|
|
|
|
H[k,j] = H[k,j] - p * x; |
|
|
H[k+1,j] = H[k+1,j] - p * y; |
|
|
} |
|
|
|
|
|
|
|
|
for (int i = 0; i <= Math.Min(n,k+3); i++) |
|
|
{ |
|
|
p = x * H[i,k] + y * H[i,k+1]; |
|
|
if (notlast) |
|
|
{ |
|
|
p = p + z * H[i,k+2]; |
|
|
H[i,k+2] = H[i,k+2] - p * r; |
|
|
} |
|
|
|
|
|
H[i,k] = H[i,k] - p; |
|
|
H[i,k+1] = H[i,k+1] - p * q; |
|
|
} |
|
|
|
|
|
|
|
|
for (int i = low; i <= high; i++) |
|
|
{ |
|
|
p = x * V[i,k] + y * V[i,k+1]; |
|
|
if (notlast) |
|
|
{ |
|
|
p = p + z * V[i,k+2]; |
|
|
V[i,k+2] = V[i,k+2] - p * r; |
|
|
} |
|
|
|
|
|
V[i,k] = V[i,k] - p; |
|
|
V[i,k+1] = V[i,k+1] - p * q; |
|
|
} |
|
|
} |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
if (norm == 0.0) |
|
|
{ |
|
|
return; |
|
|
} |
|
|
|
|
|
for (n = nn-1; n >= 0; n--) |
|
|
{ |
|
|
p = d[n]; |
|
|
q = e[n]; |
|
|
|
|
|
|
|
|
if (q == 0) |
|
|
{ |
|
|
int l = n; |
|
|
H[n,n] = 1.0; |
|
|
for (int i = n-1; i >= 0; i--) |
|
|
{ |
|
|
w = H[i,i] - p; |
|
|
r = 0.0; |
|
|
for (int j = l; j <= n; j++) |
|
|
r = r + H[i,j] * H[j,n]; |
|
|
|
|
|
if (e[i] < 0.0) |
|
|
{ |
|
|
z = w; |
|
|
s = r; |
|
|
} |
|
|
else |
|
|
{ |
|
|
l = i; |
|
|
if (e[i] == 0.0) |
|
|
{ |
|
|
H[i,n] = (w != 0.0) ? (-r / w) : (-r / (eps * norm)); |
|
|
} |
|
|
else |
|
|
{ |
|
|
|
|
|
x = H[i,i+1]; |
|
|
y = H[i+1,i]; |
|
|
q = (d[i] - p) * (d[i] - p) + e[i] * e[i]; |
|
|
t = (x * s - z * r) / q; |
|
|
H[i,n] = t; |
|
|
H[i+1,n] = (Math.Abs(x) > Math.Abs(z)) ? ((-r - w * t) / x) : ((-s - y * t) / z); |
|
|
} |
|
|
|
|
|
|
|
|
t = Math.Abs(H[i,n]); |
|
|
if ((eps * t) * t > 1) |
|
|
for (int j = i; j <= n; j++) |
|
|
H[j,n] = H[j,n] / t; |
|
|
} |
|
|
} |
|
|
} |
|
|
else if (q < 0) |
|
|
{ |
|
|
|
|
|
int l = n-1; |
|
|
|
|
|
|
|
|
if (Math.Abs(H[n,n-1]) > Math.Abs(H[n-1,n])) |
|
|
{ |
|
|
H[n-1,n-1] = q / H[n,n-1]; |
|
|
H[n-1,n] = -(H[n,n] - p) / H[n,n-1]; |
|
|
} |
|
|
else |
|
|
{ |
|
|
cdiv(0.0,-H[n-1,n],H[n-1,n-1]-p,q); |
|
|
H[n-1,n-1] = cdivr; |
|
|
H[n-1,n] = cdivi; |
|
|
} |
|
|
|
|
|
H[n,n-1] = 0.0; |
|
|
H[n,n] = 1.0; |
|
|
for (int i = n-2; i >= 0; i--) |
|
|
{ |
|
|
double ra,sa,vr,vi; |
|
|
ra = 0.0; |
|
|
sa = 0.0; |
|
|
for (int j = l; j <= n; j++) |
|
|
{ |
|
|
ra = ra + H[i,j] * H[j,n-1]; |
|
|
sa = sa + H[i,j] * H[j,n]; |
|
|
} |
|
|
|
|
|
w = H[i,i] - p; |
|
|
|
|
|
if (e[i] < 0.0) |
|
|
{ |
|
|
z = w; |
|
|
r = ra; |
|
|
s = sa; |
|
|
} |
|
|
else |
|
|
{ |
|
|
l = i; |
|
|
if (e[i] == 0) |
|
|
{ |
|
|
cdiv(-ra,-sa,w,q); |
|
|
H[i,n-1] = cdivr; |
|
|
H[i,n] = cdivi; |
|
|
} |
|
|
else |
|
|
{ |
|
|
|
|
|
x = H[i,i+1]; |
|
|
y = H[i+1,i]; |
|
|
vr = (d[i] - p) * (d[i] - p) + e[i] * e[i] - q * q; |
|
|
vi = (d[i] - p) * 2.0 * q; |
|
|
if (vr == 0.0 & vi == 0.0) |
|
|
vr = eps * norm * (Math.Abs(w) + Math.Abs(q) + Math.Abs(x) + Math.Abs(y) + Math.Abs(z)); |
|
|
cdiv(x*r-z*ra+q*sa,x*s-z*sa-q*ra,vr,vi); |
|
|
H[i,n-1] = cdivr; |
|
|
H[i,n] = cdivi; |
|
|
if (Math.Abs(x) > (Math.Abs(z) + Math.Abs(q))) |
|
|
{ |
|
|
H[i+1,n-1] = (-ra - w * H[i,n-1] + q * H[i,n]) / x; |
|
|
H[i+1,n] = (-sa - w * H[i,n] - q * H[i,n-1]) / x; |
|
|
} |
|
|
else |
|
|
{ |
|
|
cdiv(-r-y*H[i,n-1],-s-y*H[i,n],z,q); |
|
|
H[i+1,n-1] = cdivr; |
|
|
H[i+1,n] = cdivi; |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
t = Math.Max(Math.Abs(H[i,n-1]),Math.Abs(H[i,n])); |
|
|
if ((eps * t) * t > 1) |
|
|
for (int j = i; j <= n; j++) |
|
|
{ |
|
|
H[j,n-1] = H[j,n-1] / t; |
|
|
H[j,n] = H[j,n] / t; |
|
|
} |
|
|
} |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
for (int i = 0; i < nn; i++) |
|
|
if (i < low | i > high) |
|
|
for (int j = i; j < nn; j++) |
|
|
V[i,j] = H[i,j]; |
|
|
|
|
|
|
|
|
for (int j = nn-1; j >= low; j--) |
|
|
for (int i = low; i <= high; i++) |
|
|
{ |
|
|
z = 0.0; |
|
|
for (int k = low; k <= Math.Min(j,high); k++) |
|
|
z = z + V[i,k] * H[k,j]; |
|
|
V[i,j] = z; |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
public double[] RealEigenvalues |
|
|
{ |
|
|
get |
|
|
{ |
|
|
return this.d; |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
public double[] ImaginaryEigenvalues |
|
|
{ |
|
|
get |
|
|
{ |
|
|
return this.e; |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
public Matrix EigenvectorMatrix |
|
|
{ |
|
|
get |
|
|
{ |
|
|
return this.V; |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
public Matrix DiagonalMatrix |
|
|
{ |
|
|
get |
|
|
{ |
|
|
Matrix X = new Matrix(n, n); |
|
|
double[][] x = X.Array; |
|
|
|
|
|
for (int i = 0; i < n; i++) |
|
|
{ |
|
|
for (int j = 0; j < n; j++) |
|
|
x[i][j] = 0.0; |
|
|
|
|
|
x[i][i] = d[i]; |
|
|
if (e[i] > 0) |
|
|
{ |
|
|
x[i][i+1] = e[i]; |
|
|
} |
|
|
else if (e[i] < 0) |
|
|
{ |
|
|
x[i][i-1] = e[i]; |
|
|
} |
|
|
} |
|
|
|
|
|
return X; |
|
|
} |
|
|
} |
|
|
|
|
|
private static double Hypotenuse(double a, double b) |
|
|
{ |
|
|
if (Math.Abs(a) > Math.Abs(b)) |
|
|
{ |
|
|
double r = b / a; |
|
|
return Math.Abs(a) * Math.Sqrt(1 + r * r); |
|
|
} |
|
|
|
|
|
if (b != 0) |
|
|
{ |
|
|
double r = a / b; |
|
|
return Math.Abs(b) * Math.Sqrt(1 + r * r); |
|
|
} |
|
|
|
|
|
return 0.0; |
|
|
} |
|
|
} |
|
|
} |
|
|
|